Differentiation in Nitrogen Transformations and Crop Yield as Affected by Tillage Modes in a Fluvo-Aquic Soil
Abstract
:1. Introduction
2. Results
2.1. Distribution of Soil Total Nitrogen under Different Tillage Modes
2.2. Distribution of Soil Alkaline Nitrogen under Different Tillage Modes
2.3. Distribution of Soil Nitrate Nitrogen under Different Tillage Modes
2.4. Distribution of Soil Ammonium Nitrogen under Different Tillage Modes
2.5. Distribution of Soil Dissolved Organic Nitrogen under Different Tillage Modes
2.6. Distribution of Soil Microbial Biomass Nitrogen under Different Tillage Modes
2.7. The Three-Factor Analysis with Time, Tillage, and Soil Depth on Nitrogen Forms
2.8. Wheat Yield, Yield Component, and Fertilizer Partial Productivity
2.9. The Nitrogen Balance under Different Treatments
2.10. The Correlation Analysis between Nitrogen Forms and Wheat Yield during 2017–2019
3. Discussion
3.1. The Effect of Tillage Practice on Total Nitrogen
3.2. The Effect of Tillage on Nitrogen Components
3.3. The Effect of Tillage on Wheat Yield and Nitrogen Balance
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Soil Sample Collection and Measurement
4.4. Grain Yield, Yield Components, Aboveground Biomass, and Nitrogen Accumulation
4.5. Calculation
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.M.; Dang, P.F.; Li, Y.Z.; Qin, X.L.; Siddique, K.M. Better tillage selection before ridge–furrow film mulching can facilitate root proliferation, increase nitrogen accumulation, translocation, grain yield of maize in a semiarid area. J. Integr. Agric. 2022, 2095–3119. [Google Scholar] [CrossRef]
- Xie, J.H.; Wang, L.L.; Li, L.L.; Coulter, J.A.; Chai, Q.; Zhang, R.Z.; Luo, Z.Z.; Carberry, P.; Rao, K.P.C. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China. Soil Till. Res. 2020, 199, 104584. [Google Scholar] [CrossRef]
- Zhang, H.H.; Zhang, Y.Q.; Yan, C.R.; Liu, E.K.; Chen, B.Q. Soil nitrogen and its fractions between long-term conventional and no-tillage systems with straw retention in dryland farming in northern China. Geoderma 2016, 269, 138–144. [Google Scholar] [CrossRef]
- Li, G.H.; Cheng, Q.; Li, L.; Lu, D.L.; Lu, W.P. N, P and K use efficiency and maize yield responses to fertilization modes and densities. J. Integr. Agric. 2021, 20, 78–86. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, Y.; He, H.; Zhu, T.; Chen, X.; Zhang, X.; Liang, C.; Xie, H.; Zhang, J.; Christoph, M.; et al. Effects of long-term no-tillage and maize straw mulching on gross nitrogen transformations in Mollisols of Northeast China. Geoderma 2022, 428, 116194. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Cooper, J.M. Evaluation of some indices of potentially mineralizable nitrogen in soil. Soil Sci. Soc. Am. J. 2007, 71, 1233–1239. [Google Scholar] [CrossRef]
- Yoo, G.; Wander, M.M. Tillage effects on aggregate turnover and sequestration of particulate and humified soil organic carbon. Soil Sci. Soc. Am. J. 2008, 72, 670–676. [Google Scholar] [CrossRef]
- Marschner, B.; Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 2003, 113, 211–235. [Google Scholar] [CrossRef]
- Lv, L.G.; Gao, Z.B.; Liao, K.H.; Zhu, Q.; Zhu, J.J. Impact of conservation tillage on the distribution of soil nutrients with depth. Soil Till. Res. 2023, 225, 105527. [Google Scholar] [CrossRef]
- Ding, J.L.; Hu, W.; Wu, J.C.; Yang, Y.H.; Feng, H. Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2. Agric. Water Manag. 2020, 230, 105956. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.D.; Lal, R.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the north China plain. Soil Till. Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wang, H.; Ning, F.; Zhang, Y.; Dong, Z.; Wen, P.; Wang, R.; Wang, X.; Li, J. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat- spring maize rotations. Agric. For. Meteorol. 2018, 263, 107–117. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Hassim, R.; Shapiro, C.; Jasa, P.; Klopp, H. How does no-till affect soil-profile compactibility in the long term? Geoderma 2022, 425, 116016. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.; Gao, Z.; Wang, P.; Mo, F.; Xue, L.; Lei, M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crop. Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Birkas, M.; Jolankai, M.; Gyuricza, C.; Percze, A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Till. Res. 2004, 78, 185–196. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.P.; Cai, Y.J.; Yang, Q.; Chang, S.X. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage. Sci. Total Environ. 2020, 716, 137164. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Till. Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [Green Version]
- Mahal, N.K.; Castellano, M.J.; Miguez, F.E. Conservation agriculture practices increase potentially mineralizable nitrogen: A meta-analysis. Soil Sci. Soc. Am. J. 2018, 82, 1270–1278. [Google Scholar] [CrossRef]
- Choudhury, S.G.; Srivastava, S.; Singh, R.; Chaudhari, S.K.; Sharma, D.K.; Singh, S.K. ZTillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil. Soil Till. Res. 2014, 136, 76–83. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Tan, C.J.; Wang, R.; Li, J.; Wang, X.L. Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture. Eur. J. Agron. 2021, 131, 126379. [Google Scholar] [CrossRef]
- López-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Till. Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, R.; Wang, S.L.; Wang, H.; Xu, Z.G.; Jia, G.C.; Wang, X.L.; Li, J. Effects of different sub-soiling frequencies in corporated into no-tillage systems on soil properties and crop yield in dryland wheat-maize rotation system. Field Crop. Res. 2017, 209, 151–158. [Google Scholar] [CrossRef]
- López-Fando, C.; Dorado, J.; Pardo, M.T. Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain. Soil Till. Res. 2007, 95, 266–276. [Google Scholar] [CrossRef]
- Hou, X.; Li, R.; Jia, Z.; Han, Q. Effect of rational tillage on soil aggregates, organic carbon and nitrogen in the Loess Plateau Area of China. Pedosphere 2013, 23, 542–548. [Google Scholar] [CrossRef]
- Dang, Y.; Moody, P.W.; Bell, M.J.; Seymour, N.P.; Dalal, R.C.; Freebairn, D.M.; Walker, S.R. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Res. 2015, 152, 115–123. [Google Scholar] [CrossRef]
- Kettler, T.A.; Lyon, D.J.; Doran, J.W.; Powers, W.L.; Stroup, W.W. Soil quality assessment after weed control tillage in a no-till wheat-fallow cropping system. Soil Sci. Soc. Am. J. 2000, 64, 339–346. [Google Scholar] [CrossRef]
- Quincke, J.A.; Wortmann, C.S.; Mamo, M.; Franti, T.; Drijber, R.A. Occasional tillage of no-till systems: Carbon dioxide flux and changes in total and labile soil organic carbon. Agron. J. 2007, 99, 1158–1168. [Google Scholar] [CrossRef]
- Vesh, R.T.; Rajan, G.; Wooiklee, S.; Paye, D.V. Soil organic carbon and nitrogen responses to occasional tillage in a continuous no-tillage system. Soil Till. Res. 2023, 227, 105619. [Google Scholar]
- Keuper, F.; Dorrepaal, E.; van Bodegom, P.M.; van Logtestijn, R.; Venhuizen, G.; van Hal, J.; Aerts, R. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Chang. Biol. 2017, 23, 4257–4266. [Google Scholar] [CrossRef]
- Carter, C.; Schipanski, M.E. Nitrogen uptake by rapeseed varieties from organic matter and inorganic fertilizer sources. Plant Soil 2022, 474, 499–511. [Google Scholar] [CrossRef]
- Liu, X.Q.; Liu, H.R.; Ren, D.Y.; Liu, C.R.; Zhang, Y.S.; Wang, S.Q.; Li, Z.H.; Zhang, M.C. Interlinkages between soil properties and keystone taxa under different tillage practices on the North China Plain. Appl. Soil Ecol. 2022, 178, 104551. [Google Scholar] [CrossRef]
- Sa, J.C.D.M.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronose quence on a Brazilian Oxisol. Soil Till. Res. 2009, 103, 46–56. [Google Scholar] [CrossRef]
- Melero, S.; Lopez-Bellido, R.J.; Lopez-Bellido, L.; Muñoz-Romero, V.; Moreno, F.; Murillo, M.J.; Franzluebbers, A.J. Stratification ratios in a rainfed Mediterranean Vertisol in wheat under different tillage, rotation and N fertilization rates. Soil Till. Res. 2012, 119, 7–12. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil Till. Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Han, S.; Wu, J.; Li, M.; Chen, F.; Wang, Y.; Cheng, W.; Tang, S.; Wang, H.; Guo, X.; Lu, C. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. J. Plant Nutr. Fertil. 2020, 26, 276–284. [Google Scholar]
- Wang, P.; Chen, J.; Xie, C.; Wang, G.; Wen, J.; Zhang, L. Effects of rotation tillage on soil improvement and increasing yield and benefit of spring maize. Agric. Res. Arid. Areas 2018, 36, 59–67. [Google Scholar]
- Valboa, G.; Lagomarsino, A.; Brandi, G.; Agnelli, A.E.; Simoncini, S.; Papini, R.; Vignozzi, N.; Pellegrini, S. Long-term variations in soil organic matter under different tillage intensities. Soil Till. Res. 2015, 154, 126–135. [Google Scholar] [CrossRef]
- Tho, B.T.; Lambertini, C.; Eller, F.; Brix, H.; Sorrell, B.K. Ammonium and nitrate are both suitable inorganic nitrogen forms for the highly productive wetland grass Arundo donax, a candidate species for wetland paludiculture. Ecol. Eng. 2017, 105, 379–386. [Google Scholar] [CrossRef]
- Murphy, D.V.; Recous, S.; Stockdale, E.A.; Fillery, I.; Jensen, L.S.; Hatch, D.J.; Goulding, K. Gross nitrogen fluxes in soil: Theory, measurement and application of 15N pool dilution techniques. Adv. Agron. 2003, 79, 69–118. [Google Scholar]
- Gao, Q.Q.; Ma, L.X.; Fang, Y.Y.; Zhang, A.P.; Li, G.C.; Wang, J.J.; Wu, D.; Wu, W.L.; Du, Z.L. Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile. Sci. Total Environ. 2021, 762, 143116. [Google Scholar] [CrossRef]
- Jakab, G.; Madarász, B.; Masoudi, M.; Karlik, M.; Király, C.; Zacháry, D.; Filep, T.; Dekemati, I.; Centeri, C.; Al-Graiti, T.; et al. Soil organic matter gain by reduced tillage intensity: Storage, pools, and chemical composition. Soil Till. Res. 2023, 226, 105584. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Soil nitrogen status can be improved through no-tillage adoption particularly in the surface soil layer: A global meta-analysis. J. Clean. Prod. 2022, 366, 132874. [Google Scholar] [CrossRef]
- Kahlon, M.S.; Khurana, K. Effect of land management practices on physical properties of soil and water productivity in wheat–maize system of Northwest India. Applied Ecology and Environmental Research. Appl. Ecol. Environ. Res. 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Chu, P.; Zhang, Y.; Yu, Z.; Guo, Z.; Yu, S. Winter wheat grain yield, water use, biomass accumulation and remobilization under tillage in the North China Plain. Field Crop. Res. 2016, 193, 43–53. [Google Scholar] [CrossRef]
- Jabro, D.J.B.; Stevens, W.M.; Iversen, W.G.; Evans, R. Technical note: Bulk density, water content, and hydraulic properties of a sandy loam soil following conventional or strip tillage. Appl. Eng. Agric. 2011, 27, 765–768. [Google Scholar] [CrossRef]
- Wu, F.; Zhai, L.; Xu, P.; Zhang, Z.; Elamin, H.B.; Lemessa, N.T.; Roy, N.K.; Jia, X.; Guo, H. Effects of deep vertical rotary tillage on the grain yield and resource use efficiency of winter wheat in the Huang-Huai-Hai Plain of China. J. Integr. Agric. 2021, 20, 593–605. [Google Scholar] [CrossRef]
- Peralta, G.; Alvarez, C.R.; Taboada, M.Á. Soil compaction alleviation by deep non-inversion tillage and crop yield responses in no tilled soils of the Pampas region of Argentina. A meta-analysis. Soil Till. Res. 2021, 211, 105022. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007. In World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; Agricultural Press: Hangzhou, China, 2000. [Google Scholar]
- Maynard, D.G.; Kalra, Y.P.; Crumbaugh, J.A. Nitrate and Exchangeable Ammonium Nitrogen. In Soil Sampling and Methods of Soil Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 71–80. [Google Scholar]
- Gigliotti, G.; Kaiser, K.; Guggenberger, G.; Haumaier, L. Differences in the chemical composition of dissolved organic matter from waste materials of different sources. Biol. Fertil. Soils 2002, 36, 321–329. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S. The Determination of Microbial Biomass Carbon and Nitrogen in Soil. In Advances in Nitrogen Cycling in Agricultural Ecosytems; C.A.B. International: Wallingford, UK, 1988; pp. 368–386. [Google Scholar]
- Lu, Y.; Nie, J.; Liao, Y.; Zhou, X.; Wang, Y.; Tang, W. Effects of urease and nitrification inhibitor on yield, nitrogen efficiency and soil nitrogen balance under double-rice cropping system. J. Plant Nutr. Fertil. 2018, 24, 95–104. [Google Scholar]
- Xue, L.; Ma, Z.; Du, S.; Feng, S.; Ran, S. Effects of application of nitrogen on melon yield, nitrogen balance and soil nitrogen accumulation under plastic mulching with drip irrigation. Sci. Agric. Sin. 2019, 52, 690–700. [Google Scholar]
Source of Variation | d.f. | TN | AN | DON | SMBN | NH4+-N | NO3−-N |
---|---|---|---|---|---|---|---|
Time | 2 | 15.2 ** | 89.73 ** | 237.79 ** | 34.77 ** | 127.87 ** | 290.33 ** |
Tillage | 4 | 4.95 ** | 20.06 ** | 22.43 ** | 28.93 ** | 6.63 ** | 21.82 ** |
Depth | 4 | 2340.33 ** | 6672.79 ** | 1218 ** | 11,731.24 ** | 6196.85 ** | 13,686.67 ** |
Time × Tillage | 8 | 2.84 ** | 4.93 ** | 1.86 NS | 1.08 NS | 7.86 ** | 10.48 ** |
Time × Depth | 8 | 8.7 ** | 37.96 ** | 152.92 ** | 18.12 ** | 10.06 ** | 35.38 ** |
Tillage × Depth | 16 | 1.76 * | 3.06 ** | 3.33 ** | 2.18 ** | 2.94 ** | 1.92 * |
Time × Tillage × Depth | 32 | 1.65 * | 1.39 NS | 1.85 ** | 2.15 ** | 3.01 ** | 3.01 ** |
Year | Treatment | Spike Number (×104 ha−1) | Kernels Per Spike (No.) | Thousand Kernel Weight (g) | Yield (kg·ha−1) | N Partial Productivity |
---|---|---|---|---|---|---|
2017 | RT-RT-RT | 634.80 ± 29.55 a | 29.53 ± 3.11 a | 50.53 ± 2.41 a | 6717 ± 103 a | 30.67 ± 0.47 a |
DT-RT-RT | 602.25 ± 26.25 a | 28.83 ± 2.50 a | 51.21 ± 1.20 a | 6383 ± 208 ab | 29.15 ± 0.95 ab | |
DT-RT-SRT | 586.35 ± 22.95 a | 23.47 ± 3.06 b | 49.68 ± 1.37 a | 5967 ± 148 c | 27.25 ± 0.68 c | |
DT-SRT-SRT | 600.75 ± 19.20 a | 24.77 ± 2.67 ab | 48.39 ± 0.94 a | 6163 ± 191 bc | 28.14 ± 0.87 bc | |
DT-SRT-RT | 598.50 ± 23.70 a | 26.17 ± 2.04 ab | 49.21 ± 1.60 a | 6252 ± 277 bc | 28.55 ± 1.27 bc | |
2018 | RT-RT-RT | 652.50 ± 31.50 c | 25.33 ± 1.53 c | 45.5 ± 0.68 a | 6096 ± 148 c | 27.84 ± 0.68 c |
DT-RT-RT | 701.55 ± 20.55 ab | 29.00 ± 1.73 ab | 46.67 ± 2.04 a | 6465 ± 102 ab | 29.52 ± 0.47 ab | |
DT-RT-SRT | 721.35 ± 37.80 a | 30.67 ± 2.08 a | 45.97 ± 1.24 a | 6507 ± 111 a | 29.71 ± 0.51 a | |
DT-SRT-SRT | 677.55 ± 18.00 bc | 26.00 ± 2.00 bc | 47.72 ± 2.12 a | 6259 ± 97 bc | 28.58 ± 0.44 bc | |
DT-SRT-RT | 668.10 ± 16.35 bc | 26.83 ± 1.04 bc | 46.43 ± 1.50 a | 6346 ± 79 ab | 28.98 ± 0.36 ab | |
2019 | RT-RT-RT | 574.05 ± 12.75 d | 28.43 ± 0.98 b | 41.89 ± 1.028 c | 5719 ± 153 d | 26.12 ± 0.7 d |
DT-RT-RT | 636.00 ± 8.85 b | 28.93 ± 1.00 ab | 43.36 ± 1.90 bc | 6300 ± 53 b | 28.77 ± 0.24 b | |
DT-RT-SRT | 604.35 ± 6.15 c | 26.20 ± 1.80 c | 48.57 ± 1.54 a | 6003 ± 95 c | 27.41 ± 0.44 c | |
DT-SRT-SRT | 648.30 ± 12.30 ab | 30.80 ± 1.00 a | 44.13 ± 1.20 bc | 6477 ± 36 ab | 29.58 ± 0.16 ab | |
DT-SRT-RT | 667.05 ± 8.10 a | 31.00 ± 0.59 a | 46.22 ± 0.95 ab | 6557 ± 67 a | 29.94 ± 0.31 a |
Treatment | Mineral Nitrogen (kg ha−1) | Initial Inorganic Nitrogen (kg ha−1) | Nitrogen Absorbed by the Crop (kg ha−1) | Residue Inorganic Nitrogen (kg ha−1) | Apparent Nitrogen Loss (kg ha−1) |
---|---|---|---|---|---|
RT-RT-RT | 219 | 81.18 ± 0.79 c | 173.39 ± 9.73 c | 80.93 ± 1.40 c | 46.11 ± 2.22 a |
DT-RT-RT | 219 | 83.23 ± 0.24 a | 197.59 ± 4.40 ab | 86.05 ± 0.89 a | 18.62 ± 2.54 cd |
DT-RT-SRT | 219 | 82.83 ± 1.23 a | 190.93 ± 10.26 b | 85.55 ± 0.90 a | 25.46 ± 2.95 b |
DT-SRT-SRT | 219 | 86.70 ± 0.80 bc | 200.8 ± 5.02 ab | 83.02 ± 0.87 bc | 21.89 ± 1.97 bc |
DT-SRT-RT | 219 | 84.55 ± 0.73 ab | 203.59 ± 3.22 a | 84.03 ± 1.64 ab | 15.93 ± 3.62 d |
Treatment | 10/2016 | 10/2017 | 10/2018 |
---|---|---|---|
RT-RT-RT | rotary tillage | rotary tillage | rotary tillage |
DR-RT-RT | deep tillage | rotary tillage | rotary tillage |
DT-RT-SRT | deep tillage | rotary tillage | shallow rotary tillage |
DT-SRT-SRT | deep tillage | shallow rotary tillage | shallow rotary tillage |
DT-SRT-RT | deep tillage | shallow rotary tillage | rotary tillage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, F.; Zhu, C.; Jiang, G.; Yang, J.; Zhu, X.; Wang, S.; Wang, R.; Liu, F.; Jie, X.; Liu, S. Differentiation in Nitrogen Transformations and Crop Yield as Affected by Tillage Modes in a Fluvo-Aquic Soil. Plants 2023, 12, 783. https://doi.org/10.3390/plants12040783
Shen F, Zhu C, Jiang G, Yang J, Zhu X, Wang S, Wang R, Liu F, Jie X, Liu S. Differentiation in Nitrogen Transformations and Crop Yield as Affected by Tillage Modes in a Fluvo-Aquic Soil. Plants. 2023; 12(4):783. https://doi.org/10.3390/plants12040783
Chicago/Turabian StyleShen, Fengmin, Changwei Zhu, Guiying Jiang, Jin Yang, Xuanlin Zhu, Shiji Wang, Renzhuo Wang, Fang Liu, Xiaolei Jie, and Shiliang Liu. 2023. "Differentiation in Nitrogen Transformations and Crop Yield as Affected by Tillage Modes in a Fluvo-Aquic Soil" Plants 12, no. 4: 783. https://doi.org/10.3390/plants12040783
APA StyleShen, F., Zhu, C., Jiang, G., Yang, J., Zhu, X., Wang, S., Wang, R., Liu, F., Jie, X., & Liu, S. (2023). Differentiation in Nitrogen Transformations and Crop Yield as Affected by Tillage Modes in a Fluvo-Aquic Soil. Plants, 12(4), 783. https://doi.org/10.3390/plants12040783