Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy
Abstract
:1. Introduction
2. Results
2.1. The Content of Phenolic Compounds and Their Derivatives
Relationship of Non-Dormant and Dormant RILs to Parental Genotypes
2.2. Contents of Flavonoids and Their Glycosides
Relationship of Non-Dormant and Dormant RILs to Parental Genotypes
2.3. Phenylpropanoid Contents in Relation to Dormancy Status
3. Discussion
4. Materials and Methods
4.1. Seed Material
4.2. Analysis of Phenolic Metabolites
4.3. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gil, J.; Cubero, J.I. Inheritance of Seed Coat Thickness in Chickpea (Cicer arietinum L.) and its Evolutionary Implications. Plant Breed. 1993, 111, 257–260. [Google Scholar] [CrossRef]
- Merga, B.; Haji, J. Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric. 2019, 5, 1615718. [Google Scholar] [CrossRef]
- Redden, R.J.; Berger, J.D. History and origin of chickpea. In Chickpea Breeding and Management; Yadav, S.S., Redden, R.J., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; pp. 1–13. [Google Scholar] [CrossRef]
- Sedláková, V.; Hanáček, P.; Grulichová, M.; Zablatzká, L.; Smýkal, P. Evaluation of Seed Dormancy, One of the Key Domestication Traits in Chickpea. Agronomy 2021, 11, 2292. [Google Scholar] [CrossRef]
- Varma Penmetsa, R.; Carrasquilla-Garcia, N.; Bergmann, E.M.; Vance, L.; Castro, B.; Kassa, M.T.; Sarma, B.K.; Datta, S.; Farmer, A.D.; Baek, J.; et al. Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor. New Phytol. 2016, 211, 1440–1451. [Google Scholar] [CrossRef] [Green Version]
- Kudapa, H.; Garg, V.; Chitikineni, A.; Varshney, R.K. The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development: RNA-Seq based chickpea gene expression atlas. Plant Cell Environ. 2018, 41, 2209–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tor-Roca, A.; Garcia-Aloy, M.; Mattivi, F.; Andres-Lacueva, C.; Urpi-Sarda, M. Phytochemicals in Legumes: A Qualitative Reviewed Analysis. J. Agric. Food Chem. 2020, 68, 13486–13496. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lu, S. Biosynthesis and Regulation of Phenylpropanoids in Plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Corso, M.; Perreau, F.; Mouille, G.; Lepiniec, L. Specialized phenolic compounds in seeds: Structures, functions, and regulations. Plant Sci. 2020, 296, 110471. [Google Scholar] [CrossRef]
- Balarynová, J.; Klčová, B.; Sekaninová, J.; Kobrlová, L.; Cechová, M.Z.; Krejčí, P.; Leonová, T.; Gorbach, D.; Ihling, C.; Smržová, L.; et al. The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication. New Phytol. 2022, 235, 1807–1821. [Google Scholar] [CrossRef]
- Duenas, M.; Hernandez, T.; Estrella, I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 2006, 98, 95–103. [Google Scholar] [CrossRef]
- Gan, R.-Y.; Deng, Z.-Q.; Yan, A.-X.; Shah, N.P.; Lui, W.-Y.; Chan, C.-L.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT 2016, 73, 168–177. [Google Scholar] [CrossRef]
- Smýkal, P.; Nelson, M.; Berger, J.; Von Wettberg, E. The Impact of Genetic Changes during Crop Domestication. Agronomy 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Sekizaki, H.; Yang, Z.; Sawa, S.; Pan, J. Phenolics in the Seed Coat of Wild Soybean (Glycine soja) and Their Significance for Seed Hardness and Seed Germination. J. Agric. Food Chem. 2010, 58, 10972–10978. [Google Scholar] [CrossRef] [PubMed]
- Smýkal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014, 5, 351. [Google Scholar] [CrossRef] [Green Version]
- Hradilová, I.; Trněný, O.; Válková, M.; Cechová, M.; Janská, A.; Prokešová, L.; Aamir, K.; Krezdorn, N.; Rotter, B.; Winter, P.; et al. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.). Front. Plant Sci. 2017, 8, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hradilová, I.; Duchoslav, M.; Brus, J.; Pechanec, V.; Hýbl, M.; Kopecký, P.; Smržová, L.; Štefelová, N.; Vaclávek, T.; Bariotakis, M.; et al. Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ 2019, 7, e6263. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, J.E. Seed Coat and Water Absorption Properties of Seed of Near-isogenic Snap Bean Lines Differing in Seed Coat Color. J. Am. Soc. Hortic. 1977, 102, 478–480. [Google Scholar] [CrossRef]
- Werker, E.; Marbach, I.; Mayer, A.M. Relation between the Anatomy of the Testa, Water Permeability and the Presence of Phenolics in the Genus Pisum. Ann. Bot. 1979, 43, 765–771. [Google Scholar] [CrossRef]
- Kantar, F.; Pilbeam, C.J.; Hebblethwaite, P.D. Effect of tannin content of faba bean (Vicia faba) seed on seed vigour, germination and field emergence. Ann. Appl. Biol. 1996, 128, 85–93. [Google Scholar] [CrossRef]
- Moïse, J.A.; Han, S.; Gudynaite-Savitch, L.; Johnson, D.A.; Miki, B.L.A. Seed coats: Structure, development, composition, and biotechnology. In Vitro Cell. Dev. Biol. 2005, 41, 620–644. [Google Scholar] [CrossRef]
- Marbach, I.; Mayer, A.M. Permeability of Seed Coats to Water as Related to Drying Conditions and Metabolism of Phenolics. Plant Physiol. 1974, 54, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Caldas, G.V.; Blair, M.W. Inheritance of seed condensed tannins and their relationship with seed-coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2009, 119, 131–142. [Google Scholar] [CrossRef]
- Díaz, A.M.; Caldas, G.V.; Blair, M.W. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 2010, 43, 595–601. [Google Scholar] [CrossRef]
- Ramsay, G. Inheritance and linkage of a gene for testa-imposed seed dormancy in faba bean (Vicia faba L.). Plant Breed. 1997, 116, 287–289. [Google Scholar] [CrossRef]
- Liu, W.; Peffley, E.B.; Powell, R.J.; Auld, D.L.; Hou, A. Association of seedcoat color with seed water uptake, germination, and seed components in guar (Cyamopsis tetragonoloba (L.) Taub). J. Arid Environ. 2007, 70, 29–38. [Google Scholar] [CrossRef]
- Legesse, N.; Powel, A.A. Relationship between the development of seed coat pigmentation, seed coat adherence to the cotyledons and the rate of imbibition during the maturation of grain legumes. Seed Sci. Technol. 1996, 24, 23–32. [Google Scholar]
- Lepiniec, L.; Debeaujon, I.; Routaboul, J.-M.; Baudry, A.; Pourcel, L.; Nesi, N.; Caboche, M. Genetics and biochemistry of seed flavonoids. Ann. Rev. Plant Biol. 2006, 57, 405–430. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; Foletto-Felipe, M.P.; Abrahão, J.; et al. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Bok, V.V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Dong, N.-Q.; Lin, H.-X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2020, 1, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.A.; Ni, J.; Chen, J.; Wang, Q.; Lie, W.; Chen, X.; Tang, C.; Fu, S.; Wu, L. Proanthocyanidins in seed coat tegmen and endospermic cap inhibit seed germination in Sapium sebiferum. PeerJ 2018, 6, e4690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelhagen, I.; Thiedig, K.; Nordholt, N.; Schmidt, N.; Huep, G.; Sagasser, M.; Weisshaar, B. Update on transparent testa mutants from Arabidopsis thaliana: Characterisation of new alleles from an isogenic collection. Planta 2014, 240, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Diederichsen, A.; Jones-Flory, L.L. Accelerated aging tests with seeds of 11 flax (Linum usitatissimum) cultivars. Seed Sci. Technol. 2005, 33, 419–429. [Google Scholar] [CrossRef]
- Zhang, X.K.; Yang, G.T.; Chen, L.; Yin, J.M.; Tang, Z.L.; Li, J.N. Physiological differences between yellow-seeded and black-seeded rapeseed (Brassica napus L.) with different testa characteristics during artificial ageing. Seed Sci. Technol. 2006, 34, 373–381. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Wang, J.; Chen, G.; Tao, X.; Xu, S. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds. Antioxidants 2023, 12, 912. [Google Scholar] [CrossRef]
- Baudry, A.; Heim, M.A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.; Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 2004, 39, 366–380. [Google Scholar] [CrossRef]
- Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M. Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Francoz, E.; Lepiniec, L.; North, H.M. Seed coats as an alternative molecular factory: Thinking outside the box. Plant Reprod. 2018, 31, 327–342. [Google Scholar] [CrossRef]
- Alseekh, S.; Scossa, F.; Wen, W.; Luo, J.; Yan, J.; Beleggia, R.; Klee, H.J.; Huang, S.; Papa, R.; Fernie, A.R. Domestication of Crop Metabolomes: Desired and Unintended Consequences. Trends Plant Sci. 2021, 26, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.S.; Contador, C.A.; Ng, M.S.; Yu, J.; Chung, G.; Lam, H.M. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front. Genet. 2020, 11, 581357. [Google Scholar] [CrossRef] [PubMed]
- Paauw, M.; Koes, R.; Quattrocchio, F.M. Alteration of flavonoid pigmentation patterns during domestication of food crops. J. Exp. Bot. 2019, 70, 3719–3735. [Google Scholar] [CrossRef]
- Troszyńska, A.; Ciska, E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity. Czech J. Food Sci. 2002, 20, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, K.; Jin, A.L.; Nguyen, T.D.; Reinecke, D.M.; Ozga, J.A.; Ro, D.K. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds. BMC Plant Biol. 2014, 14, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, A.B.; Purves, R.W.; Elessawy, F.M.; Zhang, H.; Vandenberg, A.; Warkentin, T.D. Polyphenolic Profile of Seed Components of White and Purple Flower Pea Lines. Crop Sci. 2019, 59, 2711–2719. [Google Scholar] [CrossRef] [Green Version]
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomer, I.; Oren-Shamir, M.; Galili, S. Determination of Polyphenols, Flavonoids, and Antioxidant Capacity in Colored Chickpea (Cicer arietinum L.). J. Food Sci. 2010, 75, 115–119. [Google Scholar] [CrossRef]
- Xu, B.J.; Yuan, S.H.; Chang, S.K.C. Comparative Analyses of Phenolic Composition, Antioxidant Capacity, and Color of Cool Season Legumes and Other Selected Food Legumes. J. Food Sci. 2007, 72, 167–177. [Google Scholar] [CrossRef]
- Pang, Y.; Peel, G.J.; Wright, E.; Wang, Z.; Dixon, R.A. Early Steps in Proanthocyanidin Biosynthesis in the Model Legume Medicago truncatula. Plant Phys. 2007, 145, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Dixon, R.A. MATE Transporters Facilitate Vacuolar Uptake of Epicatechin 3′-O-Glucoside for Proanthocyanidin Biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 2009, 21, 2323–2340. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huhman, D.; Shadle, G.; He, X.Z.; Summer, L.W.; Tang, Y.; Dixon, R.A. MATE2 Mediates Vacuolar Sequestration of Flavonoid Glycosides and Glycoside Malonates in Medicago truncatula. Plant Cell 2011, 23, 1536–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galussi, A.A.; Argüello, J.A.; Moya, M.E.; Zuriaga, F.D.; Zimmermann, L.R. Seed dormancy mechanism as a factor influencing seed physiological quality in alfalfa (Medicago sativa) cv. Baralfa 85. Seed Sci. Technol. 2013, 41, 50–59. [Google Scholar] [CrossRef]
- Desta, K.T.; Hur, O.S.; Lee, S.; Yoon, H.; Shin, M.J.; Yi, J.; Lee, Y.; Ro, Y.R.; Wang, X.; Choi, Y.M. Origin and seed coat color differently affect the concentrations of metabolites and antioxidant activities in soybean (Glycine max (L.) Merrill) seeds. Food Chem. 2022, 381, 132249. [Google Scholar] [CrossRef]
- Senda, M.; Yamaguchi, N.; Hiraoka, M.; Kawada, S.; Iiyoshi, R.; Yamashita, K.; Sonoki, T.; Maeda, H.; Kawasaki, M. Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmented soybean seed coats may lead to frequent defective cracking. Planta 2017, 245, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Elessawy, F.M.; Wright, D.; Vandenberg, A.; El-Aneed, A.; Purves, R.W. Mass Spectrometry-Based Untargeted Metabolomics Reveals the Importance of Glycosylated Flavones in Patterned Lentil Seed Coats. J. Agric. Food Chem. 2023, 71, 3541–3549. [Google Scholar] [CrossRef]
- Kaur, K.; Grewal, S.K.; Gill, P.S.; Singh, S. Comparison of cultivated and wild chickpea genotypes for nutritional quality and antioxidant potential. J. Food Sci. Technol. 2019, 56, 1864–1876. [Google Scholar] [CrossRef]
- Lamichaney, A.; Kudekallu, S. Differences in seed vigour traits between desi (pigmented) and kabuli (non-pigmented) ecotypes of chickpea (Cicer arietinum) and its association with field emergence. J. Environ. Biol. 2017, 38, 735–742. [Google Scholar] [CrossRef]
- Wood, J.A.; Knights, E.J.; Choct, M. Morphology of Chickpea Seeds (Cicer arietinum L.): Comparison of desi and kabuli Types. Int. J. Plant Sci. 2011, 172, 632–643. [Google Scholar] [CrossRef]
- Aguilera, Y.; Estrella, I.; Benitez, V.; Esteban, R.M.; Martín-Cabrejas, M. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 2011, 44, 774–780. [Google Scholar] [CrossRef]
- Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Zaccardelli, M.; Coppolo, R.; Nazzaro, F. Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. [Google Scholar] [CrossRef]
- Magalhães, S.C.Q.; Taveira, M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentao, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Elessawy, F.M.; Bazghaleh, N.; Vandenberg, A.; Purves, R.W. Polyphenol profile comparisons of seed coats of five pulse crops using a semi-quantitative liquid chromatography-mass spectrometric method. Phytochem. Anal. 2019, 31, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Pathiraja, D.; Wanasundara, J.P.D.; Elessawy, F.M.; Purves, R.W.; Vandenberg, A.; Shand, P.J. Water-soluble phenolic compounds and their putative antioxidant activities in the seed coats from different lentil (Lens culinaris) genotypes. Food Chem. 2023, 407, 135145. [Google Scholar] [CrossRef]
- Quintero-Soto, M.F.; Saracho-Peña, A.G.; Chavez-Ontiveros, J.; Garzon-Tiznado, J.A.; Pineda-Hidalgo, K.V.; Delgado-Vargas, F.; Lopez-Valenzuela, J.A. Phenolic profiles and their contribution to the antioxidant activity of selected chickpea genotypes from Mexico and ICRISAT collections. Plant Foods Hum. Nutr. 2018, 73, 122–129. [Google Scholar] [CrossRef]
- Mirali, M.; Purves, R.W.; Vandenberg, A. Profiling the Phenolic Compounds of the Four Major Seed Coat Types and Their Relation to Color Genes in Lentil. J. Nat. Prod. 2017, 80, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, W.; Deng, Z.; Li, H.; Zhang, B. The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract. Foods 2020, 9, 1816. [Google Scholar] [CrossRef]
- Yeo, J.D.; Shahidi, F. Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chem. 2020, 315, 126202. [Google Scholar] [CrossRef]
- Rivas-San Vincente, M.; Plasencia, J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef] [Green Version]
- Zeljković, S.Ć.; Komzáková, K.; Šišková, J.; Karalija, E.; Smékalová, K.; Tarkowski, P. Phytochemical variability of selected basil genotypes. Ind. Crop. Prod. 2020, 157, 112910. [Google Scholar] [CrossRef]
- Zeljković, S.Ć.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic Compounds and Biological Activity of Selected Mentha Species. Plants 2021, 10, 550. [Google Scholar] [CrossRef] [PubMed]
ICC4958 | PI489777 | |||||
---|---|---|---|---|---|---|
Class | Compound | Mean | SD | Mean | SD | |
Hydroxybenzoate | Gallic acid | 1.715 | 0.157 | 2.336 | 0.156 | * |
Salicylic acid-2-O-β-d-glucoside | 0.508 | 0.033 | 4.258 | 0.809 | * | |
4-Hydroxybenzoic acid | 8.303 | 0.865 | 9.645 | 1.350 | ||
Vanillic acid | – | – | 0.929 | 0.136 | * | |
3-Hydroxybenzoic acid | 0.088 | 0.015 | 0.092 | 0.005 | ||
Syringic acid | 0.025 | 0.006 | 0.043 | 0.011 | * | |
Salicylic acid | 0.580 | 0.035 | 1.870 | 0.226 | * | |
Hydroxycinnamate | Chlorogenic acid | 0.438 | 0.033 | 0.504 | 0.100 | |
Caffeic acid | 0.054 | 0.002 | 0.021 | 0.003 | * | |
p-Coumaric acid | 0.389 | 0.002 | 0.187 | 0.029 | * | |
Ferulic acid | 0.678 | 0.026 | 0.692 | 0.119 | ||
Sinapic acid | 0.114 | 0.004 | 0.159 | 0.019 | * | |
Coniferaldehyde | 0.031 | 0.001 | 0.045 | 0.004 | * |
Class | Compound | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|
Hydroxybenzoate | Gallic acid | 3.814 | 3.814 | 0.673 | 14.240 | * |
Salicylic acid-2-O-β-d-glucoside | 2.720 | 2.133 | 0.110 | 8.148 | ||
4-Hydroxybenzoic acid | 7.150 | 2.797 | 2.163 | 11.239 | ||
Vanillic acid | 0.6927 | 0.230 | 0.476 | 1.225 | ||
3-Hydroxybenzoic acid | 0.103 | 0.046 | 0.032 | 0.224 | * | |
Syringic acid | 0.043 | 0.018 | 0.019 | 0.072 | * | |
Salicylic acid | 1.283 | 0.913 | 0.244 | 2.960 | ||
Hydroxycinnamate | Chlorogenic acid | 0.296 | 0.147 | 0.128 | 0.633 | |
Caffeic acid | 0.036 | 0.014 | 0.014 | 0.066 | ||
p-Coumaric acid | 0.221 | 0.073 | 0.106 | 0.427 | ||
Ferulic acid | 0.659 | 0.346 | 0.217 | 1.499 | ||
Sinapic acid | 0.369 | 0.357 | 0.054 | 1.551 | * | |
Coniferaldehyde | 0.038 | 0.021 | 0.015 | 0.080 |
Class | Compound | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|
Hydroxybenzoate | Gallic acid | 1.893 | 1.492 | 0.297 | 3.837 | * |
Salicylic acid-2-O-β-d-glucoside | 3.646 | 1.357 | 1.606 | 5.787 | ||
4-Hydroxybenzoic acid | 8.289 | 3.469 | 4.518 | 12.974 | ||
Vanillic acid | 0.948 | 0.509 | 0.389 | 1.904 | ||
3-Hydroxybenzoic acid | 0.146 | 0.048 | 0.069 | 0.214 | * | |
Syringic acid | 0.026 | 0.009 | 0.015 | 0.048 | * | |
Salicylic acid | 1.145 | 0.492 | 0.396 | 2.291 | ||
Hydroxycinnamate | Chlorogenic acid | 0.418 | 0.191 | 0.103 | 0.806 | |
Caffeic acid | 0.043 | 0.029 | 0.012 | 0.095 | ||
Ferulic acid | 0.267 | 0.094 | 0.140 | 0.446 | ||
p-Coumaric acid | 0.957 | 0.582 | 0.303 | 1.991 | ||
Sinapic acid | 0.162 | 0.091 | 0.053 | 0.370 | * | |
Coniferaldehyde | 0.052 | 0.025 | 0.014 | 0.095 |
ICC4958 | PI489777 | |||||
---|---|---|---|---|---|---|
Class | Compound | Mean | SD | Mean | SD | |
Flavanol | Gallocatechin | 11.196 | 1.890 | 10.309 | 0.224 | |
Catechin | 0.273 | 0.041 | – | – | * | |
Flavonol | Myricetin | 17.668 | 0.895 | 7.806 | 1.619 | * |
Quercetin | 0.064 | 0.001 | 0.021 | 0.005 | * | |
Kaempferol | 0.040 | 0.006 | 0.010 | 0.003 | * | |
Morin | 0.136 | 0.025 | 0.115 | 0.040 | ||
Myricitrin | 0.892 | 0.294 | 0.690 | 0.097 | ||
Quercitrin | 0.720 | 0.114 | 0.827 | 0.169 | ||
Flavone | Luteolin | 0.349 | 0.033 | 0.177 | 0.013 | * |
Isoorientin | 0.007 | 0.001 | 0.050 | 0.012 | * | |
Orientin | 0.028 | 0.003 | 0.085 | 0.009 | * | |
Isovitexin | 0.005 | 0.001 | 0.020 | 0.006 | * | |
Flavonone | Naringenin | 4.740 | 0.984 | 2.310 | 0.130 | * |
Class | Compound | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|
Flavanol | Gallocatechin | 10.043 | 4.078 | 5.720 | 19.461 | |
Catechin | 0.739 | 0.171 | 0.421 | 0.917 | ||
Flavonol | Myricetin | 8.319 | 4.161 | 2.542 | 20.010 | |
Quercetin | 0.321 | 0.302 | 0.016 | 0.977 | * | |
Kaempferol | 0.248 | 0.243 | 0.006 | 0.635 | * | |
Morin | 6.205 | 4.974 | 0.109 | 15.149 | * | |
Myricitrin | 1.290 | 0.547 | 0.581 | 2.541 | ||
Quercitrin | 2.416 | 1.186 | 0.632 | 4.510 | * | |
Flavone | Luteolin | 1.220 | 0.989 | 0.126 | 3.275 | |
Isoorientin | 0.015 | 0.014 | 0.003 | 0.056 | ||
Orientin | 0.036 | 0.021 | 0.017 | 0.096 | ||
Isovitexin | 0.007 | 0.010 | 0.001 | 0.041 | ||
Flavonone | Naringenin | 5.014 | 2.265 | 2.042 | 8.826 | * |
Class | Compound | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|
Flavanol | Gallocatechin | 11.833 | 3.851 | 5.621 | 17.576 | |
Catechin | 0.850 | 0.495 | 0.452 | 1.587 | ||
Flavonol | Myricetin | 8.407 | 3.327 | 2.251 | 15.143 | |
Quercetin | 0.129 | 0.213 | 0.020 | 0.751 | * | |
Kaempferol | 0.088 | 0.164 | 0.007 | 0.531 | * | |
Morin | 2.709 | 3.425 | 0.114 | 11.932 | * | |
Myricitrin | 1.205 | 0.767 | 0.393 | 3.049 | ||
Quercitrin | 1.497 | 0.867 | 0.635 | 3.163 | * | |
Flavone | Luteolin | 1.125 | 1.567 | 0.337 | 5.925 | |
Isoorientin | 0.022 | 0.021 | 0.003 | 0.073 | ||
Orientin | 0.049 | 0.037 | 0.017 | 0.151 | ||
Isovitexin | 0.004 | 0.002 | 0.002 | 0.008 | ||
Flavonone | Naringenin | 3.038 | 0.869 | 1.814 | 4.880 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedláková, V.; Zeljković, S.Ć.; Štefelová, N.; Smýkal, P.; Hanáček, P. Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy. Plants 2023, 12, 2687. https://doi.org/10.3390/plants12142687
Sedláková V, Zeljković SĆ, Štefelová N, Smýkal P, Hanáček P. Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy. Plants. 2023; 12(14):2687. https://doi.org/10.3390/plants12142687
Chicago/Turabian StyleSedláková, Veronika, Sanja Ćavar Zeljković, Nikola Štefelová, Petr Smýkal, and Pavel Hanáček. 2023. "Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy" Plants 12, no. 14: 2687. https://doi.org/10.3390/plants12142687
APA StyleSedláková, V., Zeljković, S. Ć., Štefelová, N., Smýkal, P., & Hanáček, P. (2023). Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy. Plants, 12(14), 2687. https://doi.org/10.3390/plants12142687