High-Throughput RNA Sequencing of Mosaic Infected and Non-Infected Apple (Malus × domestica Borkh.) Cultivars: From Detection to the Reconstruction of Whole Genome of Viruses and Viroid
Abstract
:1. Introduction
2. Results
2.1. Symptomatology and Incidence
2.2. Illumina HiSeq Sequencing Statistics
2.3. Viruses Detected in the Leaf Samples of Symptomatic and Asymptomatic Apple Cultivars
2.4. Distribution of Individual Virus/Viroid Reads
2.5. Viruses/Viroid Confirmation by RT-PCR
2.6. Genome Reconstruction and Organization
2.7. Phylogenetic Analysis
2.8. Recombination and Single Nucleotide Variance (SNV) Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Source
4.2. RNA Isolation, Library Preparation and Illumina HiSeq Sequencing
4.3. Sequence Processing and De Novo Assembly
4.4. Virus Identification and Genome Reconstruction from Assembled De Novo Contigs
4.5. Phylogenetic and Recombination Analyses of Identified Viruses/Viroids
4.6. Secondary Structure Determination in Viroid
4.7. Confirmation of Virus and Viroid with RT-PCR and Sanger Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shafi, S.M.; Sheikh, M.A.; Nabi, S.U.; Mir, M.A.; Ahmad, N.; Mir, J.I.; Raja, W.H.; Rasool, R.; Masoodi, K.Z. An overview of apple scab, its cause and management strategies. EC Microbiol. 2019, 15, 1–4. [Google Scholar]
- Mansoor, S.; Ahmed, N.; Sharma, V.; Jan, S.; Nabi, S.U.; Mir, J.I.; Mir, M.A.; Masoodi, K.Z. Elucidating genetic variability and population structure in Venturia inaequalis associated with apple scab diseaseusing SSR markers. PLoS ONE 2019, 14, e0224300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, M.A.; Mushtaq, K.; Mir, J.I.; Amin, M.; Nabi, S.U. Introgression of Scab Resistance Gene Vf (Rvi6) in commercially grown Susceptible Cultivar Fuji Azitec of apple (Malus domestica) using Marker Assisted Selection. Res. J. Biotechnol. 2020, 15, 9. [Google Scholar]
- Mansoor, S.; Sharma, V.; Mir, M.A.; Mir, J.I.; Nabi, S.U.; Ahmed, N.; Alkahtani, J.; Alwahibi, M.S.; Masoodi, K.Z. Quantification of polyphenolic compounds and relative gene expression studies of phenylpropanoid pathway in apple (Malus domestica Borkh) in response to Venturia inaequalis infection. Saudi J. Biol. Sci. 2020, 27, 3397–3404. [Google Scholar] [CrossRef] [PubMed]
- Donghong, L.; Huiyan, Z.; Zuqing, H.; Xiangshun, H.; Yuhong, Z. Studies on the damage, loss of production and control to apple mosaic disease. J. Northwest Sci-Tech Univ. Agric. For. 2002, 30, 77–80. [Google Scholar]
- Nabi, S.U. Apple mosaic disease: Potential threat to apple productivity. EC Agric. 2019, 5, 614–618. [Google Scholar]
- Thokchom, T.; Rana, T.; Hallan, V.; Ram, R.; Zaidi, A.A. Molecular characterization of the Indian strain of Apple mosaic virus isolated from apple (Malus domestica). Phytoparasitica 2009, 37, 375–379. [Google Scholar] [CrossRef]
- Chai, G.; Song, L.; Jiang, Z.; Zhang, X.; Zhang, S.; Liu, M.; Zhao, L. The effect of apple mosaic on photosynthesis of different varieties of apple. Yantai Fruits 2017, 3, 8–9. [Google Scholar]
- Hu, G.J.; Dong, Y.F.; Zhang, Z.P.; Fan, X.D.; Ren, F.; Li, Z.N.; Zhou, J. First Report of Prunus necrotic ringspot virus Infection of Apple in China. Plant Dis. 2016, 100, 1955. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, H.W.; Jing, C.C.; Li, K.; Sun, X.C.; Zhou, C.Y.; Qing, L. First report of cucumber mosaic virus infecting apple in China. J. Plant Pathol. 2016, 98, 181. [Google Scholar]
- Noda, H.; Yamagishi, N.; Yaegashi, H.; Xing, F.; Xie, J.; Li, S.; Zhou, T.; Ito, T.; Yoshikawa, N. Apple necrotic mosaic virus, a novel ilarvirus from mosaic-diseased apple trees in Japan and China. J. Gen. Plant Pathol. 2017, 83, 83–90. [Google Scholar] [CrossRef]
- Verma, R.K.; Ahmed, N.; Mir, J.I.; Verma, M.K.; Srivastava, K.K.; Focktoo, S.Z.; Rashid, R.; Andrabi, M.; Shafi, W. Detection of apple mosaic and chlorotic leaf spot viruses by DAS-ELISA from farmers orchards of Kashmir valley. Indian J. Hortic. 2014, 71, 567–570. [Google Scholar]
- Padder, B.A.; Shah, M.D.; Ahmad, M.; Hamid, A.; Sofi, T.A.; Ahanger, F.A.; Saleem, S. Ahanger, and Sahar Saleem.Status of apple mosaic virus in Kashmir Valley. Appl. Biol. Res. 2011, 13, 117–120. [Google Scholar]
- Katwal, V.; Handa, A.; Thakur, P.; Tomar, M. Prevalence and Serological Detection of Apple Viruses in Himachal Pradesh. Plant Pathol. J. 2016, 15, 40–48. [Google Scholar] [CrossRef]
- Cho, I.; Kwon, S.; Yoon, J.; Chung, B.; Hammond, J.; Lim, H. First report of apple necrotic mosaic virus infecting apple trees in korea. J. Plant Pathol. 2017, 99, 815. [Google Scholar]
- Breitbart, M.; Salamon, P.; Andresen, B.; Mahaffy, J.M.; Segall, A.M.; Mead, D.; Azam, F.; Rohwer, F. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 2002, 99, 14250–14255. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Lian, S.; Chu, H.; Cho, J.K.; Yoo, S.-H.; Choi, H.; Yoon, J.-Y.; Choi, S.K.; Lee, B.C.; Cho, W.K. Peach RNA viromes in six different peach cultivars. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Amanda, B.-E.; Stuart, M.a.c.F.; Lesley, T. Viral diagnostics in plants using next generation sequencing: Computational analysis in practice. Front. Plant Sci. 2017, 8, 1770. [Google Scholar] [CrossRef]
- Sidharthan, V.K.; Sevanthi, A.M.; Jaiswal, S.; Baranwal, V.K. Robust virome profiling and whole genome reconstruction of viruses and viroids enabled by use of available mRNA and sRNA-Seq datasets in grapevine (Vitis vinifera L.). Front. Microbiol. 2020, 11, 1232. [Google Scholar] [CrossRef]
- Pecman, A.; Kutnjak, D.; Gutiérrez-Aguirre, I.; Adams, I.; Fox, A.; Boonham, N.; Ravnikar, M. Next generation sequencing for detection and discovery of plant viruses and viroids: Comparison of two approaches. Front. Microbiol. 2017, 8, 1998. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, I.A.; Wang, F.; Zhou, B.; Qi, S.; Wu, Q. Ecogenomic survey of plant viruses infecting tobacco by next generation sequencing. Virol. J. 2016, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blawid, R.; Silva, J.; Nagata, T. Discovering and sequencing new plant viral genomes by next-generation sequencing: Description of a practical pipeline. Ann. Appl. Biol. 2017, 170, 301–314. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Yamagishi, N.; Yaegashi, H.; Ito, T. Deep sequence analysis of viral small RNAs from a green crinkle-diseased apple tree. Petria 2012, 22, 292–297. [Google Scholar]
- Liang, P.; Navarro, B.; Zhang, Z.; Wang, H.; Lu, M.; Xiao, H.; Wu, Q.; Zhou, X.; Di Serio, F.; Li, S. Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. J. Gen. Virol. 2015, 96, 2411–2420. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Robe, B.L.; Zhang, Z.; Wang, H.; Li, S. Genomic analysis, sequence diversity, and occurrence of Apple necrotic mosaic virus, a novel ilarvirus associated with mosaic disease of apple trees in China. Plant Dis. 2018, 102, 1841–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabi, S.U.; Baranwal, V.K. First Report of Apple Hammerhead Viroid Infecting Apple Cultivars in India. Plant Dis. 2020, 104, 3086. [Google Scholar] [CrossRef]
- King, A.M.; Adams, M.J.; Carstens, E.B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011; Volume 9. [Google Scholar]
- Zhao, L.; Hao, X.; Liu, P.; Wu, Y. Complete sequence of an Apple stem grooving virus (ASGV) isolate from China. Virus Genes 2012, 45, 596–599. [Google Scholar] [CrossRef]
- Liu, N.; Niu, J.; Zhao, Y. Complete genomic sequence analyses of Apple stem pitting virus isolates from China. Virus Genes 2011, 44, 124–130. [Google Scholar] [CrossRef]
- Serra, P.; Messmer, A.; Sanderson, D.; James, D.; Flores, R. Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Res. 2018, 249, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, D.; Delano, J. Analysis of the genetic diversity of genome sequences of variants of apple hammerhead viroid. Can. J. Plant Pathol. 2019, 41, 551–559. [Google Scholar] [CrossRef]
- Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016, 73, 4433–4448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, M.; Martínez-Gómez, P.; Marais, A.; Sánchez-Navarro, J.; Pallás, V.; Candresse, T. Recent advances and prospects in Prunus virology. Ann. Appl. Biol. 2017, 171, 125–138. [Google Scholar] [CrossRef]
- Nemeth, M. Virus, Mycoplazma and Ricketsia Diseases of Fruit Trees. Academia Kiado: Budapest, Hungary, 1986. [Google Scholar]
- Nabi, S.U.; Baranwal, V.K.; Yadav, M.K.; Rao, G.P. Association of Apple necrotic mosaic virus (ApNMV) with mosaic disease in commercially grown cultivars of apple (Malus domestica Borkh) in India. 3 Biotech 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Menzel, P.; Ng, K.L.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 7, 11257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabi, S.U.; Mir, J.I.; Sharma, O.C.; Singh, D.B.; Zaffer, S.; Sheikh, M.A.; Masoodi, L.; Khan, K.A. Optimization of tissue and time for rapid serological and molecular detection of Apple stem pitting virus and Apple stem grooving virus in apple. Phytoparasitica 2018, 46, 705–713. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAM tools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Reuter, J.S.; Mathews, D.H. RNA structure: Software for RNA secondary structure prediction and analysis. BMC Bioinform. 2010, 11, 129. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Total No. of Raw Reads (Million) | Total No. of Clean Reads (Million) | Total No. of Viral Reads | Total No. of Viroidal Reads | Percentage of Viral Reads | Percentage of Viroidal Reads |
---|---|---|---|---|---|---|
Oregon Spur (S) | 41.41 | 40.79 | 558314 | 349452 | 1.36 | 0.85 |
Golden Delicious (S) | 32.58 | 32.35 | 57381 | 102943 | 0.18 | 0.31 |
Red Fuji (AS) | 27.39 | 27.15 | 14312 | 12 | 0.05 | 0 |
Name of Virus | Cultivar Oregon Spur | Cultivar Golden Delicious | Cultivar Red Fuji | ||||||
---|---|---|---|---|---|---|---|---|---|
Percentage (%) Distribution of Reads | Number of Contigs Assembled | Total Sequence Length (bp) Retrieved | Percentage (%) Distribution of Reads | Number of Contigs Assembled | Total Sequence Length (bp) Retrieved | Percentage (%) Distribution of Reads | Number of Contigs Assembled | Total Sequence Length (bp) Retrieved | |
ApNMV | 59.9 | 10 | 8258 | 32.17 | 8 | 5432 | 0 | 0 | 0 |
APMV | 0.00 | 0 | 0 | 63.2 | 12 | 10,034 | 0 | 0 | 0 |
ASGV | 12.84 | 8 | 7561 | 1.2 | 7 | 6554 | 0 | 0 | 0 |
ASPV | 2.36 | 32 | 62,060 | 0.0 | 0 | 0 | 1.45 | 29 | 8000 |
AHVd | 77.5 | 3 | 440 | 83.1 | 17 | 434 | 0 | 0 | 0 |
ACLSV | 0 | 0 | 0 | 0 | 0 | 0 | 2.49 | 15 | 11,474 |
Virus Name | RNA | Genome Size (kb) | Sequence Similarity (%) | Reference Accession | UTR-5′ | ORF1 | ORF2 | ORF3 | ORF 4 | ORF5 | UTR-3′ | Accession No. Received |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ApMV-GD * | 1 | 3.274 | 99.3 | KY965059 | 1−76 | 77–3220 (RdRp) | 3221–3274 | MN822137 | ||||
2 | 2.982 | 94.30 | HE574163 | 1−80 | 81–2714 (RdRp) | 2715–2982 | MN822138 | |||||
3 | 1.991 | 99.7 | KY971019 | 1−155 | 156–1016 (MP) | 1111–1782 (CP) | 1783–1991 | MN822139 | ||||
ApNMV-OS * | 1 | 3.386 | 88.25 | MG924895 | 1−58 | 59–3229 (RdRp) | 3230–3386 | MN832844 | ||||
2 | 2.782 | 84.5 | KY808383 | 1−54 | 55–2622 (RdRp) | 2623–2782 | MT019877 | |||||
3 | 1.969 | 96.31 | KY808378 | 1−208 | 209–1051 (MP) | 1155–1820 (CP) | 1821–1969 | MN832845 | ||||
ASGV-OS * | 1 | 6.487 | 90.23 | JN701424.1 | 1−27 | 28–6354 (RdRp) | 4779–5741 (MP&CP) | 6355–6487 | MN786531 | |||
ASPV-GD * | 1 | 9.206 | 84.38 | MK923754 | 1−50 | 51–6608 (RdRp) | 6720–7391 (TGB1) | 7392–7755 (TGB2) | 7664–7891 (TGB3) | 7965–9155 (CP) | 9156–9206 | MN887352 |
ACLSV-RF * | 1 | 7.552 | 89.0 | D14996 | 1−151 | 152–5809 (RdRp) | 5721–7100 (MP) | 6616–7365 (CP) | 7366–7547 | MN872427 | ||
AHVd-OS * | 1 | 440bp | 99.00 | MH649334 | - | - | - | - | - | - | - | MN786530 |
AHVd-GD * | 1 | 434bp | 93.00 | MH643720 | - | - | - | - | - | - | - | MN786529 |
Virus | Event | Recombinant | Minor Parent | Major Parent | Break Point Start | Break Point End | Method | p-Value |
---|---|---|---|---|---|---|---|---|
ApMV (RNA 2) | A1 | MN822138 | KY965082 | KY883319 | Undetermined | 2539 | GBMC | 1.77 × 10−14 |
A2 | MN822138 | KY965082 | KY883319 | 2836 | Undetermined | GBMC | 5.22 × 10−3 | |
ApNMV (RNA 3) | A1 | MN832845 | Unknown | KY808378 | Undetermined | Undetermined | GBMCS | 1.85 × 10−4 |
ASPV | A1 | MN887352 | KY702580 | MK923754 | 5117 | Undetermined | BMCS | 1.64 × 10−3 |
A2 | MK923754 | MN887352 | LC475150 | Undetermined | 6728 | BMCS | 1.264 × 10−4 | |
ASGV | A1 | MN786531 | Unknown | JN701424 | 5876 | Undetermined | GBMCS | 1.98 × 10−6 |
A2 | MN786531 | KR185346 | KX668488 | Undetermined | Undetermined | GBMCS | 2.98 × 10−2 | |
ACLSV | A1 | D14996 | Unknown | MN872427 | 6503 | 7342 | GBMCS | 1.427 × 10−9 |
A2 | MK929793 | MN872427 | Unknown | 6843 | 7337 | GBMCS | 2.922 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabi, S.U.; Baranwal, V.K.; Rao, G.P.; Mansoor, S.; Vladulescu, C.; Raja, W.H.; Jan, B.L.; Alansi, S. High-Throughput RNA Sequencing of Mosaic Infected and Non-Infected Apple (Malus × domestica Borkh.) Cultivars: From Detection to the Reconstruction of Whole Genome of Viruses and Viroid. Plants 2022, 11, 675. https://doi.org/10.3390/plants11050675
Nabi SU, Baranwal VK, Rao GP, Mansoor S, Vladulescu C, Raja WH, Jan BL, Alansi S. High-Throughput RNA Sequencing of Mosaic Infected and Non-Infected Apple (Malus × domestica Borkh.) Cultivars: From Detection to the Reconstruction of Whole Genome of Viruses and Viroid. Plants. 2022; 11(5):675. https://doi.org/10.3390/plants11050675
Chicago/Turabian StyleNabi, Sajad U., Virendra K. Baranwal, Govind P. Rao, Sheikh Mansoor, Carmen Vladulescu, Wasim H. Raja, Basit L. Jan, and Saleh Alansi. 2022. "High-Throughput RNA Sequencing of Mosaic Infected and Non-Infected Apple (Malus × domestica Borkh.) Cultivars: From Detection to the Reconstruction of Whole Genome of Viruses and Viroid" Plants 11, no. 5: 675. https://doi.org/10.3390/plants11050675
APA StyleNabi, S. U., Baranwal, V. K., Rao, G. P., Mansoor, S., Vladulescu, C., Raja, W. H., Jan, B. L., & Alansi, S. (2022). High-Throughput RNA Sequencing of Mosaic Infected and Non-Infected Apple (Malus × domestica Borkh.) Cultivars: From Detection to the Reconstruction of Whole Genome of Viruses and Viroid. Plants, 11(5), 675. https://doi.org/10.3390/plants11050675