Taxonomic Identification and Molecular DNA Barcoding of Collected Wild-Growing Orchids Used Traditionally for Salep Production
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Authorized Collections of Wild-Growing Samples
3.2. Plant Nomenclature
3.3. DNA Extraction, Amplification of Barcoding Regions, and Sequencing
3.4. Analysis of Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- CITES—Convention on International Trade in Endangered Species of Wild Fauna and Flora. Available online: https://cites.org/eng (accessed on 7 March 2023).
- Brinkmann, J.A. Quick Scan of Orchidaceae Species in European Commerce as Components of Cosmetic, Food and Medicinal Products. PC22 Doc. 22.1 Annex. 2014. Available online: https://cites.org/eng/com/pc/22/index.php (accessed on 15 November 2022).
- Hinsley, A.; de Boer, H.J.; Fay, M.F.; Gale, S.W.; Gardiner, L.M.; Gunasekara, R.S.; Kumar, P.; Masters, S.; Metusala, D.; Roberts, D.L.; et al. A review of the trade in orchids and its implications for conservation. Bot. J. Linn. Soc. 2017, 186, 435–455. [Google Scholar] [CrossRef]
- Hossain, M.M. Therapeutic orchids: Traditional uses and recent advances—An overview. Fitoterapia 2011, 82, 102–140. [Google Scholar] [CrossRef]
- Pant, B.; Raskoti, B.B. Medicinal Orchids of Nepal; Himalayan Map House: Kathmandu, Nepal, 2013. [Google Scholar]
- Teoh, E.S. Medicinal Orchids of Asia; Springer International Publishing: Cham, Switzerland, 2016; Available online: https://link.springer.com/book/10.1007/978-3-319-24274-3 (accessed on 1 May 2023).
- Bazzicalupo, M.; Calevo, J.; Smeriglio, A.; Cornara, L. Traditional, therapeutic uses and phytochemistry of terrestrial European orchids and implications for conservation. Plants 2023, 12, 257. [Google Scholar] [CrossRef]
- Sezik, E. Turkish orchids and salep. Acta Pharm. Sci. 2002, 44, 151–157. Available online: https://www.actapharmsci.com/uploads/pdf/pdf_264.pdf (accessed on 20 March 2023).
- Tamer, E.; Karaman, C.; Utku Copur, B.O. A traditional Turkish beverage: Salep. Food Rev. Int. 2006, 22, 43–50. [Google Scholar] [CrossRef]
- Matović, M.; Nikolić, B.; Đelić, G.; Marković, M. Natural potentials of the medicinal plants from the Orchidaceae family with mucus as the main ingredients from Zlatar mountain. Biol. Nyssana 2010, 1, 43–47. Available online: https://journal.pmf.ni.ac.rs/bionys/index.php/bionys/article/view/54 (accessed on 20 March 2023).
- Ghorbani, A.; Gravendeel, B.; Zarre, S.; de Boer, H. Illegal wild collection and international trade in CITES-listed terrestrial orchid tubers in Iran. TRAFFIC Bull. 2014, 26, 52–58. [Google Scholar]
- Ghorbani, A.; Gravendeel, B.; Naghibi, F.; de Boer, H. Wild orchid tuber collection in Iran: A wakeup call for conservation. Biodivers. Conserv. 2014, 23, 2749–2760. [Google Scholar] [CrossRef]
- Kreziou, A.; de Boer, H.; Gravendeel, B. Harvesting of salep orchids in North-Western Greece continues to threaten natural populations. Oryx 2016, 50, 393–396. [Google Scholar] [CrossRef]
- Molnár, V.A.; Nagy, T.; Löki, V.; Süveges, K.; Takács, A.; Bódis, J.; Tökölyi, J. Turkish graveyards as refuges for orchids against tuber harvest. Ecol. Evol. 2017, 7, 11257–11264. [Google Scholar] [CrossRef] [PubMed]
- Mincheva, I.; Petrova, A.; Yordanova, M.; Kozuharova, E. Is the traditional use of “salep” in the Bulgarian Rhodopes hazardous for the wild populations of terrestrial orchids? Flora Mediterr. 2018, 28, 399–418. [Google Scholar] [CrossRef]
- Charitonidou, M.; Stara, K.; Kougioumoutzis, K.; Halley, J.M. Implications of salep collection for the conservation of the elder-flowered orchid (Dactylorhiza sambucina) in Epirus, Greece. J. Biol. Res. Thessalon. 2019, 26, 18. [Google Scholar] [CrossRef]
- Bozyel, M.E.; Merdamert-Bozyel, E. Ethnomedicinal uses of Orchidaceae taxa in Turkish traditional medicine. Int. Res. J. Biol. Sci. 2020, 9, 52–63. [Google Scholar]
- De Boer, H.J.; Ghorbani, A.; Manzanilla, V.; Raclariu, A.C.; Kreziou, A.; Ounjai, S.; Osathanunkul, M.; Gravendeel, B. DNA metabarcoding of orchid-derived products reveals widespread illegal orchid trade. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171182. [Google Scholar] [CrossRef]
- Kasparek, M.; Grimm, U. European trade in Turkish salep with special reference to Germany. Econ. Bot. 1999, 53, 396–406. [Google Scholar] [CrossRef]
- Masters, S.; Anthoons, B.; Madesis, P.; Saroja, S.G.; Schermer, M.; Gerritsen, W.; Karahan, A.; Verdoes, R.; Schwallier, R.; van Andel, T.; et al. Quantifying an online wildlife trade using a web crawler. Biodivers. Conserv. 2022, 31, 855–869. [Google Scholar] [CrossRef]
- Landerer, X. Naturgeschichte und Pharmakognosie. Beiträge zur Pharmakognosie. Ueber Salep und die Salepisiden. Arch. Pharm. 1850, 112, 177–180. [Google Scholar] [CrossRef]
- Fay, M.F. Orchid conservation: How can we meet the challenges in the twenty-first century? Bot. Stud. 2018, 59, 16. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Pharmacological potential of Orchis mascula—A review. IOSR J. Pharm. 2020, 10, 1–6. Available online: http://iosrphr.org/papers/vol10-issue3/A1003010106.pdf (accessed on 20 March 2023).
- Cameron, K.M. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol. Phylogenet. Evol. 2004, 31, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Oh, S.H.; Bhandari, G.S.; Kim, C.S.; Park, C.W. DNA barcoding of Orchidaceae in Korea. Mol. Ecol. Resour. 2014, 14, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.T.; Schuiteman, A.; Chase, M.W.; Li, J.W.; Chung, S.W.; Hsu, T.C.; Jin, X.H. Phylogenetics of subtribe Orchidinae s.l. (Orchidaceae; Orchidoideae) based on seven markers (plastid matK, psaB, rbcL, trnL-F, trnH-psbA, and nuclear nrITS, Xdh): Implications for generic delimitation. BMC Plant Biol. 2017, 17, 222. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, D.; Li, J.; Xiang, X.; Jin, W.; Huang, W.; Jin, X.; Huang, L. Evaluation of the DNA barcodes in Dendrobium (Orchidaceae) from mainland Asia. PLoS ONE 2015, 10, e0115168. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Kress, W.J.; Erickson, D.L. DNA barcodes: Genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. USA 2008, 105, 2761–2762. [Google Scholar] [CrossRef]
- Kehie, M.; Kumaria, S.; Devi, K.S.; Tandon, P. Genetic diversity and molecular evolution of Naga King Chili inferred from internal transcribed spacer sequence of nuclear ribosomal DNA. Meta Gene 2016, 7, 56–63. [Google Scholar] [CrossRef]
- Xiang, X.G.; Zhang, J.B.; Lu, A.M.; Li, R.Q. Molecular identification of species in Juglandaceae: A tiered method. J. Syst. Evol. 2011, 49, 252–260. [Google Scholar] [CrossRef]
- Inda, L.A.; Pimentel, M.; Chase, M.W. Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: Inferences regarding timing of diversification and evolution of pollination syndromes. Ann. Bot. 2012, 110, 71–90. [Google Scholar] [CrossRef]
- Parveen, I.; Singh, H.K.; Raghuvanshi, S.; Pradhan, U.C.; Babbar, S.B. DNA barcoding of endangered Indian Paphiopedilum species. Mol. Ecol. Resour. 2012, 12, 82–90. [Google Scholar] [CrossRef]
- Ghorbani, A.; Saeedi, Y.; de Boer, H.J. Unidentifiable by morphology: DNA barcoding of plant material in local markets in Iran. PLoS ONE 2017, 12, e0175722. [Google Scholar] [CrossRef]
- Theissinger, K.; Fernandes, C.; Formenti, G.; Bista, I.; Berg, P.R.; Bleidorn, C.; Bombarely, A.; Crottini, A.; Gallo, G.R.; Godoy, J.A.; et al. How genomics can help biodiversity conservation. Trends Genet. 2023, 39, 545–559. [Google Scholar] [CrossRef]
- Li, Y.L.; Tong, Y.; Xing, F.W. DNA barcoding evaluation and its taxonomic implications in the recently evolved genus Oberonia Lindl. (Orchidaceae) in China. Front. Plant Sci. 2016, 7, 1791. [Google Scholar] [CrossRef]
- Casiraghi, M.; Labra, M.; Ferri, E.; Galimberti, A.; De Mattia, F. DNA barcoding: A six-question tour to improve users’ awareness about the method. Brief Bioinform. 2010, 11, 440–453. [Google Scholar] [CrossRef]
- Flora of Greece Web—Vascular Plants Checklist of Greece. Available online: https://portal.cybertaxonomy.org/flora-greece/intro (accessed on 7 March 2023).
- Hall, T.; Biociencias, I.; Carlsbad, C. BioEdit: Un software importante para la biología molecular. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Plantlife—Important Plant Areas (IPAs). Available online: https://www.plantlifeipa.org/about (accessed on 13 May 2023).
- Tsiftsis, S. The role of Natura 2000 network in protecting the orchid flora of East Macedonia (NE Greece). Eur. J. Environ. Sci. 2021, 11, 71–78. [Google Scholar] [CrossRef]
- POWO—Plants of the World Online Database. Royal Botanic Gardens, Kew. Available online: https://powo.science.kew.org (accessed on 2 February 2023).
- Lade, B.D.; Patil, A.S.; Paikrao, H.M. Efficient genomic DNA extraction protocol from medicinal rich Passiflora foetida containing high level of polysaccharide and polyphenol. SpringerPlus 2014, 3, 457. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Costion, C.; Ford, A.; Cross, H.; Crayn, D.; Harrington, M.; Lowe, A. Plant DNA barcodes can accurately estimate species richness in poorly known floras. PLoS ONE 2011, 6, e26841. [Google Scholar] [CrossRef] [PubMed]
- Cuénoud, P.; Savolainen, V.; Chatrou, L.W.; Powell, M.; Grayer, R.J.; Chase, M.W. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am. J. Bot. 2002, 89, 132–144. [Google Scholar] [CrossRef]
- Ismail, M.; Ahmad, A.; Nadeem, M.; Javed, M.A.; Khan, S.H.; Khawaish, I.; Sthanadar, A.A.; Qari, S.H.; Alghanem, S.M.; Khan, K.A.; et al. Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi J. Biol. Sci. 2020, 27, 3735–3742. [Google Scholar] [CrossRef]
- Altschul, S.F. BLAST Algorithm. Encyclopedia of Life Sciences (eLS); John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification; WF Freeman & Co.: San Francisco, CA, USA, 1973. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–790. [Google Scholar] [CrossRef]
Consensus and Explanation | Cases | Reason |
---|---|---|
Consensus at the species level (Agreement between taxonomic and molecular identification) | 3 | Full taxonomic identification and undoubtful matching in molecular identification |
Consensus at the genus level (Agreement between taxonomic and molecular identification) | 7 | Out-flowered specimens; matched only at the genus level |
Partial consensus (Molecular identification aided with taxonomic identification) | 29 | Further identification of subspecies; verification, rejection, or resolution of possible matches |
Partial consensus (Taxonomic identification aided with molecular identification) | 9 | Out-flowered specimens |
Only taxonomic identification (no molecular identification) | 2 | Destroyed DNA samples |
Only molecular identification (no taxonomic identification) | 3 | Only dry specimens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsaballa, A.; Kelesidis, G.; Krigas, N.; Sarropoulou, V.; Bagatzounis, P.; Grigoriadou, K. Taxonomic Identification and Molecular DNA Barcoding of Collected Wild-Growing Orchids Used Traditionally for Salep Production. Plants 2023, 12, 3038. https://doi.org/10.3390/plants12173038
Tsaballa A, Kelesidis G, Krigas N, Sarropoulou V, Bagatzounis P, Grigoriadou K. Taxonomic Identification and Molecular DNA Barcoding of Collected Wild-Growing Orchids Used Traditionally for Salep Production. Plants. 2023; 12(17):3038. https://doi.org/10.3390/plants12173038
Chicago/Turabian StyleTsaballa, Aphrodite, George Kelesidis, Nikos Krigas, Virginia Sarropoulou, Panagiotis Bagatzounis, and Katerina Grigoriadou. 2023. "Taxonomic Identification and Molecular DNA Barcoding of Collected Wild-Growing Orchids Used Traditionally for Salep Production" Plants 12, no. 17: 3038. https://doi.org/10.3390/plants12173038
APA StyleTsaballa, A., Kelesidis, G., Krigas, N., Sarropoulou, V., Bagatzounis, P., & Grigoriadou, K. (2023). Taxonomic Identification and Molecular DNA Barcoding of Collected Wild-Growing Orchids Used Traditionally for Salep Production. Plants, 12(17), 3038. https://doi.org/10.3390/plants12173038