Somatic Embryogenesis in Conifers: One Clade to Rule Them All?
Abstract
:1. Introduction
2. Taxonomic Considerations
3. Zygotic Embryogenesis in Conifers
4. Somatic Embryogenesis in Conifers
5. Somatic Embryogenesis in Ephedrales, Gnetales, and Welwitschiales
6. Somatic Embryogenesis in Araucariales
7. Somatic Embryogenesis in Cupressales
Order | Species | Explant Used | Formulation of Culture Medium | Steps of the Protocol | Reference |
---|---|---|---|---|---|
Araucariales | Araucaria angustifolia | Zygotic embryos | LP salts + vitamins + 0.5 g L−1 nicotinic acid + 45 µM 2,4-D + 11.0 µM KIN + 11.0 µM BAP + 500 mg L−1 casein + 1% PEG 8000 | Embryogenic culture induction | Astarita et al. [51] |
Zygotic embryos | LP salts + 6.8 µM 2,4-D + 2.3 µM KIN + 2.2 µM BAP + 1% PEG 8000 + 0.9 µM sucrose + 38 µM ABA | Embryogenic culture induction | Astarita et al. [62] | ||
Zygotic embryos | BM salts + vitamins + 5 µM 2,4-D + 2 µM BAP + 2 µM KIN BM salts + vitamins + 6% and 9% PEG 3350 + 6% and 9% BAP + 1 µM KIN | Embryogenic culture induction Precotyledonary somatic embryo development | dos Santos et al. [52] | ||
Zygotic embryos | LP salts + vitamins + 5 µM 2,4-D + 2 µM BAP + 2 µM KIN LP salts + vitamins + 5.0 µM ABA + 1% PEG 4000 | Embryogenic culture induction Precotyledonary somatic embryo development | Silveira et al. [65] | ||
Zygotic embryos | BM salts + vitamins + 5 µM 2,4-D + 2 µM BAP + 2 µM KIN BM salts + vitamins + 5 µM 2,4-D + 2 µM BAP + 2 µM KIN + 9% PEG + 9% maltose | Embryogenic culture induction Early precotyledonary somatic embryo development | Steiner et al. [58] | ||
Zygotic embryos | BM salts + vitamins + 2.0 µM 2,4-D + 0.5 µM BAP + 0.5 µM KIN + 0.5 g L−1 casein + 1.0 µM Spd + 10. µM Spm | Induction of stage-three proembryogenic masses (PEM III) | Silveira et al. [66] | ||
Zygotic embryos | BM salts + vitamins + 0.5 g L−1 casein + 1 µM Put | Embryogenic culture induction | Steiner et al. [62] | ||
Zygotic embryos | BM salts + 5 µM 2,4-D + 2 µM BAP + 2 µM KIN | Embryogenic culture induction | dos Santos et al. [54] | ||
Zygotic embryos | BM salts + 5.5 µM myo-inositol + 0.008 µM nicotinic acid + 0.005 µM pyridoxyn-HCl + 0.05 µM glycine + 0.006 µM thiamine-HCl + 6.8 mM L-glutamine + 0.05% casein hydrolysate + 3% sucrose | Embryogenic culture induction | Maurer et al. [108] | ||
Zygotic embryos | MSG salts + 0.005 g L−1 nicotinic acid + 0.005 g L−1 pyridoxine-HCl + 0.001 g L−1 thiamine + 1.46 g L−1 L-glutamine + 30 g L−1 sucrose + 3 g L−1 gelrite MSG salts + 5 µM 2,4-D + 2 µM BAP + 2 µM KIN MSG salts + vitamins + 1.46 g L−1 L-glutamine + 3 g L−1 gelrite + 120 µM ABA + 9% maltose + 7% PEG 4000 + 3% sucrose + 0.15% AC | Embryogenic culture induction Embryogenic proliferation Proembryo formation | Schlögl et al. [68] | ||
Zygotic embryos | BM salts + vitamins + 0.5 g L−1 casein hydrolysate + 1 g L−1 myo-inositol + 0.1 g L−1 L-glutamine + 3 g L−1 sucrose + 5 µM 2,4-D + 2 µM BAP + 2 µM KIN MSG salts + vitamins + 1.46 g L−1 L-glutamine + 90 g L−1 maltose + 70 g L−1 PEG 3350 + 1 µM GSH + 100 µM GSSG + 30 g L−1 sucrose | Embryogenic culture induction Proembryo formation | Vieira et al. [59] | ||
Zygotic embryos | LP salts + 10 g L−1 sucrose + 0.45 g L−1 L-glutamine BM salts + 30 g L−1 sucrose + 0.5 g L−1 casein hydrolysate + 1 g L−1 myo-inositol + 1.0 g L−1 L-glutamine DKM salts + 0.5 g L−1 casein hydrolysate + 0.1 g L−1 myo-inositol + 30 g L−1 sucrose + 30 µM fluridone DKM salts + 0.5 g L−1 casein hydrolysate + 0.1 g L−1 myo-inositol + 90 g L−1 maltose + 70 g L−1 PEG 3350 | Embryogenic culture induction Embryogenic culture proliferation Pre-maturation Proembryo formation | Farias-Soares et al. [109] | ||
Zygotic embryos | MSG salts + 1.46 µM L-glutamine + 30 g L−1 sucrose + 3 g L−1 gelrite + 1.0 µM 2,4-D + 0.5 µM BAP MSG salts + 1.46 g L−1 L-glutamine + 30 g L−1 sucrose + 3 g L−1 AC + 70 g L−1 maltose + 90 g L−1 PEG 4000 | Embryogenic culture induction Cotyledonary somatic embryo development | Jo et al. [110] | ||
Zygotic embryos | MSG salts + 120 µM ABA + 90.0 g L−1 PEG 4000 + 3.0 g L−1 maltose | Early precotyledonary somatic embryo development | Elbl et al. [111] | ||
Zygotic embryos | BM salts + 1.0 g L−1 L-glutamine + 1.0 g L−1 myo-inositol + 0.5 g L−1 casein hydrolysate + 30 g L−1 sucrose BM salts + 1.0 g L−1 L-glutamine + 1.0 g L−1 myo-inositol + 0.5 g L−1 casein hydrolysate + 50 g L−1 maltose + 100 g L−1 PEG 4000 + 100 μM ABA | Embryogenic culture induction Precotyledonary somatic embryo development | Fraga et al. [69] | ||
Zygotic embryos | DKM salts + 0.5 g L−1 casein hydrolysate + 0.1 g L−1 myo-inositol + 30.0 g L−1 sucrose + 30 μM fluridone DKM salts + 0.5 g L−1 casein hydrolysate + 0.1 g L−1 myo-inositol + 90.0 g L−1 maltose or 90.0 g L−1 lactose + 70.0 g L−1 PEG | Embryogenic culture induction Proembryo formation | Steiner et al. [57] | ||
Zygotic embryos | MSG salts + 1.46 g L−1 L-glutamine + 3% sucrose MSG salts + 1.46 g L−1 L-glutamine + 3% sucrose + 120 µM ABA + 7% maltose + 9% PEG 4000 | Embryogenic culture induction Early somatic embryo development | Navarro et al. [112] | ||
Podocarpus lamberti | Zygotic embryos | MSG salts + BM vitamins + 1.46 g L−1 L-glutamine + 0.1 g L−1 myo-inositol + 30 g L−1 sucrose MSG salts + BM vitamins + 1.46 g L−1 L-glutamine + 0.1 g L−1 myo-inositol + 50 g L−1 maltose + 100 g L−1 PEG 4000 + 2 g L−1 AC + 75 µM ABA + GSH 500 µM | Embryogenic culture induction Cotyledonary somatic embryo development | Fraga et al. [73] | |
Zygotic embryos | MSG salts + BM vitamins + 30 g L−1 sucrose MSG salts + BM vitamins + 50 g L−1 maltose + 100 g L−1 PEG 4000 + 2 g L−1 AC + 75 µM ABA | Embryogenic culture induction Cotyledonary somatic embryo development | Guerra et al. [74] | ||
Welwitschiales | Welwitschia mirabilis | Zygotic embryos | MS salts + 0.5 g L−1 glycine + 5.0 g L−1 inositol + 0.003 g L−1 calcium pantothenate + 0.03 g L−1 thiamine hydrolysate + 40 g L−1 sucrose + 100/50 mg L−1 NAA | Callus induction | Button et al. [11] |
Zygotic embryos | SH salts + 0.3 mg L−1 NAA | Callus induction | Bornman [39] | ||
Leaf | MS salts + 9.0/22.5/45.0 µM 2,4-D + 2.2/4.4 µM BAP + 4.6 µM KIN + 5.4 µM NAA | Embryogenic culture induction | Misra et al. [38] | ||
Gnetales | Gnetum ula | Megagametophyte + immature zygotic embryos | MS salts + 20 g L−1 sucrose + 5 mg L−1 BAP MS/2 salts (PGR-free) | Embryogenic culture induction Immature somatic embryo formation | Augustine and D’Souza [46] |
Ephedrales | Ephedra foliata | Zygotic embryos | MS salts + 2 µM 2,4-D + 10 µM KIN MS salts PGR-free | Embryogenic culture induction and somatic embryo maturation Somatic plantlet formation | Dhiman et al. [43] |
Ephedra gerardiana | Internodal segments | MS salts + 1.0 µM TDZ MS salts PGR-free | Embryogenic culture induction and somatic embryo maturation Somatic plantlet formation | Sharma et al. [44] | |
Cuppressales | Cupressus sempervirens | Zygotic embryos | DCR salts + 0.5 g L−1 casein hydrolysate + 0.2 g L−1 myo-inositol + 0.1 g L−1 L-glutamine + sucrose (30 g/L) + 10 µM 2,4-D DCR salts + 1 µM ABA + 0.02% AC | Embryogenic culture induction Somatic embryo formation | Lambardi et al. [113] |
Zygotic embryos | MS salts + 15 g L−1 fructose + 15 g L−1 glucose + 4 g L−1 AC + 10 mL l−1 coconut water MS + 15 g L−1 fructose + 15 g L−1 glucose + 4 g L−1 AC + 1 g L−1 BSA | Embryogenic culture induction Proembryo formation | Sallandrouze et al. [114] | ||
Megagametophyte + immature zygotic embryos | DCR salts + 0.5 g L−1 casein hydrolysate + 0.2 g L−1 myo-inositol + 0.1 g L−1 L-glutamine + 30 g L−1 sucrose + 10 µM 2,4-D DCR salts + 75 g L−1 PEG 4000 | Embryogenic culture induction Somatic embryo development | Barberini et al. [104] | ||
Megagametophyte + immature zygotic embryos | DCR salts + 0.5 g L−1 casein hydrolysate + 0.2 g L−1 myo-inositol + 0.1 g L−1 L-glutamine + sucrose (30 g/L) + 10 µM 2,4-D DCR salts + 75 g L−1 PEG 4000 | Embryogenic culture induction Somatic embryo development | Lambardi et al. [115] | ||
Cryptomeria japonica | Zygotic embryos | CDm salts + 0.8 g L−1 ammonium nitrate + 1 μM 2,4-D + 6.0 g L−1 L-glutamine CDm salts + ABA (0, 0.1, 1, and 10 µM) + BAP (0.1, 1, and 10 µM) | Embryogenic culture induction Proembryo development | Ogita et al. [116] | |
Zygotic embryos | SM1 salts + 10 g L−1 sucrose + 10 μM 2,4-D + 3 μM BAP + 0.5 g L−1 L-glutamine LPM salts + 10 g L−1 sucrose + 10 μM 2,4-D + 3 μM BAP + 0.5 g L−1 L-glutamine SM3 salts + PEG 400 + ABA LP salts + 0.2 g L−1 sucrose + 5 g L−1 AC | Embryogenic culture induction Somatic embryo development Somatic plantlet formation | Maruyama et al. [83] | ||
Zygotic embryos | MSG salts + 0.01% myo-inositol + 0.15% L-glutamine + 3.2 μM 2,4-D + 1.8 μM BAP + 3% sucrose + 0.4% gellan gum EMM salts + 0.2% AC + 0.3% gellan gum EMM salts + 0.2% AC + 3/5-strength EMM vitamins + 400 mg L−1 L-glutamine + 260 mg L−1 arginine + 20 mg L−1 proline | Embryogenic culture induction Somatic embryo development Somatic plantlet formation | Igasaki et al. [84] | ||
Zygotic embryos | MSG salts + 0.01% myo-inositol + 0.15% L-glutamine + 3% sucrose + 3.2 μM 2,4-D + 1.8 μM BAP + 32 nM PSK EMM salts + 5% PEG 4000 + 3% maltose + 100 μM ABA + 32 nM PSK + 0.2% AC + 0.3% gellan gum SGM salts + 0.2% AC + 10 μM GA3 | Embryogenic culture induction Somatic embryo development Somatic plantlet formation | Igasaki et al. [85] | ||
Zygotic embryos | mCD salts + 3% sucrose + 4.1 mM L-glutamine + 1 µM 2,4-D mCD salts + 3% sucrose + 16.4 mM L-glutamine +100 µM ABA + 6% maltose | PEM induction PEM maturation | Nakagawa et al. [117] | ||
Zygotic embryos | MSG salts + 0.01% myo-inositol + 0.15% glutamine + 3.2 µM 2,4-D + 1.8 µM BAP + 3% sucrose + 0.4% gellan gum | Embryogenic culture induction and somatic embryo development | Igasaki et al. [118] | ||
Megagametophyte | EM salts + 10 g L−1 sucrose + 10 μM 2,4-D + 5 μM BAP + 0.5 g L−1 casein + 0.5 g L−1 L-glutamine EM salts + 30 g L−1 maltose + 2 g L−1 AC + 100 μM ABA + amino acids + 150 g L−1 PEG + 3.3 g L−1 gellan gum EM salts + 20 g L−1 sucrose + 1.5 g L−1 L-glutamine + 10 g L−1 agar | Embryogenic culture induction Cotyledonary embryo development Somatic plantlet formation | Maruyama et al. [119] | ||
Zygotic embryos | MS salts + 30 g L−1 sucrose + 3 μM 2,4-D + 1 μM BAP MS salts + 30 g L−1 maltose + 175 g L−1 PEG 6000 + 2 g L−1 AC + 100 μM ABA | Embryogenic culture induction Somatic embryo development | Izuno et al. [88] | ||
Seed | EM salts + 10 g L−1 sucrose + 10 μM 2,4-D + 5 μM BAP + 0.5 g L−1 casein + 0.5 g L−1 L-glutamine + 3 g L−1 gelrite EM salts + 30 g L−1 sucrose + 3 mΜ 2,4-D + 1 μM BAP + 1.5 g L−1 L-glutamine + 3 g L−1 −1 gelrite EM salts + 175 g L−1 PEG + 100 µM ABA + 2 g L−1 L-glutamine + 1 g L−1 asparagine + 0.5 g L−1 arginine + 3 g L−1 gelrite | Embryogenic culture induction Embryogenic culture proliferation Somatic embryo maturation | Maruyama et al. [79] | ||
Chamaecyparis pisifera | Immature seed | MS salts + 0.5 g L−1 L-glutamine + 2,4-D + BAP MS salts + 100 μM ABA + 2 g L−1 AC + 150 g L−1 PEG 4000 LP salts + 30 g L−1 sucrose + 5 g L−1 AC + 12.5 g L−1 Wako agar | Embryogenic culture induction Somatic embryo maturation Somatic plantlet formation | Maruyama et al. [120] | |
Immature seed | MS salts + 0.5 g L−1 L-glutamine + 2,4-D + BAP MS salts + 100 μM ABA + 2 g L−1 AC + 150 g L−1 PEG 4000 LP salts + 30 g L−1 sucrose + 5 g L−1 AC + 12.5 g L−1 Wako agar | Embryogenic culture induction Somatic embryo maturation Somatic plantlet formation | Maruyama et al. [121] | ||
Immature seed | MS/2 salts + 10 μM 2,4-D + 5 μM BAP + 10 g L−1 sucrose MS/2 salts + 1–10 μM 2,4-D + 0.3 μM BAP + 0.5 g L−1 L-glutamine + 30 g L−1 sucrose EM salts + 50 g L−1 maltose + 100 μM ABA + 2 g L−1 AC + 150 g L−1 PEG 4000 + amino acids EM/2 salts + 2 g L−1 AC + 10 g L−1 agar | Embryogenic culture induction Embryogenic culture proliferation Somatic embryo maturation Somatic plantlet formation | Hosoi and Maruyama [122] | ||
Chamaecyparis obtusa | Zygotic embryos | MS salts + 10 μM 2,4-D + 30 g L−1 sucrose MS salts + vitamins + 100 μM ABA + 150 g L−1 PEG 4000 + 30 g L−1 maltose MS salts + 2 g L−1 AC + 20 g L−1 sucrose + 5 g L−1 gelrite | Embryogenic culture induction Cotyledonary embryo development Somatic plantlet formation | Konogaya et al. [123] | |
Zygotic embryos | EM salts + 0.40 g L−1 KCl + 0.5 g L−1 casein + 1 g L−1 L-glutamine + 10 g L−1 sucrose + 10 µM 2,4-D + 5 µM BAP EM salts + 50 g L−1 maltose + 100 g L−1 PEG 4000 + 2 g L−1 AC + 100 µM ABA + EMM amino acids | Embryogenic culture induction Somatic plantlet formation | Maruyama et al. (2005) [124] | ||
Chamaecyparis thyoides | Zygotic embryos | EM salts + 0/4.5/9 µM 2,4-D + 0/2.2/4.4 µM BAP + 10 g L−1 sucrose + 0.5 g L−1 myo-inositol + 1 g L−1 L-glutamine EM salts + 50 g L−1 maltose + 100 gL−1 PEG 4000 + 0/10/50/100 µM ABA + 0/2 g L−1 AC EM salts + 10 g L−1 sucrose + 2 g L−1 AC | Embryogenic culture induction Somatic embryo development Somatic plantlet formation | Ahn et al. [102] | |
Cunninghamia lanceolata | Zygotic embryos | DCR salts + g L−1 sucrose + 0.5 g L−1 casein hydrolysate + 0.4 g L−1 L-glutamine + 5 g L−1 Phytagel + 1 g L−1 AC + 0.5 mg L−1 2,4-D + 0.5 mg L−1 KIN DCR salts + 50 μM ABA + 100 g L−1 PEG 6000 | Embryogenic culture induction Somatic embryo development | Hu et al. [103] | |
Zygotic embryos | DCR salts + 1–2 mg L−1 2,4-D + 0.5 mg L−1 KIN + 0.5 mg L−1 BAP + 1 mg L−1 vitamin C + 0.45 g L−1 L-glutamine + 20 g L−1 maltose + 2.5 g L−1 AC + 2.3 g L−1 gelrite DCR salts + 2–8 mg L−1 ABA + 1.5 mg L−1 GA + 0.2 g L−1 proline + 0.45 g L−1 L-glutamine + 1 mg L−1 vitamin C + 0.5 g L−1 casein hydrolysate + 25 g L−1 maltose + 2 g L−1 AC + 0.2 g L−1 aspartic acid + 2.8 g L−1 gelrite + 100–200 g L−1 PEG | Embryogenic culture induction Somatic embryo development | Wang et al. [125] | ||
Zygotic embryos | DCR salts + 2.0–6.0 mg L−1 2,4-D + 0.5 mg L−1 BAP + 500 mg L−1 casein hydrolysate + 450 mg L−1 L-glutamine + 100 mg L−1 myo-inositol + 20 g L−1 maltose + 2.1 g L−1 gellan gum DCR salts + 3 mg L−1 ABA + 1.0 mg L−1 GA3 + 500 mg L−1 casein hydrolysate + 120–200 g L−1 PEG 8000 + 30 g L−1 maltose | Embryogenic culture induction Somatic embryo development | Zhou et al. [126] | ||
Torreya taxifolia | Zygotic embryos | 2207 salts + 0.25% AC + 15 g L−1 maltose + 1 g L−1 myo-inositol + 110 mg L−1 + 2,4-D + 45 mg L−1 BAP + 43 mg L−1 KIN + 0.048 mg L−1 brassinolide + 1 mg L−1 ABA + 5 mg L−1 biotin + 50 mg L−1 folic acid + 250 mg L−1 MES + 60.7 mg L−1 pyruvic acid + 450 mg L−1 L-glutamine 2207 salts + 1% AC + 15 g L−1 maltose + 200 mg L−1 ABA + 5 mg L−1 biotin + 0.1000 μM brassinolide + 50 mg L−1 folic acid + 250 mg L−1 MES + 60.7 mg L−1 pyruvic acid + 0.048 mg L−1 brassinolide + 450 mg L−1 L-glutamine | Embryogenic culture induction Somatic embryo development | Ma et al. [107] | |
Sequoia sempervirens | Needles | SH salts + 0/0.05/0.1 g L−1 BAP + 0/0.02/0.05 g L−1 KT + 0.02/0.05/0.1 g L−1 IBA + 0.05% casein hydrolysate SH salts + 0.05 g L−1 IBA + 0.01 g L−1 NAA + 0.1% AC + 1.5% sucrose + 0.05% casein hydrolysate | Embryogenic culture induction Somatic embryo development | Liu et al. [105] | |
Juniperus communis | Zygotic embryos | LP salts + 15 mM ammonium nitrate + 30 g L−1 sucrose + 9 µM 2,4-D + 4.4 µM BAP + 0.044 g L−1 L-glutamine LP salts + 15 mM ammonium nitrate + 30 g L−1 sucrose + 32 mg L−1 ABA + 0.044 g L−1 L-glutamine | Embryogenic culture induction Proembryo development | Belaineh et al. [96] | |
Megagametophytes | LP salts (PGR-free) DCR salts + 2.02 mM potassium nitrate + 1.16 mM calcium chloride + 60 µM ABA + 20 or 100 µM GA4/7 | Embryogenic culture induction Early somatic embryo development | Helmerson et al. [93] | ||
Juniperus procera | Zygotic embryos | LP salts + 15 mM ammonium nitrate + 3.0 g L−1 sucrose + 9.0 µM 2,4-D + 4.4 µM BAP + 0.044 g L−1 L-glutamine + 1.6 g L−1/3.2 g L−1/6.4 g L−1/12.8 g L−1/25.6 g L−1 ABA + 7.5% PEG 4000 | Non-embryogenic callus | Belaineh et al. [96] | |
Juniperus excelsa | Shoots | MS salts + ammonium nitrate/potassium nitrate + L-glutamine | Callus induction | Shanjani et al. [95] | |
Thuja koraiensis | Zygotic embryos | EM salts + SH + Litvay + 2.2 µM BAP + 4.5 µM 2,4-D + 1 g L−1 L-glutamine + 0.5 g L−1 myo-inositol + 1 g L−1 AC + 10 g L−1 sucrose IM salts + 1% sucrose | Embryogenic culture induction Somatic plantlet formation | Ahn et al. [106] | |
Taxus cuspidata | Zygotic embryos | SPE salts + 0.001 g L−1 KIN + 0.002 g L−1 NAA | Embryogenic culture induction | Ewald et al. [99] | |
Taxus brevifolia | Zygotic embryos | SPE salts + 0.001 g L−1 KIN + 0.002 g L−1 NAA | Embryogenic culture induction | Ewald et al. [99] | |
Taxus baccata | Zygotic embryos | SPE salts + 0.001 g L−1 KIN + 0.002 g L−1 NAA | Embryogenic culture induction | Ewald et al. [99] | |
Taxus wallichiana | Zygotic embryos | B5 salts + SH vitamins + 3% sucrose + 0.01 g L−1 NAA + 0.005 g L−1 BAP WPM salts + SH vitamins + 3% sucrose + 0.02 g L−1 NAA + 0.05 g L−1 BAP WPM salts + 0.01 g L−1 ABA + 1.0% AC | Embryogenic culture induction Early precotyledonary somatic embryo development Somatic plantlet formation | Datta and Jha [101] |
8. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jain, S.M.; Gupta, P.K.; Newton, R.J. Somatic Embryogenesis in Woody Plants; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zimmerman, J.L. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell 1993, 5, 1411–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braybrook, S.; Harada, J.J. LECs go crazy in embryo development. Trends Plant Sci. 2008, 13, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Tautorus, T.E.; Fowke, L.C.; Dunstan, D.I. Somatic embryogenesis in conifers. Can. J. Bot. 1991, 69, 1873–1899. [Google Scholar] [CrossRef]
- Fehér, A. Somatic embryogenesis—Stress-induced remodeling of plant cell fate. Biochim. et Biophys. Acta (BBA)—Gene Regul. Mech. 2015, 1849, 385–402. [Google Scholar]
- Egertsdotter, U.; Ahmad, I.; Clapham, D. Automation and Scale Up of Somatic Embryogenesis for Commercial Plant Production, With Emphasis on Conifers. Front. Plant Sci. 2019, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- von Arnold, S.; Sabala, I.; Bozhkov, P.; Dyachok, J.; Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. (PCTOC) 2002, 69, 233–249. [Google Scholar] [CrossRef]
- Steward, F.C.; Mapes, M.O.; Hears, K. Growth and organized development of cultured cells. II. Growth and division of freely suspended cells. Am. J. Bot. 1958, 45, 705–708. [Google Scholar] [CrossRef]
- Reinert, J. Untersuchungen über die Morphogenese an Gewebenkulturen. Berichte Dtsch. Bot. Ges. 1958, 71, 15. [Google Scholar]
- Fehér, A.; Pasternak, T.P.; Dudits, D. Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue Organ Cult. (PCTOC) 2003, 74, 201–228. [Google Scholar] [CrossRef]
- Button, J.; Bornman, C.H.; Carter, M. Welwitschia mirabilis: Embryo and Free-Cell Culture. J. Exp. Bot. 1971, 22, 922–924. [Google Scholar] [CrossRef]
- Chalupa, V. Somatic embryogenesis and plant regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun. Inst. For. Czechoslov. 1985, 14, 57–63. [Google Scholar]
- Hakman, I.; von Arnold, S. Plantlet Regeneration through Somatic Embryogenesis in Picea abies (Norway Spruce). Plant Physiol 1985, 121, 149–158. [Google Scholar] [CrossRef]
- Lelu-Walter, M.-A.; Thompson, D.; Harvengt, L.; Sanchez, L.; Toribio, M.; Pâques, L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes 2013, 9, 883–899. [Google Scholar]
- Wang, X.-Q.; Ran, J.-H. Evolution and biogeography of gymnosperms. Mol. Phylogenetics Evol. 2014, 75, 24–40. [Google Scholar]
- Klimaszewska, K.; Noceda, C.; Pelletier, G.; Label, P.; Rodriguez, R.; Lelu-Walter, M.A. Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). Vitr. Cell. Dev. Biol. Plant 2009, 45, 20–33. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Hargreaves, K.; Lelu-Walter, M.A.; Trontin, J.F. Advances in Conifer Somatic Embryogenesis Since Year 2000. In In Vitro Embryogenesis in Higher Plants; Germana, M.A., Lambardi, M., Eds.; Humana Press: New York, NY, USA, 2016; pp. 131–165. [Google Scholar]
- Salaj, T.; Blehová, A.; Salaj, J. Embryogenic suspension cultures of Pinus nigra Arn.: Growth parameters and maturation ability. Acta Physiol. Plant. 2007, 29, 225–231. [Google Scholar] [CrossRef]
- Salaj, T.; Fráterová, L.; Cárach, M.; Salaj, J. The effect of culture medium formulation on Pinus nigra somatic embryogenesis. Dendrobiology 2014, 71, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Lineros, Y.; Balocchi, C.; Muñoz, X.; Sánchez, M.; Ríos, D. Cryopreservation of Pinus radiata embryogenic tissue: Effects of cryoprotective pretreatments on maturation ability. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 135, 357–366. [Google Scholar] [CrossRef]
- Bravo, S.; Bertín, A.; Turner, A.; Sepúlveda, F.; Jopia, P.; Parra, M.J.; Castillo, R.; Hasbún, R. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non-embryogenic lines of Pinus radiata D. don. Plant Cell Tissue Organ Cult. 2017, 130, 521–529. [Google Scholar] [CrossRef]
- Maruyama, T.E.; Hosoi, Y. Protocol for Somatic Embryogenesis in Japanese Black Pine (Pinus thunbergii Parl.) and Japanese Red Pine (Pinus densiflora Sieb. et Zucc.). In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Jain, S.M., Gupta, P., Eds.; Forestry Sciences, Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G.; Armas-Silva, A.A.; Cruz-Gutiérrez, E.J.; de la Torre-Sánchez, J.F.; Leyva-Ovalle, O.R.; Galán-Páez, C.M. Effect of the thin cell layer technique in the induction of somatic embryos in Pinus patula Schl. et Cham. J. For. Res. 2018, 30, 1535–1539. [Google Scholar] [CrossRef]
- Quinn, C.J.; Price, R.A.; Gadek, P.A. Familial Concepts and Relationships in the Conifer Based on rbcL and matK Sequence Comparisons. Kew Bull. 2002, 57, 513. [Google Scholar] [CrossRef] [Green Version]
- Rai, H.S.; Reeves, P.A.; Peakall, R.; Olmstead, R.G.; Graham, S.W. Inference of higher-order conifer relationships from a multi-locus plastid data setThis paper is one of a selection of papers published in the Special Issue on Systematics Research. Botany 2008, 86, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Leslie, A.B.; Beaulieu, J.M.; Rai, H.S.; Crane, P.R.; Donoghue, M.J.; Mathews, S. Hemisphere-scale differences in conifer evolutionary dynamics. Proc. Natl. Acad. Sci. USA 2012, 109, 16217–16221. [Google Scholar] [CrossRef]
- Farjon, A. The Kew Review: Conifers of the World. Kew Bull. 2018, 73, 8. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.-H.; Shen, T.-T.; Wang, M.-M.; Wang, X.-Q. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc. R. Soc. B Boil. Sci. 2018, 285, 20181012. [Google Scholar] [CrossRef] [Green Version]
- Neale, D.B.; Wheeler, N.C. Paleobotany, Taxonomic Classification, and Phylogenetics. The Conifers: Genomes, Variation and Evolution; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Yang, Y.; Ferguson, D.K.; Liu, B.; Mao, K.S.; Gao, L.M.; Zhang, S.Z.; Wan, T.; Rushforth, K.; Zhang, Z.X. Recent advances on phylogenomics of gymnosperms and a new classification. Plant Diversity 2022, 44, 340–350. [Google Scholar] [CrossRef]
- Williams, C.G. Conifer Reproductive Biology; Springer: New York, NY, USA, 2009; p. 170. [Google Scholar]
- Attree, S.M.; Fowke, L.C. Embryogeny of gymnosperms: Advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult. (PCTOC) 1993, 35, 1–35. [Google Scholar] [CrossRef]
- Cairney, J.; Pullman, G.S. The cellular and molecular biology of conifer embryogenesis. New Phytol. 2007, 176, 511–536. [Google Scholar] [PubMed]
- von Arnold, S.; Clapham, D.; Abrahamsson, M. Embryology in conifers. In Advances in Botanical Research Volume 15; Elsevier: Amsterdam, The Netherlands, 2019; Volume 89, pp. 157–184. [Google Scholar] [CrossRef]
- Chandler, J.W. Cotyledon organogenesis. J. Exp. Bot. 2008, 59, 2917–2931. [Google Scholar] [CrossRef] [Green Version]
- Bombi, P.; Salvi, D.; Shuuya, T.; Vignoli, L.; Wassenaar, T. Climate change effects on desert ecosystems: A case study on the keystone species of the Namib Desert Welwitschia mirabilis. PLoS ONE 2021, 16, e0259767. [Google Scholar]
- Di Salvatore, M.; Garafa, A.M.; Garratù, G. Growth and Reproductive Phenology of Welwitschia mirabilis Hook. F. Open Plant Sci. J. 2013, 7, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Misra, P.; Purshottam, D.L.; Goel, A.K.; Nautiyal, C.S. Welwitschia mirabilis induction, growth and organization of mature leaf callus. Curr. Sci. 2015, 109, 567–571. [Google Scholar]
- Bornman, C.H. Welwitschia mirabilis callus studies I. Initiation and growth. Z. Pflanzenphysiol. 1976, 78, 182–186. [Google Scholar] [CrossRef]
- Schenk, R.U.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Hollander, J.L.; Wall, S.B.V.; Baguley, J.G. Evolution of seed dispersal in North American Ephedra. Evol. Ecol. 2010, 24, 333–345. [Google Scholar] [CrossRef]
- González-Juárez, D.E.; Escobedo-Moratilla, A.; Flores, J.; Hidalgo-Figueroa, S.; Martínez-Tagüeña, N.; Morales-Jiménez, J.; Muñiz-Ramírez, A.; Pastor-Palacios, G.; Pérez-Miranda, S.; Ramírez-Hernández, A.; et al. A Review of the Ephedra genus: Distribution, Ecology, Ethnobotany, Phytochemistry, and Pharmacological Properties. Molecules 2020, 25, 3283. [Google Scholar] [CrossRef]
- Dhiman, M.; Sharma, V.; Moitra, S. Somatic Embryogenesis and Plant Regeneration in Ephedra foliata (Boiss.); a non Coniferous Gymnosperm. Plant Tissue Cult. Biotechnol. 2010, 20, 133–143. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, S.; Dhiman, M. Regeneration of Plants from Nodal and Internodal Segment Cultures of Ephedra gerardiana using Thidiazuron. Plant Tissue Cult. Biotechnol. 2013, 22, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Jinadatta, P.; Rajshekarappa, S.; Rao, K.S.R.; Subbaiah, S.G.P.; Shastri, S. In silico, in vitro: Antioxidant and antihepatotoxic activity of gnetol from Gnetum ula Brongn. Bioimpacts 2019, 9, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Augustine, A.C.; D’Souza, L. Somatic embryogenesis in Gnetum ula Brogan. (Gnetum edule) (Willd) Blume. Plant Cell Rep. 1997, 16, 354–357. [Google Scholar]
- Thomas, P. Araucaria angustifolia. The IUCN Red List of Threatened Species. 2013. Available online: https://www.iucnredlist.org/species/32975/2829141 (accessed on 23 June 2022).
- Guerra, M.P.; Silveira, V.; dos Santos, A.L.W.; Astarita, L.V.; Nodari, R.O. Somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze. In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 457–478. [Google Scholar]
- Guerra, M.P.; Steiner, N.; Mantovani, A.; Nodari, R.O.; Reis, M.S.; dos Santos, K.L. Araucária: Evolução, ontogênese e diversidade genética. In Origem e Evolução de Plantas Cultivadas, 1st ed.; Barbieri, R.L., Stumpf, E.R.T., Eds.; Embrapa Informação Tecnológica: Brasília, Brazil, 2008; pp. 149–184. [Google Scholar]
- Quinteiro, M.M.D.C.; Alexandre, B.D.R.; Magalhães, L.M.S. Brazilian Pine (Araucaria angustifolia (Bertol.) Kuntze) Ethnoecology in the Mantiqueira Atlantic Forest. Floresta Ambiente 2019, 29, 7. [Google Scholar] [CrossRef] [Green Version]
- Astarita, L.V.; Guerra, M.P. Early somatic embryogenesis in Araucaria angustifolia induction and maintenance of embryonal suspensor mass cultures. Braz. J. Plant Physiol. 1998, 10, 113–118. [Google Scholar]
- dos Santos, A.L.W.; Silveira, V.; Steiner, N.; Vidor, M.; Guerra, M.P. Somatic Embryogenesis in Parana Pine (Araucaria angustifolia (Bert.) O. Kuntze). Braz. Arch. Biol. Technol. 2002, 45, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Silveira, V.; Santa-Catarina, C.; Balbuena, T.S.; Moraes, F.M.S.; Ricart, C.A.O.; Sousa, M.V.; Guerra, M.P.; Handro, W.; Floh, E.I.S. Endogenous abscisic acid and protein contents during seed development of Araucaria angustifolia. Biol. Plant. 2008, 52, 101–104. [Google Scholar] [CrossRef]
- dos Santos, A.L.W.; Steiner, N.; Guerra, M.P.; Zoglauer, K.; Moerschbacher, B.M. Somatic embryogenesis in Araucaria angustifolia. Biol. Plant. 2008, 52, 195–199. [Google Scholar] [CrossRef]
- dos Santos, A.L.W.; Silveira, V.; Steiner, N.; Maraschin, M.; Guerra, M.P. Biochemical and morphological changes during the growth kinetics of Araucaria angustifolia suspension cultures. Braz. Arch. Biol. Technol. 2010, 53, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Dutra, N.T.; Silveira, V.; de Azevedo, I.G.; Gomes-Neto, L.R.; Façanha, A.R.; Steiner, N.; Guerra, M.P.; Floh, E.I.S.; Santa-Catarina, C. Polyamines affect the cellular growth and structure of proembryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol. Plant 2013, 148, 121–132. [Google Scholar] [CrossRef]
- Steiner, N.; Farias-Soares, F.; Schmidt, E.C.; Pereira, M.L.T.; Scheid, B.; Dogge-Renner, G.D.; Bouzon, Z.L.; Schmidt, D.; Maldonado, S.; Guerra, M.P. Toward establishing a morphological and ultrastructural characterization of proembryogenic masses and early somatic embryos of Araucaria angustifolia (Bert.) O. Kuntze. Protoplasma 2016, 253, 487–501. [Google Scholar] [CrossRef]
- Steiner, N.; Vieira, F.D.N.; Maldonado, S.; Guerra, M.P. Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Braz. Arch. Biol. Technol. 2005, 48, 895–903. [Google Scholar] [CrossRef]
- Vieira, L.D.N.; Santa-Catarina, C.; Fraga, H.P.d.F.; dos Santos, A.L.W.; Steinmacher, D.A.; Schlogl, P.S.; Silveira, V.; Steiner, N.; Floh, E.I.S.; Guerra, M.P. Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci. 2012, 195, 80–87. [Google Scholar] [CrossRef]
- Steiner, N.; Santa-Catarina, C.; Andrade, J.B.R.; Balbuena, T.S.; Guerra, M.P.; Handro, W.; Floh, E.I.S.; Silveira, V. Araucaria angustifolia biotechnology-review. Funct. Plant Sci. Biotechnol. 2008, 2, 20–28. [Google Scholar]
- Guerra, M.P.; Steiner, N.; Farias-Soares, F.L.; Vieira, L.N.; Fraga, H.P.F.; Rogge-Renner, G.D.; Maldonado, S.B. Somatic Embryogenesis in Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). In In Vitro Embryogenesis in Higher Plants; Germana, M.A., Lambardi, M., Eds.; Humana Press: New York, NY, USA, 2016; pp. 439–450. [Google Scholar]
- Steiner, N.; Santa-Catarina, C.; Silveira, V.; Floh, E.I.S.; Guerra, M.P. Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult. (PCTOC) 2007, 89, 55–62. [Google Scholar] [CrossRef]
- Astarita, L.V.; Guerra, M.P. Conditioning of the culture medium by suspension cells and formation of somatic proembryo in Araucaria angustifolia (coniferae). Vitr. Cell. Dev. Biol. Plant 2000, 36, 194–200. [Google Scholar] [CrossRef]
- Steiner, N.; Santa-Catarina, C.; Guerra, M.P.; Cutri, L.; Dornelas, M.C.; Floh, E.I.S. A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Organ Cult. (PCTOC) 2012, 109, 41–50. [Google Scholar] [CrossRef]
- Silveira, V.; Steiner, N.; Santos, A.; Nodari, R.; Guerra, M. Biotechnology tolls in Araucaria angustifolia conservation and improvement: Inductive factors affecting somatic embryogenesis. Crop. Breed. Appl. Biotechnol. 2002, 2, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Silveira, V.; Santa-Catarina, C.; Ni Tun, N.; Scherer, G.F.; Handro, W.; Guerra, M.P.; Floh, E.I. Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci. 2006, 171, 91–98. [Google Scholar] [CrossRef]
- Schlögl, P.S.; dos Santos, A.L.W.; Vieira, L.D.N.; Floh, E.I.S.; Guerra, M.P. Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tissue Organ Cult. (PCTOC) 2011, 108, 173–180. [Google Scholar] [CrossRef]
- Schlögl, P.S.; dos Santos, A.L.W.; Vieira, L.D.N.; Floh, E.I.S.; Guerra, M.P. Cloning and expression of embryogenesis-regulating genes in Araucaria angustifolia (Bert.) O. Kuntze (Brazilian Pine). Genet. Mol. Biol. 2012, 35, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.P.F.; Vieira, L.N.; Puttkammer, C.C.; Oliveira, E.M.; Guerra, M.P. Time-lapse cell tracking reveals morphohistological features in somatic embryogenesis of Araucaria angustifolia (Bert) O. Kuntze. Trees 2015, 29, 1613–1623. [Google Scholar] [CrossRef]
- Fraga, H.P.F.; Vieira, L.N.; Heringer, A.S.; Puttkammer, C.C.; Silveira, V.; Guerra, M.P. DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell Tissue Organ Cult. (PCTOC) 2016, 125, 353–374. [Google Scholar]
- Vestman, D.; Larsson, E.; Uddenberg, D.; Cairney, J.; Clapham, D.; Sundberg, E.; von Arnold, S. Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet. Genomes 2011, 7, 347–362. [Google Scholar] [CrossRef]
- Rupps, A.; Raschke, J.; Rümmler, M.; Linke, B.; Zoglauer, K. Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. Planta 2015, 243, 473–488. [Google Scholar] [PubMed]
- Fraga, H.P.D.F.; Vieira, L.D.N.; Puttkammer, C.C.; dos Santos, H.P.; Garighan, J.D.A.; Guerra, M.P. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl. Plant Sci. 2016, 253, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, M.P.; Vieira, L.N.; Fraga, H.P.F. Somatic Embryogenesis of Brazilian Conifer Podocarpus lambertii Klotzsch ex Endl. In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Jain, S.M., Gupta, P., Eds.; Springer-Nature: Cham, Switzerland, 2018; pp. 83–91. [Google Scholar]
- Farjon, A.; Filer, D. An Atlas of the World’s Conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status; Brill Press: Leiden, The Netherlands, 2013. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Ragagnin, L.I.M.; Costa, E.C.; Hoppe, J.M. Physiological maturation of Podocarpus lambertii Klotzsch seeds. Cienc. Florest. 1994, 4, 23–41. [Google Scholar] [CrossRef]
- Tsukada, M. Cryptomeria Japonica: Glacial Refugia and Late-Glacial and Postglacial Migration. Ecology 1982, 63, 1091–1105. [Google Scholar] [CrossRef]
- Maruyama, T.E.; Ueno, S.; Hosoi, Y.; Miyazawa, S.I.; Mori, H.; Kaneeda, T.; Bamba, Y.; Hirayama, S.; Kawakami, K.; Moriguchi, Y. Somatic Embryogenesis Initiation in Sugi (Japanese Cedar, Cryptomeria japonica D. Don): Responses from Male-Fertile, Male-Sterile and Polycross-Pollinated-Derived Seed Explants. Plants 2021, 10, 398. [Google Scholar] [CrossRef]
- Taniguchi, T. Biotechnological Research in Cryptomeria japonica. In Biofuels: Greenhouse Gas Mitigation and Global Warming; Kumar, A., Ogita, S., Yau, Y.Y., Eds.; Springer: New Delhi, India, 2018. [Google Scholar]
- Nakae, K.; Baba, K. Update on epidemiology of pollinosis in Japan: Changes over the last 10 years. Clin. Exp. Allergy Rev. 2010, 10, 2–7. [Google Scholar] [CrossRef]
- Tang, W.; Newton, R.J. Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep. 2003, 22, 1–15. [Google Scholar] [CrossRef]
- Maruyama, E.; Tanaka, T.; Hosoi, Y.; Ishii, K.; Morohoshi, N. Embryogenic Cell Culture, Protoplast Regeneration, Cryopreservation, Biolistic Gene Transfer and Plant Regeneration in Japanese Cedar (Cryptomeria japonica D. Don). Plant Biotechnol. 2000, 17, 281–296. [Google Scholar] [CrossRef]
- Igasaki, T.; Sato, T.; Akashi, N.; Mohri, T.; Maruyama, E.; Kinoshita, I.; Walter, C.; Shinohara, K. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Rep. 2003, 22, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Igasaki, T.; Akashi, N.; Ujino-Ihara, T.; Matsubayashi, Y.; Sakagami, Y.; Shinohara, K. Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol. 2003, 44, 1412–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, E.; Hosoi, Y.; Ishii, K. Somatic embryogenesis and plant regeration in Yakutanegoyou, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, an endemic and endangered species in Japan. Vitr. Cell. Dev. Biol. 2007, 43, 28–34. [Google Scholar]
- Taniguchi, T.; Ohmiya, Y.; Kurita, M.; Tsubomura, M.; Kondo, T. Regeneration of transgenic Cryptomeria japonica D. Don after Agrobacterium tumefaciens-mediated transformation of embryogenic tissue. Plant Cell Rep. 2008, 27, 1461–1466. [Google Scholar] [CrossRef]
- Izuno, A.; Maruyama, T.E.; Ueno, S.; Ujino-Ihara, T.; Moriguchi, Y. Genotype and transcriptome effects on somatic embryogenesis in Cryptomeria japonica. PLoS ONE 2020, 15, e0244634. [Google Scholar] [CrossRef]
- Matsubayashi, Y.; Hanai, H.; Hara, O.; Sakagami, Y. Active Fragments and Analogs of the Plant Growth Factor, Phytosulfokine: Structure–Activity Relationships. Biochem. Biophys. Res. Commun. 1996, 225, 209–214. [Google Scholar] [CrossRef]
- Taniguchi, T.; Kondo, T. Difference in the ability of initiation and maintenance of embryogenic cultures among Sugi (Cryptomeria japonica D. Don) seed families. Plant Biotechnol. 2000, 17, 159–162. [Google Scholar] [CrossRef]
- Taniguchi, T.; Konagaya, K.-I.; Kurita, M.; Takata, N.; Ishii, K.; Kondo, T.; Funahashi, F.; Ohta, S.; Kaku, T.; Baba, K.; et al. Growth and root sucker ability of field-grown transgenic poplars overexpressing xyloglucanase. J. Wood Sci. 2012, 58, 550–556. [Google Scholar] [CrossRef]
- Taniguchi, T.; Konagaya, K.; Kurita, M.; Ishii, K. Somatic embryogenesis from artificial crossed immature seed in Cryptomeria japonica plus trees. Annu. Rep. For. Tree Breed. Cent. 2012, 2011, 88–90. [Google Scholar]
- Helmerson, A.; von Arnold, S. Embryogenic cell lines of Juniperus communis; easy establishment and embryo maturation, limited germination. Plant Cell Tissue Organ Cult. 2009, 96, 211–217. [Google Scholar] [CrossRef]
- Gomez, M.P.; Segura, J. Morphogenesis in leaf and single-cell cultures of mature Juniperus oxycedrus. Tree Physiol. 1996, 16, 681–686. [Google Scholar] [CrossRef]
- Shanjani, P.S. Nitrogen Effect on Callus Induction and Planta Regeneration of Juniperus excelsa. Int. J. Agric. Biol. 2003, 5, 419–422. [Google Scholar]
- Belaineh, S. Somatic Embryogenesis in Juniperus Procera using Juniperus Communis as a Model. Momona Ethiop. J. Sci. 2009, 1, 95–105. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Yao, P.; Sun, H.; Fong, H.H.S. Taxane diterpenoids from the bark of Taxus yunannensis. Phytochemistry 2001, 58, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Svenning, J.-C.; Magård, E. Population ecology and conservation status of the last natural population of English yew Taxus baccata in Denmark. Biol. Conserv. 1999, 88, 173–182. [Google Scholar] [CrossRef]
- Ewald, D.; Weckwerth, W.; Naujoks, G.; Zocher, R. Formation of Embryo-like Structures in Tissue Cultures of Different Yew Species. J. Plant Physiol. 1995, 147, 139–143. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. Biotechnology of Somatic Polyembryogenesis and Plantlet Regeneration in Loblolly Pine. Nat. Biotechnol. 1987, 5, 147–151. [Google Scholar] [CrossRef]
- Datta, M.M.; Jha, S. Plant Regeneration Through Somatic Embryogenesis in Taxus wallichiana. J. Plant Biochem. Biotechnol. 2008, 17, 37–44. [Google Scholar] [CrossRef]
- Ahn, C.H.; Tull, A.R.; Montello, P.M.; Merkle, S.A. A clonal propagation system for Atlantic white cedar (Chamaecyparis thyoides) via somatic embryogenesis without the use of plant growth regulators. Springer. Plant Cell Tissue Organ Cult. 2017, 130, 91–101. [Google Scholar] [CrossRef]
- Hu, R.; Sun, Y.; Wu, B.; Duan, H.; Zheng, H.; Hu, D.; Lin, H.; Tong, Z.; Xu, J.; Li, Y. Somatic Embryogenesis of Immature Cunninghamia lanceolata (Lamb.) Hook Zygotic Embryos. Sci. Rep. 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Barberini, S.; Danti, R.; Lambardi, M. Somatic plant regeneration from selected common cypress (Cupressus sempervirens L.) clones resistant to the bark canker disease. Plant Cell Tiss. Organ Cult. 2016, 124, 393–403. [Google Scholar] [CrossRef]
- Liu, C.Q.; Xia, X.L.; Yin, W.L.; Huang, L.C.; Zhou, J.H. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (C.Don.) Endl.). Plant Cell Rep. 2006, 25, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.H.; Heo, K.; Park, H.S.; Choi, Y.E. In vitro propagation and cryopreservation of Thuja koraiensis Nakai via somatic embryogenesis. Vitr. Cell. Dev. Biol. Plant 2019, 55, 605–614. [Google Scholar] [CrossRef]
- Ma, X.; Bucalo, K.; Determann, R.O.; Cruse-Sanders, J.M.; Pullman, G.S. Somatic embryogenesis, plant regeneration, and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. Vitr. Cell. Dev. Biol. Plant 2012, 48, 324–334. [Google Scholar] [CrossRef]
- Maurer, J.B.B.; Pereira-Netto, A.B.; Pettolino, F.A.; Gaspar, Y.M.; Bacic, A. Effects of Yariv dyes, arabinogalactan-protein binding reagents, on the growth and viability of Brazilian pine suspension culture cells. Trees 2010, 24, 391–398. [Google Scholar] [CrossRef]
- Farias-Soares, F.L.; Steiner, N.; Schmidt, C.; Pereira, M.L.T.; Rogge-Renner, G.D.; Bouzon, Z.L.; Floh, E.I.S.; Guerra, M. The transition of proembryogenic masses to somatic embryos in Araucaria angustifolia (Bertol.) Kuntze is related to the endogenous contents of IAA, ABA and polyamines. Acta Physiol. Plant. 2014, 36, 1853–1865. [Google Scholar] [CrossRef]
- Jo, L.; dos Santos, A.L.W.; Bueno, C.A.; Barbosa, H.R.; Floh, E.I.S. Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol. 2014, 34, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Elbl, P.; Lira, B.S.; Andrade, S.C.S.; Jo, L.; dos Santos, A.L.W.; Coutinho, L.L.; Floh, E.I.S.; Rossi, M. Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze. Plant Cell Tissue Organ Cult. 2015, 120, 903–915. [Google Scholar] [CrossRef]
- Navarro, B.V.; de Oliveira, L.F.; de Oliveira, L.P.; Elbl, P.; Macedo, A.F.; Buckeridge, M.S.; Floh, E.I.S. Starch turnover is stimulated by nitric oxide in embryogenic cultures of Araucaria angustifolia. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 147, 583–597. [Google Scholar] [CrossRef]
- Lambardi, M.; Harry, I.S.; Menabeni, D.; Thorpe, T.A. Organogenesis and somatic embryogenesis in Cupressus sempervirens. Plant Cell, Tiss. Organ Cult. (PCTOC) 1995, 40, 179–182. [Google Scholar] [CrossRef]
- Sallandrouze, A.; Faurobert, M.; Maataoui, M.E.I.; Espagnac, H. Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 1999, 20, 1109–1119. [Google Scholar] [CrossRef]
- Lambardi, M.; Ozudogru, E.A.; Barberini, S.; Danti, R. Strategies for fast multiplication and conservation of forest trees by somatic embryogenesis and cryopreservation: A case study with cypress (Cupressus sempervirens L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Ogita, S.; Ishikawa, H.; Kubo, T.; Sasamoto, H. Somatic embryogenesis from immature and mature zygotic embryos of Cryptomeria japonica I: Embryogenic cell induction and its morphological characteristics. J. Wood Sci. 1999, 45, 87–91. [Google Scholar] [CrossRef]
- Nakagawa, R.; Ogita, S.; Kubo, T.; Funada, R. Effect of polyamines and L-ornithine on the development of proembryogenic masses of Cryptomeria japonica. Plant Cell Tissue Organ Cult. (PCTOC) 2006, 85, 229–234. [Google Scholar] [CrossRef]
- Igasaki, T.; Akashi, N.; Shinohara, K. Somatic Embryogenesis in Cryptomeria japonica D. Don: Gene for Phytosulfokine (PSK) Precursor 2006, 2, 201–213. [Google Scholar]
- Maruyama, T.E.; Ueno, S.; Hirayama, S.; Kaneeda, T.; Moriguchi, Y. Somatic embryogenesis and plant regeneration from sugi (Japanese Cedar, Cryptomeria japonica D. Don, Cupressaceae) seed families by marker-assisted selection for the male sterility allele ms1. Plants 2020, 9, 1029. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, E.; Hosoi, Y.; Ishii, K. Somatic embryogenesis in Sawara Cypress (Chamaecyparis pisifera Sieb. et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J. For. Res. 2002, 7, 23–34. [Google Scholar] [CrossRef]
- Maruyama, E.; Hosoi, Y.; Ishii, K. Somatic embryo culture for propagation, artificial seed production, and conservation of sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.). J. For. Res. 2003, 8, 0001–0008. [Google Scholar] [CrossRef]
- Hosoi, Y.; Maruyama, T.E. Somatic Embryogenesis in Sawara Cypress (Chamaecyparis pisifera Sieb. et Zucc.). Somat. Embryog. Ornam. Its Appl. 2016, 41–53. [Google Scholar] [CrossRef]
- Konagaya, K.; Taniguchi, T. Somatic embryogenesis and genetic transformation in Cupressaceae trees. Somat. Embryog. Ornam. Its Appl. 2016, 203–216. [Google Scholar] [CrossRef]
- Maruyama, E.; Ishii, K.; Hosoi, Y. Efficient plant regeneration of Hinoki cypress (Chamaecyparis obtusa) via somatic embryogenesis. J. For. Res. 2005, 10, 73–77. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Long, X.; Pan, Y.; Yang, D.; Li, R.; Lu, Y.; Chen, Y.; Shi, J.; Chen, J. Exogenous Spermidine Promotes Somatic Embryogenesis of Cunninghamia lanceolata by Altering the Endogenous Phytohormone Content. Phyton 2020, 89, 27–34. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, R.; Liu, G.; Xu, Y.; Zhou, Y.; Laux, T.; Zhen, Y.; Harding, S.A.; Shi, J.; Chen, J. Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook. Front. Plant Sci. 2017, 8, 2054. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot tip culture. Proc. Plant Prop. Soc. 1981, 30, 421–427. [Google Scholar]
- Gamborg, O.L.; Miller, R.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Gupta, P.K.; Pullman, G.S. Method for Reproducing Coniferous Plants by Somatic Embryogenesis Using Abscisic Acid and Osmotic Potential Variation. US Patent 5036007, 30 July 1991. [Google Scholar]
- Becwar, M.R.; Noland, T.L.; Wyckoff, J.L. Maturation, germination and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. In Vitro 1989, 25, 575–580. [Google Scholar] [CrossRef]
- Litvay, L.J.; Johnson, M.A.; Verma, D.; Einspahr, D.; Weyrauch, K. Conifer suspension culture medium developmental using analytical data from developing seeds. Tech. Paper Serv. Inst. Paper Chem. 1981, 115, 1–17. [Google Scholar]
- von Arnold, S.; Clapham, D. Spruce embryogenesis. Plant embryogenesis. In Methods in Molecular Biology; Suárez, M.F., Bozhkov, P.V., Eds.; Humana Press: New York, NY, USA, 2008; pp. 31–47. [Google Scholar]
- Gupta, P.K.; Durzan, D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 1985, 4, 177–179. [Google Scholar] [CrossRef]
- Pullman, G.S.; Johnson, S.; Bucalo, K. Douglas fir embryogenic tissue initiation. Plant Cell Tiss. Organ Cult. 2009, 96, 75–84. [Google Scholar] [CrossRef]
- Campbell, R.A.; Durzan, D.J. Induction of multiple buds and needles in tissue culture of Picea glauca. Can J. Bot. 1975, 53, 1652–1657. [Google Scholar] [CrossRef]
- Smith, D.R. Growth Medium. US Patent 5565355, 15 October 1996. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraga, H.P.d.F.; Moraes, P.E.C.; Vieira, L.d.N.; Guerra, M.P. Somatic Embryogenesis in Conifers: One Clade to Rule Them All? Plants 2023, 12, 2648. https://doi.org/10.3390/plants12142648
Fraga HPdF, Moraes PEC, Vieira LdN, Guerra MP. Somatic Embryogenesis in Conifers: One Clade to Rule Them All? Plants. 2023; 12(14):2648. https://doi.org/10.3390/plants12142648
Chicago/Turabian StyleFraga, Hugo Pacheco de Freitas, Paula Eduarda Cardoso Moraes, Leila do Nascimento Vieira, and Miguel Pedro Guerra. 2023. "Somatic Embryogenesis in Conifers: One Clade to Rule Them All?" Plants 12, no. 14: 2648. https://doi.org/10.3390/plants12142648
APA StyleFraga, H. P. d. F., Moraes, P. E. C., Vieira, L. d. N., & Guerra, M. P. (2023). Somatic Embryogenesis in Conifers: One Clade to Rule Them All? Plants, 12(14), 2648. https://doi.org/10.3390/plants12142648