Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes
Abstract
:1. Introduction
2. Mutualistic Interaction between Fungi and Plants
2.1. Plant Growth Promotion
2.1.1. Yeasts
2.1.2. Molds
2.2. Fungi as Biocontrol Agents of Plant Parasites
2.2.1. Yeasts
2.2.2. Molds
3. Antagonistic Relationships
3.1. Pathogenicity
3.2. Pathogenic Fungi as Bioherbicides
4. Plant-Associated Fungi: Additional Biotechnological Perspectives
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Álvarez-Pérez, S. Ecology: Yeasts on Their Natural Environment. In Yeasts: From Nature to Bioprocesses; Alves, S.L., Jr., Treichel, H., Basso, T.O., Stambuk, B.U., Eds.; Bentham Books: Singapore, 2022; pp. 27–57. [Google Scholar]
- Zeilinger, S.; Gupta, V.K.; Dahms, T.E.S.; Silva, R.N.; Singh, H.B.; Upadhyay, R.S.; Gomes, E.V.; Tsui, C.K.-M.; Nayak, S.C. Friends or Foes? Emerging Insights from Fungal Interactions with Plants. FEMS Microbiol. Rev. 2016, 40, 182–207. [Google Scholar] [CrossRef] [Green Version]
- Fenner, E.D.; Scapini, T.; da Costa Diniz, M.; Giehl, A.; Treichel, H.; Álvarez-Pérez, S.; Alves, S.L., Jr. Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J. Fungi 2022, 8, 984. [Google Scholar] [CrossRef]
- Böhm, H.; Albert, I.; Fan, L.; Reinhard, A.; Nürnberger, T. Immune Receptor Complexes at the Plant Cell Surface. Curr. Opin. Plant Biol. 2014, 20, 47–54. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Food Security. How Do Crop Plants Combat Pathogens? Available online: https://www.ars.usda.gov/oc/dof/food-security-how-do-crop-plants-combat-pathogens/ (accessed on 5 June 2023).
- Hyde, K.D. The Numbers of Fungi. Fungal Divers. 2022, 114, 1. [Google Scholar] [CrossRef]
- Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Stajich, J.E.; Kahmann, R.; Boone, C.; Denning, D.W.; et al. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020, 11, e00449-20. [Google Scholar] [CrossRef]
- Nimsi, K.A.; Manjusha, K.; Kathiresan, K.; Arya, H. Plant Growth-Promoting Yeasts (PGPY), the Latest Entrant for Use in Sustainable Agriculture: A Review. J. Appl. Microbiol. 2023, 134, lxac088. [Google Scholar] [CrossRef]
- Poveda, J.; Abril-Urias, P.; Escobar, C. Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Front. Microbiol. 2020, 11, 992. [Google Scholar]
- Cadamuro, R.D.; da Silveira Bastos, I.M.A.; Silva, I.T.; da Cruz, A.C.C.; Robl, D.; Sandjo, L.P.; Alves, S.L., Jr.; Lorenzo, J.M.; Rodríguez-Lázaro, D.; Treichel, H.; et al. Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control. J. Fungi 2021, 7, 455. [Google Scholar] [CrossRef]
- Pretscher, J.; Fischkal, T.; Branscheidt, S.; Jäger, L.; Kahl, S.; Schlander, M.; Thines, E.; Claus, H. Yeasts from Different Habitats and Their Potential as Biocontrol Agents. Fermentation 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Segaran, G.; Sathiavelu, M. Fungal Endophytes: A Potent Biocontrol Agent and a Bioactive Metabolites Reservoir. Biocatal. Agric. Biotechnol. 2019, 21, 101284. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; Santos-Villalobos, S.d.L.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Review: Utilization of Antagonistic Yeasts to Manage Postharvest Fungal Diseases of Fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef]
- Tadioto, V.; Giehl, A.; Cadamuro, R.D.; Guterres, I.Z.; Dos Santos, A.A.; Bressan, S.K.; Werlang, L.; Stambuk, B.U.; Fongaro, G.; Silva, I.T.; et al. Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review. Fermentation 2023, 9, 363. [Google Scholar] [CrossRef]
- Javadzadeh, Y.; Hamedeyazdan, S.; Javadzadeh, Y.; Hamedeyazdan, S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease. In Trends in Helicobacter Pylori Infection; IntechOpen: London, UK, 2014; ISBN 978-953-51-1239-6. [Google Scholar]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol Yeasts: Mechanisms and Applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.-F.; Sun, P.-F.; Lu, H.-Y.; Wei, J.-Y.; Xiao, H.-S.; Fang, W.-T.; Cheng, B.-Y.; Chou, J.-Y. Plant Growth-Promoting Traits of Yeasts Isolated from the Phyllosphere and Rhizosphere of Drosera spatulata Lab. Fungal Biol. 2016, 120, 433–448. [Google Scholar] [CrossRef]
- Fernandez-San Millan, A.; Farran, I.; Larraya, L.; Ancin, M.; Arregui, L.M.; Veramendi, J. Plant Growth-Promoting Traits of Yeasts Isolated from Spanish Vineyards: Benefits for Seedling Development. Microbiol. Res. 2020, 237, 126480. [Google Scholar] [CrossRef]
- Ramos-Garza, J.; Aguirre-Noyola, J.L.; Bustamante-Brito, R.; Zelaya-Molina, L.X.; Maldonado-Hernández, J.; Morales-Estrada, A.I.; Resendiz-Venado, Z.; Palacios-Olvera, J.; Angeles-Gallegos, T.; Terreros-Moysen, P.; et al. Mycobiota of Mexican Maize Landraces with Auxin-Producing Yeasts That Improve Plant Growth and Root Development. Plants 2023, 12, 1328. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, B.; Tsegay, Z.; Tefera, G.; Aynalem, E.; Wassie, M.; Abatneh, E. Phosphate Solubilizing Fungi Isolated and Characterized from Teff Rhizosphere Soil Collected from North Showa and Gojam, Ethiopia. J. Fertil. Pestic. 2017, 8, 1000180. [Google Scholar] [CrossRef]
- Narsian, V.; Samaha SM, A.A.; Patel, H.H. Rock Phosphate Dissolution by Specific Yeast. Indian J. Microbiol. 2010, 50, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.-F.; Fang, W.-T.; Shin, L.-Y.; Wei, J.-Y.; Fu, S.-F.; Chou, J.-Y. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L. PLoS ONE 2014, 9, e114196. [Google Scholar] [CrossRef]
- Scarpella, E.; Barkoulas, M.; Tsiantis, M. Control of Leaf and Vein Development by Auxin. Cold Spring Harb. Perspect. Biol. 2010, 2, a001511. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.; Theologis, A. Odyssey of Auxin. Cold Spring Harb. Perspect. Biol. 2010, 2, a004572. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of Free-Living Rhizospheric Bacteria for Their Multiple Plant Growth Promoting Activities. Microbiol. Res. 2008, 163, 173–181. [Google Scholar] [CrossRef]
- Marques, A.R.; Resende, A.A.; Gomes, F.C.O.; Santos, A.R.O.; Rosa, C.A.; Duarte, A.A.; de Lemos-Filho, J.P.; dos Santos, V.L. Plant Growth–Promoting Traits of Yeasts Isolated from the Tank Bromeliad Vriesea minarum L.B. Smith and the Effectiveness of Carlosrosaea vrieseae for Promoting Bromeliad Growth. Braz. J. Microbiol. 2021, 52, 1417–1429. [Google Scholar] [CrossRef]
- Bright, J.P.; Karunanadham, K.; Maheshwari, H.S.; Karuppiah, E.A.A.; Thankappan, S.; Nataraj, R.; Pandian, D.; Ameen, F.; Poczai, P.; Sayyed, R.Z. Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.). Sustainability 2022, 14, 4618. [Google Scholar] [CrossRef]
- Normanly, J.; Slovin, J.P.; Cohen, J.D. Auxin Biosynthesis and Metabolism. In Plant Hormones: Biosynthesis, Signal Transduction, Action! Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 36–62. ISBN 978-1-4020-2686-7. [Google Scholar]
- Palková, Z.; Janderová, B.; Gabriel, J.; Zikánová, B.; Pospíŝek, M.; Forstová, J. Ammonia Mediates Communication between Yeast Colonies. Nature 1997, 390, 532–536. [Google Scholar] [CrossRef]
- Marques, A.P.G.C.; Pires, C.; Moreira, H.; Rangel, A.O.S.S.; Castro, P.M.L. Assessment of the Plant Growth Promotion Abilities of Six Bacterial Isolates Using Zea mays as Indicator Plant. Soil Biol. Biochem. 2010, 42, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Garza, J.; Bustamante-Brito, R.; Ángeles de Paz, G.; Medina-Canales, M.G.; Vásquez-Murrieta, M.S.; Wang, E.T.; Rodríguez-Tovar, A.V. Isolation and Characterization of Yeasts Associated with Plants Growing in Heavy-Metal- and Arsenic-Contaminated Soils. Can. J. Microbiol. 2016, 62, 307–319. [Google Scholar] [CrossRef]
- Abdel-Kareem, M.M.; Zohri, A.-N.A.; Nasr, S.A.E.E. Novel Marine Yeast Strains as Plant Growth-Promoting Agents Improve Defense in Wheat (Triticum aestivum) against Fusarium oxysporum. J. Plant Dis. Prot. 2021, 128, 973–988. [Google Scholar] [CrossRef]
- Annadurai, B.; Thangappan, S.; Kennedy, Z.J.; Patil, S.G.; Uthandi, S. Co- Inoculant Response of Plant Growth Promoting Non-Rhizobial Endophytic Yeast Candida tropicalis VYW1 and Rhizobium sp. VRE1 for Enhanced Plant Nutrition, Nodulation, Growth and Soil Nutrient Status in Mungbean (Vigna mungo L.). Symbiosis 2021, 83, 115–128. [Google Scholar] [CrossRef]
- Chambergo, F.S.; Valencia, E.Y. Fungal Biodiversity to Biotechnology. Appl. Microbiol. Biotechnol. 2016, 100, 2567–2577. [Google Scholar] [CrossRef] [PubMed]
- Meyer, V.; Andersen, M.R.; Brakhage, A.A.; Braus, G.H.; Caddick, M.X.; Cairns, T.C.; de Vries, R.P.; Haarmann, T.; Hansen, K.; Hertz-Fowler, C.; et al. Current Challenges of Research on Filamentous Fungi in Relation to Human Welfare and a Sustainable Bio-Economy: A White Paper. Fungal Biol. Biotechnol. 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Singh, S.P. Chapter 11—Role of the Endogenous Fungal Metabolites in the Plant Growth Improvement and Stress Tolerance. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology; Sharma, V.K., Shah, M.P., Parmar, S., Kumar, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 381–401. ISBN 978-0-12-821734-4. [Google Scholar]
- Leitão, A.L.; Enguita, F.J. Gibberellins in Penicillium Strains: Challenges for Endophyte-Plant Host Interactions under Salinity Stress. Microbiol. Res. 2016, 183, 8–18. [Google Scholar] [CrossRef]
- Okoth, S.A.; Otadoh, J.A.; Ochanda, J.O. Improved Seedling Emergence and Growth of Maize and Beans by Trichoderma harziunum. Trop. Subtrop. Agroecosyst. 2011, 13, 65–71. [Google Scholar]
- Yang, L.; Xie, J.; Jiang, D.; Fu, Y.; Li, G.; Lin, F. Antifungal Substances Produced by Penicillium oxalicum Strain PY-1—Potential Antibiotics against Plant Pathogenic Fungi. World J. Microbiol. Biotechnol. 2008, 24, 909–915. [Google Scholar] [CrossRef]
- Esparza-Reynoso, S.; Ruíz-Herrera, L.F.; Pelagio-Flores, R.; Macías-Rodríguez, L.I.; Martínez-Trujillo, M.; López-Coria, M.; Sánchez-Nieto, S.; Herrera-Estrella, A.; López-Bucio, J. Trichoderma atroviride-Emitted Volatiles Improve Growth of Arabidopsis Seedlings through Modulation of Sucrose Transport and Metabolism. Plant Cell Environ. 2021, 44, 1961–1976. [Google Scholar] [CrossRef]
- Manck-Götzenberger, J.; Requena, N. Arbuscular Mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Front. Plant Sci. 2016, 7, 487. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Rivera, M.; Rebolledo-Prudencio, O.G.; Pérez-Robles, D.A.; Rocha-Medina, M.D.C.; González-López, M.D.C.; Casas-Flores, S. Trichoderma Histone Deacetylase HDA-2 Modulates Multiple Responses in Arabidopsis. Plant Physiol. 2019, 179, 1343–1361. [Google Scholar] [CrossRef] [Green Version]
- da Silva, L.R.; Valadares-Inglis, M.C.; Peixoto, G.H.S.; de Luccas, B.E.G.; Muniz, P.H.P.C.; Magalhães, D.M.; Moraes, M.C.B.; de Mello, S.C.M. Volatile Organic Compounds Emitted by Trichoderma azevedoi Promote the Growth of Lettuce Plants and Delay the Symptoms of White Mold. Biol. Control 2021, 152, 104447. [Google Scholar] [CrossRef]
- Berthelot, C.; Leyval, C.; Foulon, J.; Chalot, M.; Blaudez, D. Plant Growth Promotion, Metabolite Production and Metal Tolerance of Dark Septate Endophytes Isolated from Metal-Polluted Poplar Phytomanagement Sites. FEMS Microbiol. Ecol. 2016, 92, fiw144. [Google Scholar] [CrossRef] [Green Version]
- Turbat, A.; Rakk, D.; Vigneshwari, A.; Kocsubé, S.; Thu, H.; Szepesi, Á.; Bakacsy, L.; Škrbić, B.D.; Jigjiddorj, E.-A.; Vágvölgyi, C.; et al. Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens. Microorganisms 2020, 8, 683. [Google Scholar] [CrossRef]
- Rahman, A.; Bannigan, A.; Sulaman, W.; Pechter, P.; Blancaflor, E.B.; Baskin, T.I. Auxin, Actin and Growth of the Arabidopsis thaliana Primary Root. Plant J. 2007, 50, 514–528. [Google Scholar] [CrossRef]
- Ismail, M.A.; Amin, M.A.; Eid, A.M.; Hassan, S.E.-D.; Mahgoub, H.A.M.; Lashin, I.; Abdelwahab, A.T.; Azab, E.; Gobouri, A.A.; Elkelish, A.; et al. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells 2021, 10, 1059. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; White, J. Effects of Epichloë Endophyte Infection on Growth, Physiological Properties and Seed Germination of Wild Barley under Saline Conditions. J. Agron. Crop. Sci. 2020, 206, 43–51. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; White, J.F.; Li, C. Epichloe bromicola from Wild Barley Improves Salt-Tolerance of Cultivated Barley by Altering Physiological Responses to Salt Stress. Front. Microbiol. 2022, 13, 1044735. [Google Scholar] [CrossRef]
- Poveda, J. Trichoderma Parareesei Favors the Tolerance of Rapeseed (Brassica napus L.) to Salinity and Drought Due to a Chorismate Mutase. Agronomy 2020, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.R.; Dai, L.; Xu, G.F.; Wang, H.S. A Strain of Phoma Species Improves Drought Tolerance of Pinus tabulaeformis. Sci. Rep. 2021, 11, 7637. [Google Scholar] [CrossRef]
- Ghabooli, M.; Khatabi, B.; Ahmadi, F.S.; Sepehri, M.; Mirzaei, M.; Amirkhani, A.; Jorrín-Novo, J.V.; Salekdeh, G.H. Proteomics Study Reveals the Molecular Mechanisms Underlying Water Stress Tolerance Induced by Piriformospora indica in Barley. J. Proteom. 2013, 94, 289–301. [Google Scholar] [CrossRef]
- Ismail, I.; Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Khan, M.A.; Lee, I.-J. An Endophytic Fungus Gliocladium cibotii Regulates Metabolic and Antioxidant System of Glycine Max and Helianthus Annuus under Heat Stress. Pol. J. Environ. Stud. 2021, 30, 1631–1640. [Google Scholar] [CrossRef]
- Wang, J.; Li, T.; Liu, G.; Smith, J.M.; Zhao, Z. Unraveling the Role of Dark Septate Endophyte (DSE) Colonizing Maize (Zea mays) under Cadmium Stress: Physiological, Cytological and Genic Aspects. Sci. Rep. 2016, 6, 22028. [Google Scholar] [CrossRef] [Green Version]
- Torracchi C, J.E.; Morel, M.A.; Tapia-Vázquez, I.; Castro-Sowinski, S.; Batista-García, R.A.; Yarzábal R, L.A. Fighting Plant Pathogens with Cold-Active Microorganisms: Biopesticide Development and Agriculture Intensification in Cold Climates. Appl. Microbiol. Biotechnol. 2020, 104, 8243–8256. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Martín, A.; Villalobos, M.C.; Calle, A.; Serradilla, M.J.; Córdoba, M.G.; Hernández, A. Yeasts Isolated from Figs (Ficus carica L.) as Biocontrol Agents of Postharvest Fruit Diseases. Food Microbiol. 2016, 57, 45–53. [Google Scholar] [CrossRef]
- Di Francesco, A.; Ugolini, L.; Lazzeri, L.; Mari, M. Production of Volatile Organic Compounds by Aureobasidium pullulans as a Potential Mechanism of Action against Postharvest Fruit Pathogens. Biol. Control 2015, 81, 8–14. [Google Scholar] [CrossRef]
- Arrarte, E.; Garmendia, G.; Rossini, C.; Wisniewski, M.; Vero, S. Volatile Organic Compounds Produced by Antarctic Strains of Candida sake Play a Role in the Control of Postharvest Pathogens of Apples. Biol. Control 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Ljunggren, J.; Borrero-Echeverry, F.; Chakraborty, A.; Lindblom, T.U.T.; Hedenström, E.; Karlsson, M.; Witzgall, P.; Bengtsson, M. Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl. Environ. Microbiol. 2019, 85, e01761-19. [Google Scholar] [CrossRef] [Green Version]
- Agirman, B.; Erten, H. Biocontrol Ability and Action Mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 Causing Postharvest Diseases. Yeast 2020, 37, 437–448. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, X.; Duan, Z.; Ping, D.; Zhou, X.; Yang, J.; Zhou, W.; Wan, Y. A Novel Strain of Pseudozyma aphidis from Mulberry Parasitises the Conidia of Mulberry Powdery Mildew Fungus Phyllactinia sp. and Its Biocontrol Effect in the Fields. Biocontrol Sci. Technol. 2018, 28, 62–76. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.-H.; Kim, K.M.; Ryu, C.-M. Foliar Application of the Leaf-Colonizing Yeast Pseudozyma churashimaensis Elicits Systemic Defense of Pepper against Bacterial and Viral Pathogens. Sci. Rep. 2017, 7, 39432. [Google Scholar] [CrossRef] [Green Version]
- Sipiczki, M. Metschnikowia Strains Isolated from Botrytized Grapes Antagonize Fungal and Bacterial Growth by Iron Depletion. Appl. Environ. Microbiol. 2006, 72, 6716–6724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravanakumar, D.; Ciavorella, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Metschnikowia Pulcherrima Strain MACH1 Outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in Apples through Iron Depletion. Postharvest Biol. Technol. 2008, 49, 121–128. [Google Scholar] [CrossRef]
- Türkel, S.; Ener, B. Isolation and Characterization of New Metschnikowia pulcherrima Strains as Producers of the Antimicrobial Pigment Pulcherrimin. Z. Naturforschung C 2009, 64, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Yano, S.; Rattanakit, N.; Wakayama, M.; Tachiki, T. A Chitinase Indispensable for Formation of Protoplast of Schizophyllum commune in Basidiomycete-Lytic Enzyme Preparation Produced by Bacillus circulans KA-304. Biosci. Biotechnol. Biochem. 2004, 68, 1299–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Bravo, P.; Acuña-Fontecilla, A.; Rosales, I.M.; Godoy, L. Non-Conventional Yeasts as Biocontrol Agents against Fungal Pathogens Related to Postharvest Diseases. Sydowia 2021, 74, 71–78. [Google Scholar] [CrossRef]
- Zhang, D.; Spadaro, D.; Valente, S.; Garibaldi, A.; Gullino, M.L. Cloning, Characterization, Expression and Antifungal Activity of an Alkaline Serine Protease of Aureobasidium pullulans PL5 Involved in the Biological Control of Postharvest Pathogens. Int. J. Food Microbiol. 2012, 153, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Muccilli, S.; Restuccia, C. Bioprotective Role of Yeasts. Microorganisms 2015, 3, 588–611. [Google Scholar] [CrossRef] [Green Version]
- Friel, D.; Pessoa, N.M.G.; Vandenbol, M.; Jijakli, M.H. Separate and Combined Disruptions of Two Exo-β-1,3-Glucanase Genes Decrease the Efficiency of Pichia anomala (Strain K) Biocontrol Against Botrytis cinerea on Apple. MPMI 2007, 20, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Salazar, O.; Asenjo, J.A. Enzymatic Lysis of Microbial Cells. Biotechnol. Lett. 2007, 29, 985–994. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Gonzalez, F.; Tkaczuk, C.; Dinu, M.M.; Fiedler, Ż.; Vidal, S.; Zchori-Fein, E.; Messelink, G.J. New Opportunities for the Integration of Microorganisms into Biological Pest Control Systems in Greenhouse Crops. J. Pest Sci. 2016, 89, 295–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, F.V.; Musumeci, M.A. Trichoderma as Biological Control Agent: Scope and Prospects to Improve Efficacy. World J. Microbiol. Biotechnol. 2021, 37, 90. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Richet, N.; Guise, J.-F.; Gramaje, D.; Armengol, J.; Fontaine, F.; Trotel-Aziz, P. Cultivar Contributes to the Beneficial Effects of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to Protect Grapevine Against Neofusicoccum parvum. Front. Microbiol. 2021, 12, 726132. [Google Scholar] [CrossRef] [PubMed]
- Coninck, E.; Scauflaire, J.; Gollier, M.; Liénard, C.; Foucart, G.; Manssens, G.; Munaut, F.; Legrève, A. Trichoderma atroviride as a Promising Biocontrol Agent in Seed Coating for Reducing Fusarium Damping-off on Maize. J. Appl. Microbiol. 2020, 129, 637–651. [Google Scholar] [CrossRef]
- Macías-Rodríguez, L.; Guzmán-Gómez, A.; García-Juárez, P.; Contreras-Cornejo, H.A. Trichoderma atroviride Promotes Tomato Development and Alters the Root Exudation of Carbohydrates, Which Stimulates Fungal Growth and the Biocontrol of the Phytopathogen Phytophthora cinnamomi in a Tripartite Interaction System. FEMS Microbiol. Ecol. 2018, 94, fiy137. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Ruiz, D.; Fuchs, A.; Missbach, K.; Schuhmacher, R.; Zeilinger, S. Influence of Different Light Regimes on the Mycoparasitic Activity and 6-Pentyl-α-Pyrone Biosynthesis in Two Strains of Trichoderma atroviride. Pathogens 2020, 9, 860. [Google Scholar] [CrossRef]
- Romero-Contreras, Y.J.; Ramírez-Valdespino, C.A.; Guzmán-Guzmán, P.; Macías-Segoviano, J.I.; Villagómez-Castro, J.C.; Olmedo-Monfil, V. Tal6 From Trichoderma atroviride Is a LysM Effector Involved in Mycoparasitism and Plant Association. Front. Microbiol. 2019, 10, 2231. [Google Scholar] [CrossRef]
- Karuppiah, V.; Li, Y.; Sun, J.; Vallikkannu, M.; Chen, J. Vel1 Regulates the Growth of Trichoderma atroviride during Co-Cultivation with Bacillus amyloliquefaciens and Is Essential for Wheat Root Rot Control. Biol. Control 2020, 151, 104374. [Google Scholar] [CrossRef]
- Drenkhan, T.; Sutela, S.; Veeväli, V.; Vainio, E.J. Phlebiopsis Gigantea Strains from Estonia Show Potential as Native Biocontrol Agents against Heterobasidion Root Rot and Contain Diverse DsRNA and SsRNA Viruses. Biol. Control 2022, 167, 104837. [Google Scholar] [CrossRef]
- Sun, Z.-B.; Li, S.-D.; Ren, Q.; Xu, J.-L.; Lu, X.; Sun, M.-H. Biology and Applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Kai, K.; Mine, K.; Akiyama, K.; Ohki, S.; Hayashi, H. Anti-Plant Viral Activity of Peptaibols, Trichorzins HA II, HA V, and HA VI, Isolated from Trichoderma harzianum HK-61. J. Pestic. Sci. 2018, 43, 283–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umesha, S.; Singh, P.K.; Singh, R.P. Chapter 6—Microbial Biotechnology and Sustainable Agriculture. In Biotechnology for Sustainable Agriculture; Singh, R.L., Mondal, S., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 185–205. ISBN 978-0-12-812160-3. [Google Scholar]
- Deng, J.-J.; Huang, W.-Q.; Li, Z.-W.; Lu, D.-L.; Zhang, Y.; Luo, X. Biocontrol Activity of Recombinant Aspartic Protease from Trichoderma harzianum against Pathogenic Fungi. Enzym. Microb. Technol. 2018, 112, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Li, Y.; Yu, C.; Wang, Q.; Wang, M.; Sun, J.; Gao, J.; Chen, J. Effect of Trichoderma harzianum on Maize Rhizosphere Microbiome and Biocontrol of Fusarium stalk Rot. Sci. Rep. 2017, 7, 1771. [Google Scholar] [CrossRef] [PubMed]
- Avis, T.J.; Bélanger, R.R. Specificity and Mode of Action of the Antifungal Fatty Acid Cis-9-Heptadecenoic Acid Produced by Pseudozyma flocculosa. Appl. Environ. Microbiol. 2001, 67, 956–960. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Luo, L.; Long, C. Characterization of Competition for Nutrients in the Biocontrol of Penicillium italicum by Kloeckera apiculata. Biol. Control 2013, 67, 157–162. [Google Scholar] [CrossRef]
- Jaroszuk-Ściseł, J.; Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Majewska, M.; Hanaka, A.; Tyśkiewicz, K.; Pawlik, A.; Janusz, G. Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with This Strain Conidia. Int. J. Mol. Sci. 2019, 20, 4923. [Google Scholar] [CrossRef] [Green Version]
- Ghoniem, A.A.; Abd El-Hai, K.M.; El-khateeb, A.Y.; Eldadamony, N.M.; Mahmoud, S.F.; Elsayed, A. Enhancing the Potentiality of Trichoderma harzianum against Pythium Pathogen of Beans Using Chamomile (Matricaria chamomilla L.) Flower Extract. Molecules 2021, 26, 1178. [Google Scholar] [CrossRef]
- Calderón, C.E.; Rotem, N.; Harris, R.; Vela-Corcía, D.; Levy, M. Pseudozyma aphidis Activates Reactive Oxygen Species Production, Programmed Cell Death and Morphological Alterations in the Necrotrophic Fungus Botrytis Cinerea. Mol. Plant Pathol. 2019, 20, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Cruz, R.; Mehta, R.; Atriztán-Hernández, K.; Martínez-Villamil, O.; del Rayo Sánchez-Carbente, M.; Sánchez-Reyes, A.; Lira-Ruan, V.; González-Chávez, C.A.; Tabche-Barrera, M.L.; Bárcenas-Rodríguez, R.C.; et al. Effects on Capsicum annuum Plants Colonized with Trichoderma atroviride P. Karst Strains Genetically Modified in Taswo1, a Gene Coding for a Protein with Expansin-like Activity. Plants 2021, 10, 1919. [Google Scholar] [CrossRef]
- Chowdhary, K.; Kaushik, N. Biodiversity Study and Potential of Fungal Endophytes of Peppermint and Effect of Their Extract on Chickpea Rot Pathogens. Arch. Phytopathol. Plant Prot. 2018, 51, 139–155. [Google Scholar] [CrossRef]
- Laur, J.; Ramakrishnan, G.B.; Labbé, C.; Lefebvre, F.; Spanu, P.D.; Bélanger, R.R. Effectors Involved in Fungal–Fungal Interaction Lead to a Rare Phenomenon of Hyperbiotrophy in the Tritrophic System Biocontrol Agent–Powdery Mildew–Plant. New Phytol. 2018, 217, 713–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amatuzzi, R.F.; Cardoso, N.; Poltronieri, A.S.; Poitevin, C.G.; Dalzoto, P.; Zawadeneak, M.A.; Pimentel, I.C. Potential of Endophytic Fungi as Biocontrol Agents of Duponchelia Fovealis (Zeller) (Lepidoptera: Crambidae). Braz. J. Biol. 2017, 78, 429–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Márquez-Dávila, K.; Arévalo-López, L.; Gonzáles, R.; Vega, L.; Meza, M. Trichoderma and Clonostachys as Biocontrol Agents against Meloidogyne incognita in Sacha inchi. Pesqui. Agropecu. Trop. 2020, 50, e60890. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma–Plant–Pathogen Interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms 2020, 8, 817. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Horwitz, B.A.; Herrera-Estrella, A.; Schmoll, M.; Kenerley, C.M. Trichoderma Research in the Genome Era. Annu. Rev. Phytopathol. 2013, 51, 105–129. [Google Scholar] [CrossRef]
- Bissett, J.; Gams, W.; Jaklitsch, W.; Samuels, G.J. Accepted Trichoderma Names in the Year 2015. IMA Fungus 2015, 6, 263–295. [Google Scholar] [CrossRef] [Green Version]
- Garo, E.; Starks, C.M.; Jensen, P.R.; Fenical, W.; Lobkovsky, E.; Clardy, J. Trichodermamides A and B, Cytotoxic Modified Dipeptides from the Marine-Derived Fungus Trichoderma virens. J. Nat. Prod. 2003, 66, 423–426. [Google Scholar] [CrossRef]
- Souza, A.D.L.; Rodrigues-Filho, E.; Souza, A.Q.L.; Pereira, J.O.; Calgarotto, A.K.; Maso, V.; Marangoni, S.; Da Silva, S.L. Koninginins, Phospholipase A2 Inhibitors from Endophytic Fungus Trichoderma koningii. Toxicon 2008, 51, 240–250. [Google Scholar] [CrossRef]
- Jaklitsch, W.M. European Species of Hypocrea Part II: Species with Hyaline Ascospores. Fungal Divers. 2011, 48, 1–250. [Google Scholar] [CrossRef] [Green Version]
- Vinayarani, G.; Prakash, H.S. Fungal Endophytes of Turmeric (Curcuma longa L.) and Their Biocontrol Potential against Pathogens Pythium aphanidermatum and Rhizoctonia solani. World J. Microbiol. Biotechnol. 2018, 34, 49. [Google Scholar] [CrossRef] [PubMed]
- Coppola, M.; Cascone, P.; Chiusano, M.L.; Colantuono, C.; Lorito, M.; Pennacchio, F.; Rao, R.; Woo, S.L.; Guerrieri, E.; Digilio, M.C. Trichoderma harzianum Enhances Tomato Indirect Defense against Aphids. Insect Sci. 2017, 24, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, H.A.; de Araújo Filho, J.V.; de Freitas, L.G.; Castillo, P.; Rubio, M.B.; Hermosa, R.; Monte, E. Tomato Progeny Inherit Resistance to the Nematode Meloidogyne javanica Linked to Plant Growth Induced by the Biocontrol Fungus Trichoderma atroviride. Sci. Rep. 2017, 7, 40216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, D.; Ianiri, G.; Del Grosso, C.; Barone, G.; De Curtis, F.; Castoria, R.; Lima, G. Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Jensen, B.; Knudsen, I.M.B.; Madsen, M.; Jensen, D.F. Biopriming of Infected Carrot Seed with an Antagonist, Clonostachys rosea, Selected for Control of Seedborne Alternaria spp. Phytopathology 2004, 94, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Lysøe, E.; Dees, M.W.; Brurberg, M.B. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum). MPMI 2017, 30, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Yohalem, D.S.; Nielsen, K.; Green, H.; Funck Jensen, D. Biocontrol Agents Efficiently Inhibit Sporulation of Botrytis aclada on Necrotic Leaf Tips but Spread to Adjacent Living Tissue Is Not Prevented. FEMS Microbiol. Ecol. 2004, 47, 297–303. [Google Scholar] [CrossRef]
- Hamiduzzaman, M.M.; Sinia, A.; Guzman-Novoa, E.; Goodwin, P.H. Entomopathogenic Fungi as Potential Biocontrol Agents of the Ecto-Parasitic Mite, Varroa Destructor, and Their Effect on the Immune Response of Honey Bees (Apis mellifera L.). J. Invertebr. Pathol. 2012, 111, 237–243. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.; Mendoza-de-Gives, P.; Aguilar-Marcelino, L.; López-Arellano, M.E.; Gamboa-Angulo, M.; Hanako Rosas-Saito, G.; Reyes-Estébanez, M.; Guadalupe García-Rubio, V. In Vitro Lethal Activity of the Nematophagous Fungus Clonostachys Rosea (Ascomycota: Hypocreales) against Nematodes of Five Different Taxa. BioMed Res. Int. 2018, 2018, e3501827. [Google Scholar] [CrossRef] [Green Version]
- Nygren, K.; Dubey, M.; Zapparata, A.; Iqbal, M.; Tzelepis, G.D.; Durling, M.B.; Jensen, D.F.; Karlsson, M. The Mycoparasitic Fungus Clonostachys rosea Responds with Both Common and Specific Gene Expression during Interspecific Interactions with Fungal Prey. Evol. Appl. 2018, 11, 931–949. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Dubey, M.; Broberg, A.; Viketoft, M.; Jensen, D.F.; Karlsson, M. Deletion of the Nonribosomal Peptide Synthetase Gene Nps1 in the Fungus Clonostachys rosea Attenuates Antagonism and Biocontrol of Plant Pathogenic Fusarium and Nematodes. Phytopathology 2019, 109, 1698–1709. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Thangavelu, B.; Chun, S.C.; Sathiyabama, M. Proteases from Phytopathogenic Fungi and Their Importance in Phytopathogenicity. J. Gen. Plant Pathol. 2016, 82, 233–239. [Google Scholar] [CrossRef]
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop Losses Due to Diseases and Their Implications for Global Food Production Losses and Food Security. Food Sec. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Chen, F.; Ma, R.; Chen, X.-L. Advances of Metabolomics in Fungal Pathogen–Plant Interactions. Metabolites 2019, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, K.; Protzko, R.; Zhang, L.; Benz, J.P. Spotlight on Fungal Pectin Utilization—From Phytopathogenicity to Molecular Recognition and Industrial Applications. Appl. Microbiol. Biotechnol. 2019, 103, 2507–2524. [Google Scholar] [CrossRef] [PubMed]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant Cell Wall–Degrading Enzymes and Their Secretion in Plant-Pathogenic Fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lei, Y.; Yan, L.; Wan, L.; Ren, X.; Chen, S.; Dai, X.; Guo, W.; Jiang, H.; Liao, B. Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut. Toxins 2016, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Baxter, L.; Tripathy, S.; Ishaque, N.; Boot, N.; Cabral, A.; Kemen, E.; Thines, M.; Ah-Fong, A.; Anderson, R.; Badejoko, W.; et al. Signatures of Adaptation to Obligate Biotrophy in the Hyaloperonospora arabidopsidis Genome. Science 2010, 330, 1549–1551. [Google Scholar] [CrossRef] [Green Version]
- Duplessis, S.; Hacquard, S.; Delaruelle, C.; Tisserant, E.; Frey, P.; Martin, F.; Kohler, A. Melampsora larici-populina Transcript Profiling During Germination and Timecourse Infection of Poplar Leaves Reveals Dynamic Expression Patterns Associated with Virulence and Biotrophy. MPMI 2011, 24, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Tada, Y.; Dong, X.; Heitman, J. The Human Fungal Pathogen Cryptococcus Can Complete Its Sexual Cycle during a Pathogenic Association with Plants. Cell Host Microbe 2007, 1, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gognies, S.; Barka, E.A.; Gainvors-Claisse, A.; Belarbi, A. Interactions Between Yeasts and Grapevines: Filamentous Growth, Endopolygalacturonase and Phytopathogenicity of Colonizing Yeasts. Microb. Ecol. 2006, 51, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Csank, C.; Haynes, K. Candida glabrata Displays Pseudohyphal Growth. FEMS Microbiol. Lett. 2000, 189, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prusty, R.; Grisafi, P.; Fink, G.R. The Plant Hormone Indoleacetic Acid Induces Invasive Growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2004, 101, 4153–4157. [Google Scholar] [CrossRef] [PubMed]
- Portela, V.O.; Santana, N.A.; Balbinot, M.L.; Antoniolli, Z.I.; de Oliveira Silveira, A.; Jacques, R.J.S. Phytotoxicity Optimization of Fungal Metabolites Produced by Solid and Submerged Fermentation and Its Ecotoxicological Effects. Appl. Biochem. Biotechnol. 2022, 194, 2980–3000. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Alqarawi, A.A.; Abd Allah, E.F. Bioherbicides: Current Knowledge on Weed Control Mechanism. Ecotoxicol. Environ. Saf. 2018, 158, 131–138. [Google Scholar] [CrossRef]
- Macías-Rubalcava, M.L.; Garrido-Santos, M.Y. Phytotoxic Compounds from Endophytic Fungi. Appl. Microbiol. Biotechnol. 2022, 106, 931–950. [Google Scholar] [CrossRef]
- Souza, A.R.C.D.; Baldoni, D.B.; Lima, J.; Porto, V.; Marcuz, C.; Machado, C.; Ferraz, R.C.; Kuhn, R.C.; Jacques, R.J.S.; Guedes, J.V.C.; et al. Selection, Isolation, and Identification of Fungi for Bioherbicide Production. Braz. J. Microbiol. 2017, 48, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Xue, M.; Shen, Z.; Jia, X.; Hou, X.; Lai, D.; Zhou, L. Phytotoxic Secondary Metabolites from Fungi. Toxins 2021, 13, 261. [Google Scholar] [CrossRef]
- Boyette, C.D.; Hoagland, R.E.; Stetina, K.C. Bioherbicidal Enhancement and Host Range Expansion of a Mycoherbicidal Fungus via Formulation Approaches. Biocontrol Sci. Technol. 2018, 28, 307–315. [Google Scholar] [CrossRef]
- Rai, M.; Zimowska, B.; Shinde, S.; Tres, M.V. Bioherbicidal Potential of Different Species of Phoma: Opportunities and Challenges. Appl. Microbiol. Biotechnol. 2021, 105, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Bastos, B.d.O.; Deobald, G.A.; Brun, T.; Dal Prá, V.; Junges, E.; Kuhn, R.C.; Pinto, A.K.; Mazutti, M.A. Solid-State Fermentation for Production of a Bioherbicide from Diaporthe sp. and Its Formulation to Enhance the Efficacy. 3 Biotech 2017, 7, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, T.; Rabuske, J.E.; Luft, L.; Confortin, T.C.; Todero, I.; Aita, B.C.; Zabot, G.L.; Mazutti, M.A. Powder Containing Biomolecules from Diaporthe schini for Weed Control. Environ. Technol. 2022, 43, 2135–2144. [Google Scholar] [CrossRef]
- De Souza, L.M.D.; Ogaki, M.B.; Teixeira, E.A.A.; de Menezes, G.C.A.; Convey, P.; Rosa, C.A.; Rosa, L.H. Communities of Culturable Freshwater Fungi Present in Antarctic Lakes and Detection of Their Low-Temperature-Active Enzymes. Braz. J. Microbiol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.F.; Dalastra, C.; Ulrich, A.; Scapini, T.; Bonatto, C.; Klanovicz, N.; Michelon, W.; Lerin, L.; Alves, S.L., Jr.; Mossi, A.J.; et al. The Bioherbicidal Potential of Isolated Fungi Cultivated in Microalgal Biomass. Bioprocess Biosyst. Eng. 2023, 46, 665–679. [Google Scholar] [CrossRef]
- Albarello, M.L.R.; Giehl, A.; Tadioto, V.; dos Santos, A.A.; Milani, L.M.; Bristot, J.C.S.; Tramontin, M.A.; Treichel, H.; Bernardi, O.; Stambuk, B.U.; et al. Analysis of the Holocellulolytic and Fermentative Potentials of Yeasts Isolated from the Gut of Spodoptera frugiperda Larvae. Bioenerg. Res. 2023. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, S. Metabolomic Insights into Endophyte-Derived Bioactive Compounds. Front. Microbiol. 2022, 13, 835931. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D.; Abril-Urías, P.; Velasco, P. Endophytic Fungi as Direct Plant Growth Promoters for Sustainable Agricultural Production. Symbiosis 2021, 85, 1–19. [Google Scholar] [CrossRef]
- García-Latorre, C.; Rodrigo, S.; Santamaria, O. Effect of Fungal Endophytes on Plant Growth and Nutrient Uptake in Trifolium subterraneum and Poa pratensis as Affected by Plant Host Specificity. Mycol. Prog. 2021, 20, 1217–1231. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfiky, A.; Weisskopf, L. Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. J. Fungi 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Zin, N.A.; Badaluddin, N.A. Biological Functions of Trichoderma spp. for Agriculture Applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- Kitamoto, H. The Phylloplane Yeast Pseudozyma: A Rich Potential for Biotechnology. FEMS Yeast Res. 2019, 19, foz053. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol Ability and Action Mechanism of Food-Isolated Yeast Strains against Botrytis cinerea Causing Post-Harvest Bunch Rot of Table Grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef]
- Vero, S.; Garmendia, G.; González, M.B.; Bentancur, O.; Wisniewski, M. Evaluation of Yeasts Obtained from Antarctic Soil Samples as Biocontrol Agents for the Management of Postharvest Diseases of Apple (Malus × Domestica). FEMS Yeast Res. 2013, 13, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Muras, M.; Puig, C.G.; López-Nogueira, A.; Cavaleiro, C.; Pedrol, N. On the Bioherbicide Potential of Ulex Europaeus and Cytisus scoparius: Profiles of Volatile Organic Compounds and Their Phytotoxic Effects. PLoS ONE 2018, 13, e0205997. [Google Scholar] [CrossRef]
- Samadi, M.; Zainal Abidin, Z.; Yoshida, H.; Yunus, R.; Awang Biak, D.R. Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique. Molecules 2020, 25, 3872. [Google Scholar] [CrossRef]
- Gruchattka, E.; Kayser, O. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production. PLoS ONE 2015, 10, e0144981. [Google Scholar] [CrossRef] [Green Version]
- Hjelmeland, A.K.; Ebeler, S.E. Glycosidically Bound Volatile Aroma Compounds in Grapes and Wine: A Review. Am. J. Enol. Vitic. 2015, 66, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.L., Jr.; Treichel, H.; Basso, T.O.; Stambuk, B.U. Are Yeasts “Humanity’s Best Friends”? In Yeasts: From Nature to Bioprocesses; Alves, S.L., Jr., Treichel, H., Basso, T.O., Stambuk, B.U., Eds.; Bentham Books: Singapore, 2022; pp. 431–458. [Google Scholar]
Yeast | Target Organism | In Vivo Application | Compound | Mechanism | Reference |
---|---|---|---|---|---|
Metschnikowia pulcherrima | Botrytis cinerea | Yeast cell suspension on apple | Pulcherrimin complex and Chitinase | Nutrient competition (Iron) and cell wall degrading enzyme | [11] |
Aureobasidium pullulans | Botrytis cinerea, Colletotrichum acutatum, Penicillium italicum, and Penicillium. digitatum | Yeast cell suspension on orange | Phenethyl alcohol, 1-Butanol, 1-Propanol | Fungal growth inhibition | [60] |
Candida sake | Penicillium expansum, Botrytis cinerea, Alternaria alternata CBS916.96, Alternaria tenuissima CBS 124.277, and Alternaria arborescens CBS 102.605 | Yeast cell suspension on apple | Phenylethyl alcohol, 2-Phenylethyl acetate, 3-Methylbutyl hexanoate, 3-Methylbutyl pentanoate, 2-Methylpropyl hexanoate | Fungal growth inhibition | [61] |
Metschnikowia andauensis | Spodoptera littoralis | Larval feeding on living yeasts | 3-Methylbutan-1-ol, α-Terpineol, 3-Methyl butanoic acid, Isobutanoic acid | Larval feeding avoidance | [62] |
Saccharomyces cerevisiae | Spodoptera littoralis | Larval feeding on living yeasts | Methyl palmitate, Heptan-1-ol, Ethyl octanoate, Ethyl decanoate, Ethyl hexanoate | Larval feeding avoidance | [62] |
Meyerozyma guilliermondii KL3 | Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 | Yeast cell suspension | Phenylethyl alcohol, 2-ethylhexanol, D-limonene, benzaldehyde, 2-methylbutanol, and 3-methylbutyl hexanoate | Fungal growth inhibition | [63] |
Fungi | Target Organism | Action Mechanism | Reference |
---|---|---|---|
Trichoderma atroviride | Fusarium avenaceum, Fusarium culmorum | Expression of defense genes: PR2, GST1, PAL, and STS | [78] |
Fusarium avenaceum, Fusarium culmorum | No elucidated | [79] | |
Phytophthora cinnamomic | Competition by nutrients | [80] | |
F. avenaceum | endo-b-1,3-glucanases; 6-n-pentyl-6H-pyran-2-one | [79] | |
Rhizoctonia solani, Fusarium oxysporum | 6-pentyl-α-pyrone (6-PP) | [81] | |
B. cinerea, Sclerotium cepivorum, and Colletotrichum lindemutianum | Expression of defense genes: Tal6 | [82] | |
F. graminearum | Expression of defense genes: Vel1 | [83] | |
Phlebiopsis gigantea | Heterobasidion spp. | Competition for growth and establishment | [84] |
Clonostachys rosea | Sclerotinia sclerotiorum, Bemisia tabaci | Secretion of metabolites and enzymes | [85] |
Trichoderma harzianum HK-61 | Cucumber mosaic virus | Defense response: trichokonins | [86] |
Ampelomyces quisqualis | Podosphaera fusca | Secretion of enzymes, metabolites, and competition by nutrients | [87] |
Trichoderma harzianum GIM 3.442 | Mucor circinelloides, Aspergillus flavus, Aspergillus fumigatus | Protease P6281 | [88] |
Trichoderma harzianum CCTCC-RW0024 | Fusarium gramineraum | Chitisnase, β (1,3) glucanase, H-Benzopyrano [3,4-b]pyridin-5-one,-amino-1,2,3,4-tetrahydro | [89] |
Sporothrix flocculosa | Sphaerotheca pannosa and Sphaerotheca fuliginea | Production of (Z)-9-heptadecenoic, which causes Disruption in the fluidity of the cellular membrane, resulting in the release of molecules such as electrolytes and proteins | [90] |
Kloeckera apiculate | Penicillium italicum | Competition for nutrients | [91] |
Trichoderma harzianum | Fusarium oxysporum | β-1,3-glucanolytic, and Chitinases | [92] |
Trichoderma harzianum | Pythium ultimum | Chlorophyll, flavonoids, and antioxidant | [93] |
Pseudozyma aphidis * | Botrytis cinerea | Enzymes such as chitinase, protease lipase, and cellulase | [94] |
Trichoderma atroviride | Alternaria solani and Rhizoctonia. solani | Swollenin | [95] |
Acremonium sp. MPHSS-2.1 | Sclerotinia sclerotiorum | 1-heptacosanol and 1-nonadecane | [96] |
Pseudozyma flocculosa * | Blumeria graminis | Expression of genes: pf02826, pf00303 and pf02382. Dissemination and sequestration of nutrient | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giehl, A.; dos Santos, A.A.; Cadamuro, R.D.; Tadioto, V.; Guterres, I.Z.; Prá Zuchi, I.D.; Minussi, G.d.A.; Fongaro, G.; Silva, I.T.; Alves, S.L., Jr. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. Plants 2023, 12, 2688. https://doi.org/10.3390/plants12142688
Giehl A, dos Santos AA, Cadamuro RD, Tadioto V, Guterres IZ, Prá Zuchi ID, Minussi GdA, Fongaro G, Silva IT, Alves SL Jr. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. Plants. 2023; 12(14):2688. https://doi.org/10.3390/plants12142688
Chicago/Turabian StyleGiehl, Anderson, Angela Alves dos Santos, Rafael Dorighello Cadamuro, Viviani Tadioto, Iara Zanella Guterres, Isabella Dai Prá Zuchi, Gabriel do Amaral Minussi, Gislaine Fongaro, Izabella Thais Silva, and Sergio Luiz Alves, Jr. 2023. "Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes" Plants 12, no. 14: 2688. https://doi.org/10.3390/plants12142688
APA StyleGiehl, A., dos Santos, A. A., Cadamuro, R. D., Tadioto, V., Guterres, I. Z., Prá Zuchi, I. D., Minussi, G. d. A., Fongaro, G., Silva, I. T., & Alves, S. L., Jr. (2023). Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. Plants, 12(14), 2688. https://doi.org/10.3390/plants12142688