A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi
Abstract
:1. Introduction
2. Results
2.1. Phlomis purpurea Metabolome Profiling after Challenge with Phytophthora cinnamomi
2.2. Leaf Metabolome Modulation
2.3. Root Metabolome Modulation
2.4. Metabolite Class Analysis
2.4.1. Terpenoids
2.4.2. Taurine and Imidazole-Acetaldehyde
2.4.3. Polyketides, Prenol Lipids and Fatty Acyls
2.4.4. Alkaloids
2.4.5. Flavonoids
2.4.6. Phenylpropanoids
2.4.7. Other Compounds
3. Discussion
3.1. Terpenoids
3.2. Lipids
3.2.1. Polyketides
3.2.2. Prenol Lipids
3.2.3. Fatty Acyls
3.3. Taurine
3.4. Imidazole-4-acetaldehyde
3.5. Alkaloids
3.6. Flavonoids and Phenylpropanoids
4. Concluding Remarks
5. Materials and Methods
5.1. Plant Material
5.2. Phytophthora cinnamomi Isolates
5.3. Zoospore Production
5.4. Challenging with Zoospores
5.5. Metabolite Extraction
5.6. Untargeted Metabolomic Analysis by UPLC-MS
5.7. Data Analysis and Compound Annotation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bednarek, P. Chemical warfare or modulators of defence responses—The function of secondary metabolites in plant immunity. Curr. Opin. Plant Biol. 2012, 15, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Hébrard, C.; Deville, M.A.; Cordelier, S.; Dorey, S.; Aziz, A.; Crouzet, J. Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 2014, 19, 18033–18056. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Vannozzi, A.; Sobarzo-Sánchez, E.; Uddin, M.S.; Bru, R.; Martínez-Márquez, A.; Clément, C.; Cordelier, S.; Manayi, A.; Nabavi, S.F. Phytostilbenes as agrochemicals: Biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat. Prod. Rep. 2021, 38, 1282–1329. [Google Scholar] [CrossRef] [PubMed]
- VanEtten, H.; Mansfield, J.; Baile, J.; Farmer, E. Two Classes of plant antibiotics—Phytoalexins versus “Phytoanticipins”. Plant Cell 1994, 6, 1191–1192. [Google Scholar] [CrossRef]
- Hammerschmidt, R. PHYTOALEXINS: What Have We Learned after 60 Years? Annu. Rev. Phytopathol. 1999, 37, 285–306. [Google Scholar] [CrossRef]
- Dixon, R.A.T. The phytoalexin response: Elicitation, signalling and control of host gene expression. Biol. Rev. 1986, 61, 239–291. [Google Scholar] [CrossRef]
- Pedras, M.S.; Yaya, E.E. Plant Chemical Defenses: Are All Constitutive Antimicrobial Metabolites Phytoanticipins? Nat. Prod. Commun. 2015, 10, 209–218. [Google Scholar] [CrossRef]
- Li, M.-X.; Shang, X.-F.; Jia, Z.-P.; Zhang, R.-X. Phytochemical and biological studies of plants from the genus Phlomis. Chem. Biodivers. 2010, 7, 283–301. [Google Scholar] [CrossRef]
- Demirci, M.T.; Demirci, F.; Mehmet, Y.; Dadandi, K.; Hüsnü, C.B. Anticandidal Betül pimaradiene diterpene from Phlomis essential oils. Comptes Rendus Chim. 2009, 12, 612–621. [Google Scholar] [CrossRef]
- Heydari, F.; Ghafarzadegan, R.; Mofasseri, M.; Ghasemi, S.V.; Kashefi, M.; Hajiaghaee, R.; Tavakoli, S. Phytochemical analysis and biological activities of essential oil and extract of Phlomis rigida Labill. J. Med. Plants 2021, 20, 13–22. [Google Scholar] [CrossRef]
- Sarıkürkçü, C.; Uren, M.C.; Koçak, M.S.; Cengiz, M.; Tepe, B. Chemical composition, antioxidant, and enzyme inhibitory activities of the essential oils of three Phlomis species as well as their fatty acid compositions. Food Sci. Biotechnol. 2016, 25, 687–693. [Google Scholar] [CrossRef]
- Amor, I.L.-B.; Boubaker, J.; Ben Sgaier, M.; Skandrani, I.; Bhouri, W.; Neffati, A.; Kilani, S.; Bouhlel, I.; Ghedira, K.; Chekir-Ghedira, L. Phytochemistry and biological activities of Phlomis species. J. Ethnopharmacol. 2009, 125, 183–202. [Google Scholar] [CrossRef]
- Harput, U.S.; Saracoğlu, İ.; Çalış, İ.; Dönmez, A.A.; Nagatsu, A. Secondary metabolites from Phlomis kotschyana. Turk. J. Chem. 2004, 28, 767–774. [Google Scholar]
- Abdelaty, N.A.; Attia, E.Z.; Hamed, A.N.E.; Desoukey, S.Y. A review on various classes of secondary metabolites and biological activities of Lamiaceae (Labiatae) (2002–2018). J. Adv. Biomed. Pharm. Sci. 2021, 4, 16–31. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Obeidat, S.M.; Saleh, A.M.; El-Oqlah, A.A.; Al-Masaeed, E.; Al-Jaber, H.I.; Orabi, S.T.A. Volatile Components Analysis, Total Phenolic, Flavonoid Contents, and Antioxidant Activity of Phlomis Species Collected from Jordan. J. Essent. Oil-Bear. Plants 2018, 21, 583–599. [Google Scholar] [CrossRef]
- Turgut, T.; Muhammet, E.C.; Emre, G.; Hazar-Yavuz, A.; Kabasakal, L.; Bitis, L. Antioxidant and anti-inflammatory activities of Phlomis pungens and Coridothymus capitatus. Marmara Pharm. J. 2018, 22, 80–85. [Google Scholar] [CrossRef]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Dos Anjos, O.T.; Cascaes, M.M.; Almeida da Costa, W.; Andrade, H.A.E.; de Oliveira, M.S. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef]
- Correia, D.B.; Figueroa, J.P.C.O.; Santos, A.F.; Alves, L.N.V.; Vieira, M.E.; Pereira, F.D.; Barros, J.E.L.; Elizângela, B.B.; Silva, M.G.; Pereira, G.G.; et al. Essential Oils from Lamiaceae Species with potential Antifungal activity: A review. Res. Soc. Dev. 2022, 11, e15111225392. [Google Scholar] [CrossRef]
- Laranjo, M.; Fernández-León, A.M.; Agulheiro-Santos, A.C.; Potes, M.E.; Elia, M. Essential oils of aromatic and medicinal plants play a role in food safety. J. Food Process. Preserv. 2019, 46, e14278. [Google Scholar] [CrossRef]
- Neves, D.; Caetano, P.; Oliveira, J.; Maia, C.; Horta, M.; Sousa, N.; Salgado, M.; Dionísio, L.; Magan, N.; Cravador, A. Anti-Phytophthora cinnamomi activity of Phlomis purpurea plant and root extracts. Eur. J. Plant Pathol. 2014, 138, 835–846. [Google Scholar] [CrossRef]
- Neves, D. Evaluation of the Protective Effect of Phlomis purpurea against Phytophthora cinnamomi in Fagaceae and of Root Metabolites Involved. Ph.D. Thesis, University of Algarve, Faro, Portugal, 2015. Available online: http://sapientia.ualg.pt/handle/10400.1/6862 (accessed on 22 December 2015).
- Mateus, M.C.; Neves, D.; Dacunha, B.; Laczko, E.; Maia, C.; Teixeira, R.; Cravador, A. Structure, anti-Phytophthora and anti-tumor activities of a nortriterpenoid from the rhizome of Phlomis purpurea (Lamiaceae). Phytochemistry 2016, 131, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Baldé, A.; Neves, D.; García-Breijo, F.J.; Pais, M.S.; Cravador, A. De novo assembly of Phlomis purpurea after challenging with Phytophthora cinnamomi. BMC Genom. 2017, 18, 700. [Google Scholar] [CrossRef]
- Baldé, A.; Pais, M.S.; Cravador, A. Innate Immunity of Phlomis purpurea against Phytophthora cinnamomi: A Transcriptomic Analysis. J. Agric. Sci. Technol. A 2021, 11, 22–46. [Google Scholar] [CrossRef]
- Yu, T.-Y.; Sun, M.-K.; Liang, L.-K. Receptors in the Induction of the Plant Innate Immunity. Mol. Plant-Microbe Interact. 2021, 34, 587–601. [Google Scholar] [CrossRef]
- Andersen, E.J.; Ali, S.; Byamukama, E.; Yen, Y.; Nepal, M.P. Disease Resistance Mechanisms in Plants. Genes 2018, 9, 339. [Google Scholar] [CrossRef]
- Vaughan, M.M.; Huffaker, A.; Schmelz, E.A.; Dafoe, N.J.; Christensen, S.; Sims, J.; Martins, V.F.; Swerbilow, J.A.Y.; Romero, M.; Alborn, H.T.; et al. Effects of elevated [CO2] on maize defense against mycotoxigenic Fusarium verticillioides. Plant Cell Environ. 2014, 37, 2691–2706. [Google Scholar] [CrossRef]
- Yang, C.-Q.; Fang, X.; Wu, X.-M.; Mao, Y.-B.; Wang, L.-J.; Chen, X.-Y. Transcriptional Regulation of Plant Secondary Metabolism. J. Integr. Plant Biol. 2012, 54, 703–712. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Kumar, S.R.; Rai, A.; Bomzan, D.P.; Kumar, K.; Hemmerlin, A.; Dwivedi, V.; Godbole, R.C.; Barvkar, V.; Shanker, K.; Shilpashree, H.B.; et al. A plastid-localized bona fide geranylgeranyl diphosphate synthase plays a necessary role in monoterpene indole alkaloid biosynthesis in Catharanthus roseus. Plant J. 2020, 103, 248–265. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sharma, R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015, 5, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Chen, Y.; Wu, F.; Meng, M.; Ji, K. Expression and promoter analysis of MEP pathway enzyme-encoding genes in Pinus massoniana Lamb. PeerJ 2022, 10, e13266. [Google Scholar] [CrossRef] [PubMed]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent Advances in Plant Protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef]
- Kusumoto, N.; Zhao, T.; Swedjemark, G.; Ashitani, T.; Takahashi, K.; Borg-Karlson, A.-K. Antifungal properties of terpenoids in Picea abies against Heterobasidion parviporum. For. Pathol. 2014, 44, 353–361. [Google Scholar] [CrossRef]
- Loreto, F.; Dicke, M.; Schnitzler, J.P.; Turlings, T.C.J. Plant volatiles and the environment. Plant Cell Environ. 2014, 37, 1905–1908. [Google Scholar] [CrossRef]
- Xu, M.M.; Galhano, R.; Wiemann, P.; Bueno, E.; Tiernan, M.; Wu, W.; Chung, I.M.; Gershenzon, J.; Tudzynski, B.; Sesma, A.; et al. Genetic evidence for natural product-mediated plant–plant allelopathy in rice (Oryza sativa). New Phytol. 2012, 193, 570–575. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Wang, J.; He, M.; Zhou, X.; Yang, C.; Yuan, C.; Wang, J.; Chern, M.; Yin, J.; et al. The durably resistant rice cultivar Digu activates defence gene expression before the full maturation of Magnaporthe oryzae appressorium. Mol. Plant Pathol. 2016, 17, 354–368. [Google Scholar] [CrossRef]
- Toffolatti, S.L.; Maddalena, G.; Passera, A.; Casati, P.; Bianco, P.A.; Quaglino, F. Role of terpenes in plant defense to biotic stress. In Biocontrol Agents and Secondary Metabolites, 16th ed.; Jogaiah, S., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 401–417. ISBN 9780128229194. [Google Scholar] [CrossRef]
- Wei, Q.; Lan, K.; Liu, Y.; Chen, R.; Hu, T.; Zhao, S.; Yin, X.; Xie, T. Transcriptome analysis reveals regulation mechanism of methyl jasmonate-induced terpenes biosynthesis in Curcuma wenyujin. PLoS ONE 2022, 17, e0270309. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, S.; Yu, W.; Ehsan, S.; Zhang, Y.; Jia, H.; Fang, J. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. Plant Cell Rep. 2022, 41, 1243–1260. [Google Scholar] [CrossRef]
- Rowshan, V.; Khoi, M.K.; Javidnia, K. Effects of Salicylic Acid on Quality and Quantity of Essential oil Components in Salvia macrosiphon. J. Biol. Environ. Sci. 2010, 4, 77–82. [Google Scholar]
- Sadeghian, F.; Hadian, J.; Hadavi, M.; Mohamadi, A.; Ghorbanpour, M.; Ghafarzadegan, R. Effects of Exogenous Salicylic Acid Application on Growth, Metabolic Activities and Essential Oil Composition of Satureja khuzistanica Jamzad. J. Med. Plants 2013, 12, 70–82. Available online: http://jmp.ir/article-1-80-en.html (accessed on 20 February 2023).
- Liu, B.; Kaurilind, E.; Jiang, Y.; Niinemets, Ü. Methyl salicylate differently affects benzenoid and terpenoid volatile emissions in Betula pendula. Tree Physiol. 2018, 38, 1513–1525. [Google Scholar] [CrossRef] [PubMed]
- Hardham, A.R. Cell biology of plant–oomycete interactions. Cell. Microbiol. 2007, 9, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Davison, E.M.; Stukely, M.J.C.; Crane, C.E.; Tay, F.C.S. Invasion of phloem and xylem of woody stems and roots of Eucalyptus marginata and Pinus radiata by Phytophthora cinnamomi. Phytopathology 1994, 84, 335–340. [Google Scholar] [CrossRef]
- Hüberli, D.; Tommerup, I.C.; Hardy, G.E.S.J. False-negative isolations or absence of lesions may cause mis-diagnosis of diseased plants infected with Phytophthora cinnamomi. Austral. Plant Pathol. 2000, 29, 164–169. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.J.; Dennis, E.A. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009, 50 (Suppl. S1), S9–S14. [Google Scholar] [CrossRef]
- Du Granrut, A.D.-B.; Cacas, J.-L. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants? Front. Plant Sci. 2016, 7, 1490. [Google Scholar] [CrossRef]
- Baerson, S.R.; Rimando, A.M. A Plethora of Polyketides: Structures, Biological Activities, and Enzymes. In Polyketides, 1st ed.; American Chemical Society, Publishers: Washington, DC, USA, 2007; pp. 2–14. [Google Scholar] [CrossRef]
- Mindrebo, J.T.; Patel, A.; Kim, W.E.; Davis, T.D.; Chen, A.; Bartholow, T.G.; La Clair, J.J.; McCammon, J.A.; Noel, J.P.; Burkart, M.D. Gating mechanism of elongating β-ketoacyl-ACP synthases. Nat. Commun. 2020, 11, 1727. [Google Scholar] [CrossRef]
- Xu, X.; Qu, R.; Wu, W.; Jiang, C.; Shao, D.; Shi, J. Applications of microbial co-cultures in polyketides production. J. Appl. Microbiol. 2020, 130, 1023–1034. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Dong, X.; Feng, Y.; Liu, X.; Gao, B.; Wang, J.; Zhang, L.; Wang, J.; Shi, S.; et al. Identification and functional characterization of three type III polyketide synthases from Aquilaria sinensis calli. Biochem. Biophys. Res. Commun. 2017, 486, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Baczewska-Dąbrowska, A.H.; Dmuchowski, W.; Gozdowski, D.; Gworek, B.; Jozwiak, A.; Swiezewska, E.; Dąbrowski, P.; Suwara, I. The importance of prenol lipids in mitigating salt stress in the leaves of Tilia × euchlora trees. Trees 2022, 36, 393–404. [Google Scholar] [CrossRef]
- Hayashi, K.; Ogiyama, Y.; Yokomi, K.; Nakagawa, T.; Kaino, T.; Kawamukai, M. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. PLoS ONE 2014, 9, e99038. [Google Scholar] [CrossRef] [PubMed]
- Ackah, M.; Shi, Y.; Wu, M.; Wang, L.; Guo, P.; Guo, L.; Jin, X.; Li, S.; Zhang, Q.; Qiu, C.; et al. Metabolomics Response to Drought Stress in Morus alba L. Variety Yu-711. Plants 2021, 10, 1636. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Y.; Wang, M.; Hu, S.; Wu, J.; Yu, Z. Differences in lipid homeostasis and membrane lipid unsaturation confer differential tolerance to low temperatures in two Cycas species. BMC Plant. Biol. 2021, 21, 377. [Google Scholar] [CrossRef]
- Macabuhay, A.; Arsova, B.; Walker, R.; Johnson, A.; Watt, M.; Roessner, U. Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends Plant Sci. 2022, 27, 180–190. [Google Scholar] [CrossRef]
- He, M.; Ding, N.Z. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Front Plant Sci. 2020, 11, 562785. [Google Scholar] [CrossRef]
- Pretorius, C.J.; Steenkamp, P.A.; Tugizimana, F.; Piater, L.A.; Dubery, I.A. Metabolomic Characterisation of Discriminatory Metabolites Involved in Halo Blight Disease in Oat Cultivars Caused by Pseudomonas syringae pv. coronafaciens. Metabolites 2022, 12, 248. [Google Scholar] [CrossRef]
- Kataoka, H.; Ohnishi, N. Occurrence of Taurine in Plants. Agric. Biol. Chem. 1986, 50, 1887–1888. [Google Scholar] [CrossRef]
- Tevatia, R.; Allen, J.; Rudrappa, D.; White, D.; Clemente, E.T.; Cerutti, H.; Demirel, Y.; Blum, P. The Taurine Biosynthetic Pathway of Microalgae. Algal Res. 2015, 9, 21–26. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Rasheed, R.; Hussain, I.; Iqbal, M.; Farooq, M.U.; Saleem, M.H.; Ali, S. Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum plants. Environ. Sci. Pollut. Res. 2022, 29, 45527–45548. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H. In vitro analysis of taurine as anti-stress agent in tomato (Solanum licopersicon). Preliminary study. In Advances in Experimental Medicine and Biology—Taurine 9; Marcinkiewicz, J., Schaeffer, S.W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 75–85. [Google Scholar] [CrossRef]
- Fausto, C.; Araniti, F.; Mininni, A.N.; Crecchio, C.; Scagliola, M.; Bleve, G.; Dichio, B.; Sofo, A. Differential olive grove management regulates the levels of primary metabolites in xylem sap. Plant Soil 2021, 460, 281–296. [Google Scholar] [CrossRef]
- Hafeez, A.; Rasheed, R.; Ashraf, M.A.; Rizwan, M.; Shafaqat, A. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress. Chemosphere 2022, 308, 136523. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Shi, H.; Cui, R.; Cai, X.; Xie, Z. Effects of Taurine on Primary Metabolism and Transcription in a Coral Symbiodinium sp. Front. Microbiol. 2022, 13, 797688. [Google Scholar] [CrossRef]
- Hao, L.H.; He, P.Q.; Liu, C.Y.; Chen, K.S.; Li, G.Y. Physiological Effects of Taurine on the Growth of Wheat (Triticum aestivum L.) Seedlings. J. Plant Physiol. Mol. Biol. 2004, 30, 595–598. Available online: https://pubmed.ncbi.nlm.nih.gov/15627716/ (accessed on 20 February 2023).
- Kang, K.; Yue, L.; Xia, X.; Liu, K.; Zhang, W. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Metabolomics 2019, 15, 62. [Google Scholar] [CrossRef]
- Gao, F.; Chao, J.; Guo, J.; Zhao, L.; Tian, H. 1H NMR-based metabolomics to identify resistance-related metabolites in Astragalus membranaceus var. mongholicus against Fusarium root rot. Intl. J. Agric. Biol. 2021, 26, 69–78. [Google Scholar] [CrossRef]
- Metaboard CardTMIC—The Metabolomics Innovation Center. Human Metabolome Database: Showing Metabocard for Imidazole-4-acetaldehyde. Available online: hpps://hmdb.ca/metabolites/HMDB0003905 (accessed on 21 March 2023).
- Takeshima, D.; Mori, A.; Ito, H.; Komori, H.; Ueno, H.; Nitta, Y. A single amino acid substitution converts a histidine decarboxylase to an imidazole acetaldehyde synthase. Arch. Biochem. Biophys. 2020, 693, 108551. [Google Scholar] [CrossRef]
- Frömmel, J.; Končitíková, R.; Kopečný, D.; Soural, M.; Šebela, M. Oxidation of imidazole- and pyrazole-derived aldehydes by plant aldehyde dehydrogenases from the family 2 and 10. Chem. Biol. Interact. 2019, 304, 194–201. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.-L.; Zhang, Y.-L.; Liu, Y.-T.; Tao, Y.-Y.; Zhou, H.; Cheng-Hai Liu, C.-H. The protective effect of Capparis spinosa fruit on triptolide-induced acute liver injury: A metabolomics-based systematic study. J. Funct. 2022, 90, 104989. [Google Scholar] [CrossRef]
- Vazquez-Salazar, A.; Becerra, A.; Lazcano, A. Evolutionary convergence in the biosynthesis of the imidazole moieties of histidine and purines. PLoS ONE 2018, 13, e0196349. [Google Scholar] [CrossRef]
- Tolomeu, H.V.; Fraga, C.A.M. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. Molecules 2023, 28, 838. [Google Scholar] [CrossRef]
- Matsuura, H.N.; Fett-Neto, A.G. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. In Plant Toxins; Gopalakrishnakone, P., Carlini, P.C., Ligabue-Braun, R., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–15. [Google Scholar] [CrossRef]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef]
- Munir, N.; Cheng, C.; Xia, C.; Xu, X.; Nawaz, M.A.; Iftikhar, J.; Chen, Y.; Lin, Y.; Lai, Z. RNA-Seq analysis reveals an essential role of tyrosine metabolism pathway in response to root-rot infection in Gerbera hybrida. PLoS ONE 2019, 14, e0223519. [Google Scholar] [CrossRef] [PubMed]
- Aniszewski, T. Biology of alkaloids. In Alkaloids Chemistry, Biology, Ecology, and Applications, 2nd ed.; Aniszewski, T., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2015; pp. 195–258. [Google Scholar] [CrossRef]
- Khan, N.; Al-Daghri, N.M.; Al-Ajlan, A.S.; Alokail, M.S. The use of natural and derived sources of flavonoids and antioxidants in Saudi Arabia. Integr. Food. Nutr. Metab. 2014, 1, 100–106. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant Natural Flavonoids against Multidrug Resistant Pathogens. Adv. Sci. 2021, 8, e2100749. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Sato, H.; Sakamura, S. Antifungal Stress Compounds from Adzuki Bean, Vigna angularis, Treated with Cephalosporium gregatum Type, B. Agric. Biol. Chem. 1987, 51, 349–353. [Google Scholar] [CrossRef]
- Zhou, Y.; Mumtaz, M.A.; Zhang, Y.; Shu, H.; Hao, Y.; Lu, X.; Cheng, S.; Zhu, G.; Wang, Z. Response of Anthocyanin Accumulation in Pepper (Capsicum annuum) Fruit to Light Days. Int. J. Mol. Sci. 2022, 23, 8357. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [PubMed]
- Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Quattrocchio, F.; Verweij, W.; Kroon, A.; Spelt, C.; Mol, J.; Koes, R. PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Transcription Factors of the Anthocyanin Pathway. Plant Cell 2006, 18, 1274–1291. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Qi, L.; Yang, J.; Wu, C.; Liu, Y.; Huang, L. A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell Tissue Organ Cult. 2015, 120, 961–972. [Google Scholar] [CrossRef]
- Zhao, J.; Dixon, R.A. MATE transporters facilitate vacuolar uptake of Epicatechin 3′-O-glucoside for Proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 2009, 21, 2323–2340. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Liu, H.; Kang, L.; Geng, J.; Gai, Y.; Ding, Y.; Sun, H.; Li, Y. Identification and Expression Analysis of MATE Genes Involved in Flavonoid Transport in Blueberry Plants. PLoS ONE 2015, 10, e0118578. [Google Scholar] [CrossRef]
- Ayabe, S.; Uchiyama, H.; Toshio; Aoki, T.; Akashi, T. Plant Phenolics: Phenylpropanoids. In Comprehensive Natural Products II; Liu, H.W.B., Lew Mander, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 929–976. [Google Scholar] [CrossRef]
- Gauthier, L.; Atanasova-Penichon, V.; Chéreau, S.; Richard-Forget, F.F. Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. Int. J. Mol. Sci. 2015, 16, 24839–24872. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Role of lignifcation in plant defense. Plant Signal. Behav. 2009, 4, 158–159. [Google Scholar] [CrossRef]
- Horta, M.; Caetano, P.; Medeira, C.; Maia, I.; Cravador, A. Involvement of the β-cinnamomin elicitin in infection and colonisation of cork oak roots by Phytophthora cinnamomi. Eur. J. Plant Pathol. 2010, 127, 427–436. [Google Scholar] [CrossRef]
- Byrt, P.; Grant, B.R. Some Conditions Governing Zoospore Production in Axenic Cultures of Phytophthora cinnamomi Rands. Aust. J. Bot. 1979, 27, 103–115. [Google Scholar] [CrossRef]
- Wolthuis, J.C.; Magnusdottir, S.; Pras-Raves, M.; Moshiri, M.; Jans, J.J.M.; Burgering, B.; van Mil, S.; de Ridder, J. MetaboShiny: Interactive analysis and metabolite annotation of mass spectrometry-based metabolomics data. Metabolomics 2020, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Kyoto Encyclopedia of Genes and Genomes. Available online: http://www.genome.jp/kegg/kegg1.html (accessed on 10 June 2019).
- Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007, 35, D527–D532. [Google Scholar] [CrossRef] [PubMed]
- LIPID MAPS. Available online: http://www.lipidmaps.org/ (accessed on 3 March 2023).
- Nakamura, Y.; Afendi, F.A.; Parvin, A.K.; Ono, N.; Tanaka, K.; Morita, A.H.; Sato, T.; Sugiura, T.; Altaf-Ul-Amin, M.; Kanaya, S. KNApSAcK Metabolite Activity Database for Retrieving the Relationships Between Metabolites and Biological Activities. Plant Cell Physiol. 2014, 55, e7. [Google Scholar] [CrossRef]
Differentially Abundant Ions | Putatively Identified Metabolites | |||
---|---|---|---|---|
Time Point | Leaf | Roots | Leaf | Roots |
6 hpc | 25 | 48 | 11 | 7 |
12 hpc | 17 | 40 | 8 | 11 |
24 hpc | 39 | 10 | 13 | 0 |
48 hpc | 35 | 30 | 11 | 10 |
72 hpc | 18 | 19 | 13 | 6 |
Total | 134 | 147 | 56 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, D.; Figueiredo, A.; Maia, M.; Laczko, E.; Pais, M.S.; Cravador, A. A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi. Plants 2023, 12, 1929. https://doi.org/10.3390/plants12101929
Neves D, Figueiredo A, Maia M, Laczko E, Pais MS, Cravador A. A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi. Plants. 2023; 12(10):1929. https://doi.org/10.3390/plants12101929
Chicago/Turabian StyleNeves, Dina, Andreia Figueiredo, Marisa Maia, Endre Laczko, Maria Salomé Pais, and Alfredo Cravador. 2023. "A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi" Plants 12, no. 10: 1929. https://doi.org/10.3390/plants12101929
APA StyleNeves, D., Figueiredo, A., Maia, M., Laczko, E., Pais, M. S., & Cravador, A. (2023). A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi. Plants, 12(10), 1929. https://doi.org/10.3390/plants12101929