Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis
Abstract
:1. Introduction
2. Results
2.1. Estimation of the Effects of Heat Stress on Grain Yield
2.2. Evaluation of the Morphological and Physiological Effects of Heat Stress on Seeding Development
2.3. DEGs of ZD309 and Its Parental Lines in Response to Heat Stress
2.4. The Expression of HSFs and HSPs Genes in the DEGs
2.5. Metabolic Analysis of in ZD309 and Its Parental Lines Response to Heat Stress
2.6. Integrative Analysis of Gene Expression and Metabolic Changes under Heat Stress Conditions
2.7. The Expression of Genes Involved in JA Biosynthesis under Heat Stress
3. Discussion
3.1. ZD309 Is a Heat-Tolerant Maize Hybrid
3.2. Key HSFs and HSPs Identified to Mediate Maize Heat Tolerance
3.3. Important Metabolites in Response to Heat Stress
3.4. Potential Applications of HSFs, HSPs, and Metabolites in Heat Stress Tolerance Improvement
4. Materials and Methods
4.1. Plant Materials and Heat Treatment
4.2. Heat Stress-Related Physiological Parameters Measurement
4.3. mRNA Library Construction and Illumina Sequencing
4.4. Transcriptome Analysis
4.5. Quantitative Real-Time PCR
4.6. Metabolites and Metabolome Analysis
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, A.L.; Ding, Y.F.; Jiang, Q.; Zhu, C. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 2013, 432, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Howell, S.H. Heat Stress Responses and Thermotolerance in Maize. Int. J. Mol. Sci. 2021, 22, 948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2020, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.; Hennen-Bierwagen, T.A.; Myers, A.M.; Cline, K.; Settles, A.M. Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc. Natl. Acad. Sci. USA 2020, 117, 33177–33185. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tao, H.; Zhang, P.; Hou, X.; Sheng, D.; Tian, B.; Wang, P.; Huang, S. Reduction in seed set upon exposure to high night temperature during flowering in maize. Physiol. Plant. 2020, 169, 73–82. [Google Scholar] [CrossRef]
- Lohani, N.; Singh, M.B.; Bhalla, P.L. High temperature susceptibility of sexual reproduction in crop plants. J. Exp. Bot. 2020, 71, 555–568. [Google Scholar] [CrossRef]
- Jagadish, S.V.K. Heat stress during flowering in cereals-effects and adaptation strategies. New Phytol. 2020, 226, 1567–1572. [Google Scholar] [CrossRef] [Green Version]
- Jacob, P.; Hirt, H.; Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 2017, 15, 405–414. [Google Scholar] [CrossRef]
- Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Shao, H.; Tang, X. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Front. Plant Sci. 2016, 7, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.H.; Min, L.; Ma, Y.; Wu, Y.; Ding, Y.; Li, Y.; Xie, S.; Ullah, A.; Shaban, M.; Manghwar, H.; et al. High day and night temperatures distinctively disrupt fatty acid and jasmonic acid metabolism, inducing male sterility in cotton. J. Exp. Bot. 2020, 71, 6128–6141. [Google Scholar] [CrossRef]
- Wang, H.Q.; Liu, P.; Zhang, J.W.; Zhao, B.; Ren, B.Z. Endogenous Hormones Inhibit Differentiation of Young Ears in Maize (Zea mays L.) Under Heat Stress. Front. Plant Sci. 2020, 11, 533046. [Google Scholar] [CrossRef]
- Thomason, K.; Babar, M.A.; Erickson, J.E.; Mulvaney, M.; Beecher, C.; MacDonald, G. Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoS ONE 2018, 13, e0197919. [Google Scholar] [CrossRef]
- Dhatt, B.K.; Abshire, N.; Paul, P.; Hasanthika, K.; Sandhu, J.; Zhang, Q.; Obata, T.; Walia, H. Metabolic Dynamics of Developing Rice Seeds Under High Night-Time Temperature Stress. Front. Plant Sci. 2019, 10, 1443. [Google Scholar] [CrossRef]
- Shi, J.; Yan, B.; Lou, X.; Ma, H.; Ruan, S. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. BMC Plant Biol. 2017, 17, 26. [Google Scholar] [CrossRef] [Green Version]
- Obata, T.; Witt, S.; Lisec, J.; Palacios-Rojas, N.; Florez-Sarasa, I.; Yousfi, S.; Araus, J.L.; Cairns, J.E.; Fernie, A.R. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Plant Physiol. 2015, 169, 2665–2683. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.X.; Li, M.Q.; Gao, X.X.; Liu, L.N.; Wu, X.F.; Zhou, J.H. Metabolic response of maize plants to multi-factorial abiotic stresses. Plant Biol. 2016, 18 (Suppl. 1), 120–129. [Google Scholar] [CrossRef]
- Paupière, M.J.; van Haperen, P.; Rieu, I.; Visser, R.G.F.; Tikunov, Y.M.; Bovy, A.G. Screening for pollen tolerance to high temperatures in tomato. Euphytica 2017, 213, 130. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, F.; Zhang, X.; Wei, Q.; Dong, J.; Bo, C.; Cheng, B.; Ma, Q. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An’nong 591 under heat stress. BMC Plant Biol. 2019, 19, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Du, H.; Wang, Y.; Wang, H.; Yang, S.; Li, C.; Chen, N.; Yang, H.; Zhang, Y.; Zhu, Y.; et al. The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize. J. Integr. Plant Biol. 2021, 63, 510–527. [Google Scholar] [CrossRef] [PubMed]
- Janni, M.; Gullì, M.; Maestri, E.; Marmiroli, M.; Valliyodan, B.; Nguyen, H.T.; Marmiroli, N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J. Exp. Bot. 2020, 71, 3780–3802. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.C.; Zhu, J.F.; Shu, Z.Z.; Wang, W.; Yan, C.; Xu, S.B.; Wu, D.X.; Wang, C.Y.; Dong, Z.R.; Sun, G. Physiological and transcriptional response to heat stress in heat-resistant and heat-sensitive maize (Zea mays L.) inbred lines at seedling stage. Protoplasma 2020, 257, 1615–1637. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zhao, L.; Zheng, X.; Gautam, M.; Yue, M.; Hou, J.; Chen, Z.; Wang, P.; Li, L. Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. Protoplasma 2019, 256, 1245–1256. [Google Scholar] [CrossRef]
- Wang, C.T.; Ru, J.N.; Liu, Y.W.; Li, M.; Zhao, D.; Yang, J.F.; Fu, J.D.; Xu, Z.S. Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants. Int. J. Mol. Sci. 2018, 19, 3046. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa-Yokoi, A.; Nosaka, R.; Hayashi, H.; Tainaka, H.; Maruta, T.; Tamoi, M.; Ikeda, M.; Ohme-Takagi, M.; Yoshimura, K.; Yabuta, Y.; et al. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 2011, 52, 933–945. [Google Scholar] [CrossRef]
- Lin, Y.X.; Jiang, H.Y.; Chu, Z.X.; Tang, X.L.; Zhu, S.W.; Cheng, B.J. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genom. 2011, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.C.; Niu, C.Y.; Yang, C.R.; Jinn, T.L. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Plant Physiol. 2016, 172, 1182–1199. [Google Scholar] [CrossRef]
- Li, Z.; Tang, J.; Srivastava, R.; Bassham, D.C.; Howell, S.H. The Transcription Factor bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize. Plant Cell 2020, 32, 3559–3575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, G.; Fu, C.; Duan, S.; Hu, D.; Guo, X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci. Rep. 2020, 10, 8073. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.X.; Zhang, H.X.; Wei, A.M.; Gong, Z.H. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Jaishankar, J.; Muthamilarasan, M.; Shweta, S.; Dangi, A.; Prasad, M. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci. Rep. 2016, 6, 32641. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Sharma, A.; Mishra, M.; Mishra, R.K.; Chowdhuri, D.K. Heat shock proteins in toxicology: How close and how far? Life Sci. 2010, 86, 377–384. [Google Scholar] [CrossRef]
- Frey, F.P.; Urbany, C.; Huttel, B.; Reinhardt, R.; Stich, B. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress. BMC Genom. 2015, 16, 123. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Ren, Q.; Zhang, J.; Chen, L. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Gene 2019, 692, 68–78. [Google Scholar] [CrossRef]
- Abou-Deif, M.H.; Rashed, M.A.-S.; Khalil, K.M.; Mahmoud, F.E.-S. Proteomic analysis of heat shock proteins in maize (Zea mays L.). Bull. Natl. Res. Cent. 2019, 43, 199. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Cai, S.Y.; Zhang, Y.; Wang, Y.; Ahammed, G.J.; Xia, X.J.; Shi, K.; Zhou, Y.H.; Yu, J.Q.; Reiter, R.J.; et al. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J. Pineal. Res. 2016, 61, 457–469. [Google Scholar] [CrossRef]
- Qu, M.; Chen, G.; Bunce, J.A.; Zhu, X.; Sicher, R.C. Systematic biology analysis on photosynthetic carbon metabolism of maize leaf following sudden heat shock under elevated CO2. Sci. Rep. 2018, 8, 7849. [Google Scholar] [CrossRef]
- Templer, S.E.; Ammon, A.; Pscheidt, D.; Ciobotea, O.; Schuy, C.; McCollum, C.; Sonnewald, U.; Hanemann, A.; Förster, J.; Ordon, F.; et al. Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J. Exp. Bot. 2017, 68, 1697–1713. [Google Scholar] [CrossRef] [Green Version]
- Shekhawat, K.; Saad, M.M.; Sheikh, A.; Mariappan, K.; Al-Mahmoudi, H.; Abdulhakim, F.; Eida, A.A.; Jalal, R.; Masmoudi, K.; Hirt, H. Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Rep. 2021, 22, e51049. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Saud, S.; Tanveer, M.; Bajwa, A.A.; Hassan, S.; Shah, A.N.; Ullah, A.; Wu, C.; Khan, F.A.; et al. A biochar application protects rice pollen from high-temperature stress. Plant Physiol. Biochem. 2015, 96, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010, 38, W64–W70. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Galli, V.; da Silva Messias, R.; dos Anjos e Silva, S.D.; Rombaldi, C.V. Selection of reliable reference genes for quantitative real-time polymerase chain reaction studies in maize grains. Plant Cell Rep. 2013, 32, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.F.; Heuberger, A.L.; Kirkwood, J.S.; Collins, C.C.; Wolfrum, E.J.; Broeckling, C.D.; Prenni, J.E.; Jahn, C.E. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis. Front. Plant Sci. 2016, 7, 953. [Google Scholar] [CrossRef] [Green Version]
- Mahieu, N.G.; Genenbacher, J.L.; Patti, G.J. A roadmap for the XCMS family of software solutions in metabolomics. Curr. Opin. Chem. Biol. 2016, 30, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernie, A.R.; Aharoni, A.; Willmitzer, L.; Stitt, M.; Tohge, T.; Kopka, J.; Carroll, A.J.; Saito, K.; Fraser, P.D.; DeLuca, V. Recommendations for reporting metabolite data. Plant Cell 2011, 23, 2477–2482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Varieties | CK | HS Treated | Heat-Tolerant Coefficient (%) | ||
---|---|---|---|---|---|
200-Kernel Weight (g) | Grain Yield (kg/ha) | 200-Grains Weight (g) | Grain Yield (kg/ha) | ||
Zhengdan1002 | 66.53 | 8773.8 | 60.85 | 2362.35 | 26.92 |
Zhengdan326 | 64.07 | 8029.05 | 58.28 | 2773.65 | 34.54 |
Pionner335 | 69.12 | 5573.55 | 63.11 | 2142.75 | 38.44 |
Zhengdan958 | 60.38 | 7745.55 | 49.34 | 3033.45 | 39.16 |
Weike702 | 64.16 | 8480.7 | 47.48 | 3852 | 45.42 |
Denghai605 | 61.03 | 7574.55 | 54.91 | 4795.5 | 63.31 |
Nonghua101 | 71.92 | 6187.8 | 69.69 | 4560.6 | 73.7 |
Qiule368 | 72.31 | 8304.15 | 64.98 | 6133.65 | 73.86 |
Zhengdan309 | 60.73 | 8004.45 | 64.66 | 6591.6 | 82.35 |
DK653 | 66.6 | 5195.7 | 59.00 | 4371.6 | 84.14 |
Zhongkeyu505 | 65.26 | 4392.45 | 56.45 | 4584.3 | 104.37 |
Zhengdan317 | 67.27 | 6952.05 | 61.14 | 7366.2 | 105.96 |
Gene_ID | Gene Name | D3HS | D6HS | ||||
---|---|---|---|---|---|---|---|
H39_1VSCK | M189VSCK | ZD309VSCK | H39_1VSCK | M189VSCK | ZD309VSCK | ||
Zm00001d005888 | hsf−tf1 | 0.30 | −1.37 | −0.55 | −0.10 | −0.39 | −0.91 |
Zm00001d010812 | hsf−tf16 | 0.02 | −1.25 | −0.75 | 0.19 | 0.21 | 0.33 |
Zm00001d016255 | hsf−tf18 | 1.46 | 0.19 | 3.49 | 3.45 | 1.52 | 3.92 |
Zm00001d016674 | hsf−tf6 | 0.09 | 1.36 | 0.91 | 0.76 | 0.78 | 0.89 |
Zm00001d018941 | hsf−tf4 | −3.00 | −2.09 | −1.22 | 0.01 | −2.13 | −0.62 |
Zm00001d020714 | hsf−tf21 | 0.63 | −3.11 | −0.03 | 0.23 | 0.27 | −0.26 |
Zm00001d021263 | hsf−tf10 | −1.72 | −3.25 | −1.17 | 0.07 | −0.56 | 0.27 |
Zm00001d026094 | hsf−tf20 | −3.54 | −6.31 | −0.93 | −0.20 | −2.26 | 1.35 |
Zm00001d027757 | hsf−tf13 | −4.54 | −4.35 | −2.10 | −1.97 | −3.48 | −0.61 |
Zm00001d032923 | hsf−tf24 | −1.80 | −1.11 | 0.03 | 0.57 | −0.57 | 1.03 |
Zm00001d033987 | hsf−tf17 | 1.12 | −8.42 | −1.76 | −1.16 | −1.28 | 0.63 |
Zm00001d038746 | hsf−tf15 | −0.67 | −1.65 | −0.86 | −0.23 | −0.19 | −0.18 |
Zm00001d046299 | hsf−tf28 | −1.59 | −1.65 | 0.09 | 1.21 | −0.23 | 1.04 |
Zm00001d048041 | hsf−tf9 | 1.19 | 0.65 | −0.17 | −0.02 | −0.60 | −1.32 |
Zm00001d052738 | hsf−tf7 | −0.33 | −1.62 | 1.20 | 1.15 | 1.51 | 1.33 |
Zm00001d039469 | traf21 | −1.59 | −1.98 | −2.06 | −0.95 | −1.96 | −1.97 |
Zm00001d052855 | hsp13 | −1.79 | −3.92 | −1.83 | −0.43 | −1.79 | −0.70 |
Zm00001d048073 | hsp19 | 3.06 | 2.24 | 2.37 | 1.53 | 0.93 | 1.68 |
Zm00001d024903 | hsp90 | 7.27 | 3.79 | 7.64 | 5.02 | 4.49 | 6.30 |
Zm00001d015777 | Zm00001d015777 | 3.57 | 2.15 | 14.58 | 4.01 | 2.02 | 2.08 |
Zm00001d039933 | B6SIX0 | 4.28 | 2.66 | 3.42 | 1.97 | 1.97 | 2.29 |
Zm00001d028408 | hsp26 | 7.55 | 2.15 | 2.51 | 5.17 | 3.31 | 3.16 |
Zm00001d028561 | hsp11 | 8.30 | 4.97 | 5.01 | 3.55 | 3.42 | 7.23 |
Zm00001d028555 | hsp10 | 1.72 | −1.09 | 1.23 | 1.89 | 0.03 | 1.82 |
Zm00001d052194 | hsp22 | 3.47 | −1.09 | 4.78 | 3.81 | 1.33 | 4.44 |
Zm00001d021634 | Hsp20 | −0.91 | −0.62 | −1.45 | −2.40 | −1.56 | −1.24 |
Zm00001d050346 | Annexin | 1.24 | 0.59 | −0.10 | 1.19 | 1.85 | 1.17 |
Zm00001d046471 | mbf2 | 2.80 | −0.80 | 8.16 | 5.51 | 3.09 | 5.60 |
Zm00001d044728 | hsp27 | 0.56 | 0.82 | 1.47 | 2.20 | 1.66 | 1.85 |
Zm00001d051001 | gpc3 | 1.99 | −0.37 | 2.10 | 3.58 | 1.37 | 2.21 |
Treatment | ID | Description | VIP | Fold Change | t-Test p-Value | Up/Down |
---|---|---|---|---|---|---|
D3HS | M248T257 | Meperidine | 3.8 | 20.07 | 1.69 × 10−13 | up |
M178T176 | 5-Acetyl-2,3-dihydro-6,7-dimethyl-1H-pyrrolizine | 2.32 | 5.62 | 2.81 × 10−10 | up | |
M340T240 | Acylcarnitine 12:2 | 2.55 | 4.97 | 5.18 × 10−09 | up | |
M261T257 | Khellin | 1.73 | 3.21 | 8.19 × 10−11 | up | |
M364T214 | Isopentenyladenine-9-N-glucoside | 1.08 | 2.69 | 3.53 × 10−12 | up | |
M376T196 | Gatifloxacin | 1.46 | 2.69 | 5.80 × 10−9 | up | |
M220T114 | trans-Zeatin | 1.13 | 2.32 | 0.0003 | up | |
M273T337 | .beta.-Estradiol | 1.3 | 2.25 | 0.0003 | up | |
M175T250 | 1-Methyl-4-(1-methyl-2-propenyl)-benzene | 1.12 | 2.21 | 0.0007 | up | |
M355T293 | Isoxanthohumol | 1.06 | 2.11 | 0.0005 | up | |
D6HS | M211T234 | Jasmonic acid | 2.74 | 21.7 | 1.54 × 10−12 | up |
M193T234 | 2-Methyl-1-phenyl-2-propanyl acetate | 2.81 | 19.64 | 1.76 × 10−10 | up | |
M175T234 | Glycyl-Valine | 2.47 | 8.62 | 5.19 × 10−6 | up | |
M112T61 | Cytosine | 2.47 | 10.6 | 2.06 × 10−6 | up | |
M364T214 | Isopentenyladenine-9-N-glucoside | 2.31 | 10.3 | 6.59 × 10−16 | up | |
M150T189 | Methionine | 2.28 | 5.44 | 3.24 × 10−6 | up | |
M213T374 | Dihydrojasmonic acid | 1.87 | 4.83 | 5.14 × 10−11 | up | |
M355T309 | Isoxanthohumol | 1.68 | 4.22 | 1.81 × 10−10 | up | |
M147T195 | Coumarin | 1.63 | 3.09 | 8.10 × 10−5 | up | |
M261T56_2 | Mannose 6-phosphate | 1.29 | 2.08 | 2.13 × 10−6 | up |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, L.; Huang, L.; Yang, T.; Ma, J.; Yu, T.; Zhu, W.; Zhang, Z.; Tang, J. Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis. Plants 2022, 11, 677. https://doi.org/10.3390/plants11050677
Liu J, Zhang L, Huang L, Yang T, Ma J, Yu T, Zhu W, Zhang Z, Tang J. Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis. Plants. 2022; 11(5):677. https://doi.org/10.3390/plants11050677
Chicago/Turabian StyleLiu, Jingbao, Linna Zhang, Lu Huang, Tianxiao Yang, Juan Ma, Ting Yu, Weihong Zhu, Zhanhui Zhang, and Jihua Tang. 2022. "Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis" Plants 11, no. 5: 677. https://doi.org/10.3390/plants11050677
APA StyleLiu, J., Zhang, L., Huang, L., Yang, T., Ma, J., Yu, T., Zhu, W., Zhang, Z., & Tang, J. (2022). Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis. Plants, 11(5), 677. https://doi.org/10.3390/plants11050677