Water Deficit-Induced Changes in Phenolic Acid Content in Maize Leaves Is Associated with Altered Expression of Cinnamate 4-Hydroxylase and p-Coumaric Acid 3-Hydroxylase
Abstract
:1. Introduction
2. Results
3. Discussion and Conclusions
4. Materials and Methods
4.1. Reagents and Plant Materials
4.2. Methods
4.2.1. Plant Growth and Water Deficit Treatments
4.2.2. Measurement of Relative Water Content
4.2.3. Measurement of Cell Viability
4.2.4. Measurement of Free Phenolic Acids
4.2.5. Measurement of C4H and C3H Activity
4.2.6. Analysis of Cinnamate 4-Hydroxylase and p-Coumarate 3-Hydroxylate Gene Expression
4.2.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Q.; Chen, X.; Lobell, D.B.; Cui, Z.; Zhang, Y.; Yang, H.; Zhang, F. Growing sensitivity of maize to water scarcity under climate change. Sci. Rep. 2016, 6, 19605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Gao, X.; Fu, J.; Zhou, J.; Wu, X. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant Soil 2014, 388, 99–117. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef]
- Nair, R.B.; Bastress, K.L.; Ruegger, M.O.; Denault, J.W.; Chapple, C. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 2004, 16, 544–554. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol. 2010, 11, 705–719. [Google Scholar] [CrossRef]
- Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem. 2012, 60, 12312–12323. [Google Scholar] [CrossRef]
- Puente-Garza, C.A.; Meza-Miranda, C.; Ochoa-Martínez, D.; García-Lara, S. Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiol. Biochem. 2017, 115, 400–407. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef] [Green Version]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, J.; Escamilla-Trevino, L.; Song, L.; Rao, X.; Serrani-Yarce, J.C.; Palacios, M.D.; Engle, N.; Choudhury, F.K.; Tschaplinski, T.J.; Venables, B.J.; et al. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat. Commun. 2019, 10, 1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.; Li, Y.; Zhang, J.; Wang, C.; Qin, H.; Ding, H.; Xie, Y.; Guo, T. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front. Plant Sci. 2016, 7, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoch, G.A.; Nikov, G.N.; Alworth, W.L.; Werck-Reichhart, D. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Plant Physiol. 2002, 130, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Pierrel, M.A.; Batard, Y.; Kazmaier, M.; Mignotte-Vieux, C.; Durst, F.; Werck-Reichhart, D. Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. Eur. J. Biochem. 1994, 224, 835–844. [Google Scholar] [CrossRef]
- Rösler, J.; Krekel, F.; Amrhein, N.; Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 1997, 113, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorin, D.; Agat, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Król, A.; Amarowicz, R.; Weidner, S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol. Plant. 2014, 36, 1491–1499. [Google Scholar] [CrossRef]
- Quan, N.T.; Anh, L.H.; Khang, D.T.; Tuyen, P.T.; Toan, N.P.; Minh, T.N.; Minh, L.T.; Bach, D.T.; Ha, P.T.T.; Elzaawely, A.A.; et al. Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture 2016, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell wall metabolism in response to abiotic stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef] [PubMed]
- Paz, M.M.; Shou, H.; Guo, Z.; Zhang, Z.; Banerjee, A.K.; Wang, K. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 2004, 136, 167–179. [Google Scholar] [CrossRef]
- Downey, L.A.; Miller, J.W. Rapid measurements of relative turgidity in maize (Zea mays L.). New Phytol. 1971, 70, 555–560. [Google Scholar] [CrossRef]
- Sanevas, N.; Sunohara, Y.; Matsumoto, H. Characterization of reactive oxygen species-involved oxidative damage in Hapalosiphon species crude extract-treated wheat and onion roots. Weed Biol. Manag. 2007, 7, 172–177. [Google Scholar] [CrossRef]
- Jadhav, P.R.; Mahatma, M.K.; Jha, S.; Mahatma, L.; Parekh, V.B.; Jha, S.K. Changes in phenylpropanoid pathway during compatible and incompatible interaction of Ricinus communis-Fusarium oxysporum f.sp. ricini. Ind. J. Agric. Biochem. 2013, 26, 56–60. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
RWC | Evans Blue Uptake | Cinnamic Acid | p-Coumaric Acid | Caffeic Acid | Ferulic Acid | C4H Activity | C3H Activity | C4H Expression | C3H Expression | |
---|---|---|---|---|---|---|---|---|---|---|
Well-watered (temporal) | 87.33 ± 6.34 a | 0.72 ± 0.02 b | 7.10 ± 2.05 a | 11.00 ± 0.82 a | 34.33 ± 3.30 b | 22.67 ± 2.05 b | 10.87 ± 0.86 b | 17.23 ± 1.60 b | 0.97 ± 0.10 b | 1.01 ± 0.10 b |
Well-watered (development) | 84.33 ± 6.94 a | 0.72 ± 0.02 b | 7.30 ± 1.63 a | 10.83 ± 0.62 a | 35.00 ± 3.27 b | 23.00 ± 1.63 b | 11.17 ± 0.86 b | 17.67 ± 1.55 b | 1.00 ± 0.11 b | 1.02 ± 0.11 b |
Water deficit | 50.33 ± 4.11 b | 0.81 ± 0.02 a | 8.27 ± 2.49 a | 8.00 ± 0.82 b | 65.67 ± 3.30 a | 30.33 ± 2.49 a | 15.90 ± 0.99 a | 27.27 ± 1.55 a | 1.60 ± 0.11 a | 2.83 ± 0.29 a |
F | 24.06 | 13.81 | 4.843 | 9.903 | 59.26 | 8.593 | 19.51 | 26.15 | 22.15 | 62.87 |
p | 0.001 | 0.006 | 0.056 | 0.013 | 0.000 | 0.017 | 0.002 | 0.001 | 0.002 | 0.000 |
Primer Name | Sequence (5′–3′) |
---|---|
C3H_1F | TCA TCT CCG TCT GGT TCG GG |
C3H_1R | AGC CTC CTG GGC GTG AAG A |
C4H_1F | GCG TAA GAA GGT GAT GGC T |
C4H_1R | AGG AGG TTG TCG TGG TTG AT |
Act2F | CTGAGGTTCTATTCCAGCCATCC |
Act2R | CCACCACTGAGGACAACATTACC |
β-tubF | CTACCTCACGGCATCTGCTATGT |
β-tubR | GTCACACACACTCGACTTCACG |
EF1αF | GGGCCTACTGGTCTTACTACTGA |
EF1αR | ACATACCCACGCTTCAGATCCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolo, Z.; Majola, A.; Phillips, K.; Ali, A.E.E.; Sharp, R.E.; Ludidi, N. Water Deficit-Induced Changes in Phenolic Acid Content in Maize Leaves Is Associated with Altered Expression of Cinnamate 4-Hydroxylase and p-Coumaric Acid 3-Hydroxylase. Plants 2023, 12, 101. https://doi.org/10.3390/plants12010101
Kolo Z, Majola A, Phillips K, Ali AEE, Sharp RE, Ludidi N. Water Deficit-Induced Changes in Phenolic Acid Content in Maize Leaves Is Associated with Altered Expression of Cinnamate 4-Hydroxylase and p-Coumaric Acid 3-Hydroxylase. Plants. 2023; 12(1):101. https://doi.org/10.3390/plants12010101
Chicago/Turabian StyleKolo, Zintle, Anelisa Majola, Kyle Phillips, Ali Elnaeim Elbasheir Ali, Robert E. Sharp, and Ndiko Ludidi. 2023. "Water Deficit-Induced Changes in Phenolic Acid Content in Maize Leaves Is Associated with Altered Expression of Cinnamate 4-Hydroxylase and p-Coumaric Acid 3-Hydroxylase" Plants 12, no. 1: 101. https://doi.org/10.3390/plants12010101
APA StyleKolo, Z., Majola, A., Phillips, K., Ali, A. E. E., Sharp, R. E., & Ludidi, N. (2023). Water Deficit-Induced Changes in Phenolic Acid Content in Maize Leaves Is Associated with Altered Expression of Cinnamate 4-Hydroxylase and p-Coumaric Acid 3-Hydroxylase. Plants, 12(1), 101. https://doi.org/10.3390/plants12010101