In Vitro Cultivation and Ginsenosides Accumulation in Panax ginseng: A Review
Abstract
:1. Introduction
2. In Vitro Culture of P. ginseng Technologies
2.1. Direct Organogenesis of P. ginseng
2.2. Indirect Organogenesis of P. ginseng
2.2.1. Callus Culture
2.2.2. Somatic Embryogenesis of P. ginseng
Explants | Medium | PGRs | Embryogenesis Rate | Other Factors | Ref. |
---|---|---|---|---|---|
seeds | MS | 2,4-D+ kinetin/ hormone free | 45%/32.5% | Most of the single embryos were formed on a hormone-free medium, but multiple embryos were formed on a hormone-containing medium. | [50] |
cotyledons | MS | 2,4D+BA+ lactalbumin hydrolysate | 87% | The use of glucose can enhance somatic embryo formation. | [59] |
cotyledon | MS | 61.8 mM of NH4NO3 | 56.3% | The highest frequency of somatic embryo formation occurred in the following order: NH4NO3 > KNO3 > KH2PO4 > MgSO4 > CaCl2. | [29] |
zygotic embryos | MS | 2,4-D+ kinetin | NM | NM | [60] |
3. Ginsenoside Biosynthesis and Biotechnological Production
3.1. Biosynthetic Pathways of Ginsenosides
3.2. Ginsenosides Accumulation in In vitro Cultivation of P. ginseng
3.2.1. Ginsenosides Accumulation via Adventitious Roots Culture
3.2.2. Ginsenosides Accumulation via Cell Suspension
Medium | PGRs | Cell Growth Rate | Total Ginsenosides Content | Other Factors | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
2,4-D | 6-BA | NAA | IBA | KT | |||||
MS | 1 mg/L | 0.5 mg/L | 1,3,5,7, 9 mg/L | 1,3,5,7, 9 mg/L | 0.5 mg/L | 10 g/L | 7.29 mg/g | Nitrite of 30 nM can increase both cell growth and total saponins | [83] |
MS | 0.4 m/L | 2.5 mg/L | 0.1 mg/L | 11 g/L | 21.4 | Inorganic phosphate can promote cell growth and enhance saponin accumulation | [85] | ||
MS | 1 mg/L | 28-fold higher than control | The MS medium was supplemented with inorganic salts: nicotinic acid, pyridoxine-HCl, etc. | [86] | |||||
MS | 2 mg/L | 7 mg/L | 0.1 mg/L | 8.82 mg/g | 2.9 times higher than control | The highest ginsenosides yield were obtained when 200 μM MJ was added on day 15 during incubation | [87] |
3.2.3. Ginsenosides Accumulation via Hairy Roots
3.2.4. Large-Scale Production of P. ginseng via Bioreactors
4. Perspectives on the Breeding of P. ginseng and Conclusions
4.1. Molecular Breeding
4.2. Transgenic Breeding
4.3. Digital Breeding
4.4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uchendu, E.E.; Shukla, M.R.; Reed, B.M.; Brown, D.C.W.; Saxena, P.K. Improvement of Ginseng by In Vitro Culture. In Comprehensive Biotechnology; Academic Press: Burlington, MA, USA, 2011; pp. 317–329. [Google Scholar]
- Qiang, B.; Miao, J.; Phillips, N.; Wei, K.; Gao, Y. Recent Advances in the Tissue Culture of American Ginseng (Panax quinquefolius). Chem. Biodivers. 2020, 17, e2000366. [Google Scholar] [CrossRef]
- Cho, I.H.; Lee, H.J.; Kim, Y.-S. Differences in the Volatile Compositions of Ginseng Species (Panax sp.). J. Agric. Food Chem. 2012, 60, 7616–7622. [Google Scholar] [CrossRef]
- Yue, J.; Zuo, Z.; Huang, H.; Wang, Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit. Rev. Anal. Chem. 2021, 51, 373–398. [Google Scholar] [CrossRef]
- Szczuka, D.; Nowak, A.; Zakłos-Szyda, M.; Kochan, E.; Szymańska, G.; Motyl, I.; Blasiak, J. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019, 11, 1041. [Google Scholar] [CrossRef]
- Park, M.-J.; Kim, M.K.; In, J.-G.; Yang, D.-C. Molecular identification of Korean ginseng by amplification refractory mutation system-PCR. Food Res. Int. 2006, 39, 568–574. [Google Scholar] [CrossRef]
- Li, P.; Liu, J. Ginseng Nutritional Components and Functional Factors [Electronic Resource], 1st ed.; Li, P., Liu, J., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Liu, X.Y.; Xiao, Y.K.; Hwang, E.; Haeng, J.J.; Yi, T.H. Antiphotoaging and Antimelanogenesis Properties of Ginsenoside C-Y, a Ginsenoside Rb2 Metabolite from American Ginseng PDD-ginsenoside. Photochem. Photobiol. 2019, 95, 1412–1423. [Google Scholar] [CrossRef]
- Indra, B. Assessment of Ginsenosides Efficacy on Three Dimensional HepG2 Liver Cancer Spheroids/Indra Batjikh. Master’s Thesis, Graduate School of Kyung Hee University, Yongin, Republic of Korea, 2020. [Google Scholar]
- Jiadan, Y.; Rongfeng, X.; Qing, D.A.I.; Xiaodan, L.A.I. Effects of ginsenoside Rg3 on fatigue resistance and skeletal muscle mitochondrial function in rats exposed to a simulated altitude of 5000 m. Di 3 Jun Yi Da Xue Xue Bao 2019, 41, 110–115. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Zhang, S.; Liu, S.; Zhao, L.; Luo, H.; Chen, Y.; Huang, W. Ginsenoside Rg1 inhibits inflammatory responses via modulation of the nuclear factor-κB pathway and inhibition of inflammasome activation in alcoholic hepatitis. Int. J. Mol. Med. 2018, 41, 899–907. [Google Scholar] [CrossRef]
- Fu, C.; Yin, D.; Nie, H.; Sun, D. Notoginsenoside R1 protects HUVEC against oxidized low density lipoprotein (Ox-LDL)-Induced atherogenic response via down-regulating miR-132. Cell Physiol. Biochem. 2018, 51, 1739–1750. [Google Scholar] [CrossRef]
- Pu, J.; Akter, R.; Rupa, E.J.; Awais, M.; Mathiyalagan, R.; Han, Y.; Kang, J.; Yang, D.C.; Kang, S.C. Role of ginsenosides in browning of white adipose tissue to combat obesity: A narrative review on molecular mechanism. Arch. Med. Res. 2022, 53, 231–239. [Google Scholar] [CrossRef]
- Wu, T.; Jia, Z.; Dong, S.; Han, B.; Zhang, R.; Liang, Y.; Zhang, S.; Sun, J. Panax notoginseng Saponins Ameliorate Leukocyte Adherence and Cerebrovascular Endothelial Barrier Breakdown upon Ischemia-Reperfusion in Mice. J. Vasc. Res. 2019, 56, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Adil, M.; Ren, X.; Kang, D.I.; Thi, L.T.; Jeong, B.R. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Mol. Biol. Rep. 2018, 45, 1919–1927. [Google Scholar] [CrossRef] [PubMed]
- Murch, S.J.; Saxena, P.K. St. John’s wort (Hypericum perforatum L.): Challenges and strategies for production of chemically-consistent plants. Can. J. Plant Sci. 2006, 86, 765–771. [Google Scholar] [CrossRef]
- Adil, M.; Jeong, B.R. In vitro cultivation of Panax ginseng C.A. Meyer. Ind. Crops Prod. 2018, 122, 239–251. [Google Scholar] [CrossRef]
- Nantel, P.; Gagnon, D.; Nault, A. Population Viability Analysis of American Ginseng and Wild Leek Harvested in Stochastic Environments. Conserv. Biol. 1996, 10, 608–621. [Google Scholar] [CrossRef]
- Wu, C.H.; Popova, E.V.; Hahn, E.J.; Paek, K.Y. Linoleic and α-linolenic fatty acids affect biomass and secondary metabolite production and nutritive properties of Panax ginseng adventitious roots cultured in bioreactors. Biochem. Eng. J. 2009, 47, 109–115. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Jia, W.; Duan, H.-Q.; Xiao, P.-G. Industrialization of medicinal plant tissue culture. Zhongguo Zhong Yao Za Zhi 2003, 28, 385–390. [Google Scholar]
- Georgiev, M.I.; Weber, J.; Maciuk, A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 2009, 83, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Aromat. 2018, 9, 26–38. [Google Scholar] [CrossRef]
- Butenko, R. Tissue culture of medicinal plants and prospective of its usage in medicine. Probl. Pharmacog 1967, 21, 184–191. [Google Scholar]
- Butenko, R.; Brushwitzky, I.; Slepyan, L. Organogenesis and somatic embryogenesis in the tissue culture of Panax ginseng CA Meyer. Bot Zh. 1968, 7, 906–913. [Google Scholar]
- Slepyan, L. Pharmacological activity of callus tissues of Ginseng grown under in vitro conditions. Trans. Leningr. Khim-Farm. Inst. 1968, 26, 236–244. [Google Scholar]
- Lee, K.-D.; Huemer, R.P. Antitumor Al Activity of Panax Ginseng Extracts. Jpn. J. Pharmacol. 1971, 21, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hang, B.; Ding, J. Comparison of immune function between polysaccharides from tissue culture of Panax ginseng and from ginseng root. J. China Pharm. Univ. 1989, 20, 216–218. [Google Scholar]
- Choi, Y.-E.; Yang, D.-C.; Choi, K.-T. Induction of somatic embryos by macrosalt stress from mature zygotic embryos of Panax ginseng. Plant Cell Tissue Organ Cult. 1998, 52, 177–181. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, D.; Kim, H.; Choi, K. Distribution and changes of reserve materials in cotyledon cells of Panax ginseng related to direct somatic embryogenesis and germination. Plant Cell Rep. 1997, 16, 841–846. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, C.; Chen, Y.; Zhang, Q.; Li, Q.; Qi, W. Changes in the Leaf Physiological Characteristics and Tissue-Specific Distribution of Ginsenosides in Panax ginseng During Flowering Stage Under Cold Stress. Front. Bioeng. Biotechnol. 2021, 9, 637324. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Khorolragchaa, A.; Sun, M.-S.; Kim, Y.-J.; Kim, Y.-J.; Kwon, W.-S.; Yang, D.-C. Plant regeneration from anther culture of Panax ginseng. Korean J. Plant Resour. 2013, 26, 383–388. [Google Scholar] [CrossRef]
- Choi, Y.-E.; Yang, D.-C.; Yoon, E.-S.; Choi, K.-T. High-efficiency plant production via direct somatic single embryogenesis from preplasmolysed cotyledons of Panax ginseng and possible dormancy of somatic embryos. Plant Cell Rep. 1999, 18, 493–499. [Google Scholar] [CrossRef]
- Yang, D.-C.; Choi, Y.-E. Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep. 2000, 19, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.T.; Murthy, H.N.; Paek, K.Y. Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system. Ind. Crops Prod. 2014, 60, 343–348. [Google Scholar] [CrossRef]
- Natalie, K.; Chandra, S.P.; Christanti, P.; Hak, K.J.; Yang, D.-C.; Sukweenadhi, J. Influence of volume medium on growth and ginsenoside level in adventitious root culture of Panax ginseng CA Meyer. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Bonfill, M.; Cusidó, R.M.; Palazón, J.; Piñol, M.T.; Morales, C. Influence of auxins on organogenesis and ginsenoside production in Panax ginseng calluses. Plant Cell Tissue Organ Cult. 2002, 68, 73–78. [Google Scholar] [CrossRef]
- Martin, K. Rapid propagation of Holostemma ada-kodien Schult., a rare medicinal plant, through axillary bud multiplication and indirect organogenesis. Plant Cell Rep. 2002, 21, 112–117. [Google Scholar]
- Wang, J.; Man, S.; Gao, W.; Zhang, L.; Huang, L. Cluster analysis of ginseng tissue cultures, dynamic change of growth, total saponins, specific oxygen uptake rate in bioreactor and immuno-regulative effect of ginseng adventitious root. Ind. Crops Prod. 2013, 41, 57–63. [Google Scholar] [CrossRef]
- Chang, W.-C.; Hsing, Y.-I. Plant regeneration through somatic embryogenesis in root-derived callus of ginseng (Panax ginseng CA Meyer). Theor. Appl. Genet. 1980, 57, 133–135. [Google Scholar] [CrossRef]
- Liu, K.-H.; Lin, H.-Y.; Thomas, J.L.; Shih, Y.-P.; Chen, J.-T.; Lee, M.-H. Magnetic analogue-imprinted polymers for the extraction of ginsenosides from the Panax ginseng callus. Ind. Crops Prod. 2021, 163, 113291. [Google Scholar] [CrossRef]
- Bonfill, M.; Cusido, R.M.; Palazon, J.; Canut, E.; Pinol, M.T.; Morales, C. Relationship between peroxidase activity and organogenesis in Panax ginseng calluses. Plant Cell Tissue Organ Cult. 2003, 73, 37–41. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Iwase, A.; Rymen, B.; Harashima, H.; Shibata, M.; Ohnuma, M.; Breuer, C.; Morao, A.K.; de Lucas, M.; De Veylder, L. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat. Plants 2015, 1, 1–7. [Google Scholar] [CrossRef]
- Verdeil, J.-L.; Alemanno, L.; Niemenak, N.; Tranbarger, T.J. Pluripotent versus totipotent plant stem cells: Dependence versus autonomy? Trends Plant Sci. 2007, 12, 245–252. [Google Scholar] [CrossRef]
- Guan, Y.; Li, S.-G.; Fan, X.-F.; Su, Z.-H. Application of somatic embryogenesis in woody plants. Front. Plant Sci. 2016, 7, 938. [Google Scholar] [CrossRef]
- Ahn, I.; Choi, K.; Kim, B. Relationship between somatic embryogenesis and anthocyanin synthesis in callus cultures of Panax ginseng. Korean J. Plant Tissue Cult. 1991, 18, 227–232. [Google Scholar]
- Lee, H.S.; Liu, J.R.; Yang, S.G.; Lee, Y.H.; Lee, K.-W. In vitro flowering of plantlets regenerated from zygotic embryo-derived somatic embryos of ginseng. HortScience 1990, 25, 1652–1654. [Google Scholar] [CrossRef]
- Arya, S.; Arya, I.D.; Eriksson, T. Rapid multiplication of adventitious somatic embryos of Panax ginseng. Plant Cell Tissue Organ Cult. 1993, 34, 157–162. [Google Scholar] [CrossRef]
- Arya, S.; Liu, J.R.; Eriksson, T. Plant regeneration from protoplasts of Panax ginseng (CA Meyer) through somatic embryogenesis. Plant Cell Rep. 1991, 10, 277–281. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Lee, O.R.; Kim, K.-T.; Yang, D.-C. High Frequency of Plant Regeneration through Cyclic Secondary Somatic Embryogenesis in Panax ginseng. J. Ginseng Res. 2012, 36, 442–448. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Paliyath, G.; Brown, D.C.W.; Saxena, P.K. In vitro propagation of North American ginseng (Panax quinquefolius L.). Vitr. Cell. Dev. Biol.—Plant 2011, 47, 710–718. [Google Scholar] [CrossRef]
- Kim, J.Y.; Adhikari, P.B.; Ahn, C.H.; Kim, D.H.; Chang Kim, Y.; Han, J.Y.; Kondeti, S.; Choi, Y.E. High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius. J. Ginseng Res. 2019, 43, 38–48. [Google Scholar] [CrossRef]
- Kim, O.T.; Kim, T.S.; In, D.S.; Bang, K.H.; Kim, Y.C.; Choi, Y.E.; Cha, S.W.; Seong, N.S. Optimization of direct somatic embryogenesis from mature zygotic embryos ofPanax ginseng CA Meyer. J. Plant Biol. 2006, 49, 348–352. [Google Scholar] [CrossRef]
- Shoyama, Y.; Zhu, X.; Matsushita, H.; Kishira, H. Somatic embryogenesis in ginseng (Panax species). In Somatic Embryogenesis and Synthetic Seed II; Springer: Berlin/Heidelberg, Germany, 1995; pp. 343–356. [Google Scholar]
- Kim, Y.; Kim, M.; Shim, J.; Pulla, R.; Yang, D. Somatic embryogenesis of two new Panax ginseng cultivars, Yun-Poong and Chun-Poong. Russ. J. Plant Physiol. 2010, 57, 283–289. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, D.; Park, J.; Soh, W.; Choi, K. Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep. 1998, 17, 544–551. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Dubrovina, A.S.; Shumakova, O.A. DNA mutagenesis in 2-and 20-yr-old Panax ginseng cell cultures. Vitr. Cell. Dev. Biol.-Plant 2013, 49, 175–182. [Google Scholar] [CrossRef]
- Sanchez-Muñoz, R.; Moyano, E.; Khojasteh, A.; Bonfill, M.; Cusido, R.M.; Palazon, J. Genomic methylation in plant cell cultures: A barrier to the development of commercial long-term biofactories. Eng. Life Sci. 2019, 19, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Tang, W. High-frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets in Panax ginseng. Plant Cell Rep. 2000, 19, 727–732. [Google Scholar] [CrossRef]
- Langhansová, L.; Konrádová, H.; Vaněk, T. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep. 2004, 22, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, P.; Yang, T.-J.; Song, Y.H. Genes and regulatory mechanisms for ginsenoside biosynthesis. J. Plant Biol. 2023, 66, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Luthra, R.; Roy, A.; Pandit, S.; Prasad, R. Biotechnological methods for the production of ginsenosides. S. Afr. J. Bot. 2021, 141, 25–36. [Google Scholar] [CrossRef]
- Yang, J.-L.; Hu, Z.-F.; Zhang, T.-T.; Gu, A.-D.; Gong, T.; Zhu, P. Progress on the studies of the key enzymes of ginsenoside biosynthesis. Molecules 2018, 23, 589. [Google Scholar] [CrossRef]
- Gantait, S.; Mitra, M.; Chen, J.-T. Biotechnological interventions for ginsenosides production. Biomolecules 2020, 10, 538. [Google Scholar] [CrossRef]
- Praveen, N.; Manohar, S.; Naik, P.; Nayeem, A.; Jeong, J.; Murthy, H. Production of andrographolide from adventitious root cultures of Andrographis paniculata. Curr. Sci. 2009, 96, 694–697. [Google Scholar]
- Kim, Y.-S.; Hahn, E.-J.; Yeung, E.C.; Paek, K.-Y. Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginseng CA Meyer. Vitr. Cell. Dev. Biol.-Plant 2003, 39, 245–249. [Google Scholar] [CrossRef]
- Jeong, C.; Murthy, H.; Hahn, E.; Lee, H.; Paek, K. Inoculum size and auxin concentration influence the growth of adventitious roots and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng CA Meyer). Acta Physiol. Plant. 2009, 31, 219–222. [Google Scholar] [CrossRef]
- Han, J.-Y.; Jung, S.-J.; Kim, S.-W.; Kwon, Y.-S.; Yi, M.-J.; Yi, J.-S.; Choi, Y.-E. Induction of adventitious roots and analysis of ginsenoside content and the genes involved in triterpene biosynthesis in Panax ginseng. J. Plant Biol. 2006, 49, 26–33. [Google Scholar] [CrossRef]
- Vasconsuelo, A.; Boland, R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci. 2007, 172, 861–875. [Google Scholar] [CrossRef]
- Hu, X.; Neill, S.; Cai, W.; Tang, Z. Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol. Plant. 2003, 118, 414–421. [Google Scholar] [CrossRef]
- Ali, M.B.; Yu, K.-W.; Hahn, E.-J.; Paek, K.-Y. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep. 2006, 25, 613–620. [Google Scholar] [CrossRef]
- Kim, O.T.; Bang, K.H.; Kim, Y.C.; Hyun, D.Y.; Kim, M.Y.; Cha, S.W. Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue Organ Cult. (PCTOC) 2009, 98, 25–33. [Google Scholar] [CrossRef]
- Yu, K.; Murthy, H.; Jeong, C.; Hahn, E.; Paek, K. Organic germanium stimulates the growth of ginseng adventitious roots and ginsenoside production. Process Biochem. 2005, 40, 2959–2961. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Wang, J.; Li, J.; Liu, D.; Li, J.; Gao, W. Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng CA Mey. J. Biotechnol. 2016, 239, 106–114. [Google Scholar] [CrossRef]
- Song, X.; Wu, H.; Yin, Z.; Lian, M.; Yin, C. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 2017, 22, 837. [Google Scholar] [CrossRef]
- Hao, Y.-J.; An, X.-L.; Sun, H.-D.; Piao, X.-C.; Gao, R.; Lian, M.-L. Ginsenoside synthesis of adventitious roots in Panax ginseng is promoted by fungal suspension homogenate of Alternaria panax and regulated by several signaling molecules. Ind. Crops Prod. 2020, 150, 112414. [Google Scholar] [CrossRef]
- Kim, D.S.; Song, M.; Kim, S.-H.; Jang, D.-S.; Kim, J.-B.; Ha, B.-K.; Kim, S.H.; Lee, K.J.; Kang, S.-Y.; Jeong, I.Y. The improvement of ginsenoside accumulation in Panax ginseng as a result of γ-irradiation. J. Ginseng Res. 2013, 37, 332. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Hahn, E.-J.; Murthy, H.N.; Paek, K.-Y. Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J. Plant Biol. 2004, 47, 356–360. [Google Scholar] [CrossRef]
- Bhatia, S.; Bera, T.; Dahiya, R.; Bera, T.; Bhatia, S.; Bera, T. Classical and nonclassical techniques for secondary metabolite production in plant cell culture. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 231–291. [Google Scholar]
- Le, K.-C.; Jeong, C.-S.; Lee, H.; Paek, K.-Y.; Park, S.-Y. Ginsenoside accumulation profiles in long-and short-term cell suspension and adventitious root cultures in Panax ginseng. Hortic. Environ. Biotechnol. 2019, 60, 125–134. [Google Scholar] [CrossRef]
- Mehrotra, S.; Goel, M.K.; Kukreja, A.K.; Mishra, B.N. Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. Afr. J. Biotechnol. 2007, 6, 1484–1492. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Lian, M.-L.; Chakrabarty, D.; Paek, K.-Y. Effect of plant growth regulators and medium composition on cell growth and saponin production during cell-suspension culture of mountain ginseng (Panax ginseng CA Mayer). J. Plant Biol. 2002, 45, 201–206. [Google Scholar] [CrossRef]
- Zhong, J.-J.; Wang, S.-J. Effects of nitrogen source on the production of ginseng saponin and polysaccharide by cell cultures of Panax quinquefolium. Process Biochem. 1998, 33, 671–675. [Google Scholar] [CrossRef]
- Liu, S.; Zhong, J. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochem. 1998, 33, 69–74. [Google Scholar] [CrossRef]
- Lu, M.; Wong, H.; Teng, W. Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep. 2001, 20, 674–677. [Google Scholar] [CrossRef]
- Thanh, N.; Murthy, H.; Yu, K.; Hahn, E.; Paek, K. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl. Microbiol. Biotechnol. 2005, 67, 197–201. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, W.; Yu, X.; Jin, M. Instability of anthocyanin accumulation in Vitis vinifera L. var. Gamay Fréaux suspension cultures. Biotechnol. Bioprocess Eng. 2005, 10, 155. [Google Scholar] [CrossRef]
- Kim, Y.; Wyslouzil, B.E.; Weathers, P.J. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell. Dev. Biol. -Plant 2002, 38, 1–10. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K. Hairy root culture for mass-production of high-value secondary metabolites. Crit. Rev. Biotechnol. 2007, 27, 29–43. [Google Scholar] [CrossRef]
- Mishra, B.N.; Ranjan, R. Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol. Appl. Biochem. 2008, 49, 1–10. [Google Scholar] [CrossRef]
- Giri, A.; Narasu, M.L. Transgenic hairy roots: Recent trends and applications. Biotechnol. Adv. 2000, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.E.; Vivanco, J.M.; Loyola-Vargas, V.M. ‘Radicle’biochemistry: The biology of root-specific metabolism. Trends Plant Sci. 1999, 4, 220–226. [Google Scholar] [CrossRef]
- Inomata, S.; Yokoyama, M.; Gozu, Y.; Shimizu, T.; Yanagi, M. Growth pattern and ginsenoside production of Agrobacterium-transformed Panax ginseng roots. Plant Cell Rep. 1993, 12, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Furuya, T. Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep. 1987, 6, 449–453. [Google Scholar] [CrossRef]
- Yang, D.; Choi, H.; Kim, Y.; Yun, K. Growth and ginsenosides production of hairy root (Panax ginseng CA Meyer) via light energy. Korean J. Ginseng Sci. 1996, 20, 318–324. [Google Scholar]
- In, J.-G.; Park, D.-S.; Lee, B.-S.; Kim, S.-Y.; Rho, Y.-D.; Cho, D.-H.; Kim, S.-M.; Yang, D.-C. Effects of white light and UV irradiation on growth and saponin production from ginseng hairy root. Korean J. Med. Crop Sci. 2006, 14, 360–366. [Google Scholar]
- Yu, K.-W.; Gao, W.-Y.; Son, S.-H.; Paek, K.-Y. Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng CA Meyer). In Vitro Cell. Dev. Biol. -Plant 2000, 36, 424–428. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Park, H.-J.; Choi, K.-H.; Meang, S.-J.; Yang, K.-J.; Yang, D.-C. The Production of ginsenosides from ginseng hairy root by treatment of the chitin and chitosan. J. Ginseng Res. 2000, 24, 68–73. [Google Scholar]
- Liang, Y.; Wu, J.; Li, Y.; Li, J.; Ouyang, Y.; He, Z.; Zhao, S. Enhancement of ginsenoside biosynthesis and secretion by Tween 80 in Panax ginseng hairy roots. Biotechnol. Appl. Biochem. 2015, 62, 193–199. [Google Scholar] [CrossRef] [PubMed]
- In, J.-G.; Park, D.-S.; Lee, B.-S.; Lee, T.-H.; Kim, S.-Y.; Rho, Y.-D.; Cho, D.-H.; Kim, S.-M.; Yang, D.-C. Effect of potassium phosphate on growth and ginsenosides biosynthesis from ginseng hairy root. Korean J. Med. Crop Sci. 2006, 14, 371–375. [Google Scholar]
- Kim, Y.-J.; Sim, J.-S.; Lee, C.-H.; In, J.-G.; Lee, B.-S.; Yang, D.-C. The Effect of NaCI on the Growth and Ginsenoside Production from Ginseng Hairy Root. Korean J. Med. Crop Sci. 2008, 16, 94–99. [Google Scholar] [CrossRef]
- Jeong, D.-Y.; Kim, Y.-J.; Shim, J.-S.; Lee, J.-H.; Jung, S.-K.; Kim, S.-Y.; In, J.-G.; Lee, B.-S.; Yang, D.-C. The Effect of Haliotidis Concha on the Growth and Ginsenoside Biosynthesis of Korean Ginseng Hairy Root. J. Ginseng Res. 2009, 33, 206–211. [Google Scholar]
- Jeong, G.-T.; Park, D.-H.; Hwang, B.; Park, K.; Kim, S.-W.; Woo, J.-C. Studies on mass production of transformed Panax ginseng hairy roots in bioreactor. Appl. Biochem. Biotechnol. 2002, 98, 1115–1127. [Google Scholar] [CrossRef]
- Sivakumar, G.; Yu, K.; Paek, K. Production of biomass and ginsenosides from adventitious roots of Panax ginseng in bioreactor cultures. Eng. Life Sci. 2005, 5, 333–342. [Google Scholar] [CrossRef]
- Sakurai, M.; Mori, T.; Seki, M.; Furusaki, S. Changes of anthocyanin composition by conditioned medium and cell inoculum size using strawberry suspension culture. Biotechnol. Lett. 1996, 18, 1149–1154. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Zhong, J.-J. Hyperproduction of ginseng saponin and polysaccharide by high density cultivation of Panax notoginseng cells. Enzym. Microb. Technol. 1997, 21, 59–63. [Google Scholar] [CrossRef]
- Mavituna, F.; Buyukalaca, S. Somatic embryogenesis of pepper in bioreactors: A study of bioreactor type and oxygen-uptake rates. Appl. Microbiol. Biotechnol. 1996, 46, 327–333. [Google Scholar] [CrossRef]
- Akalezi, C.; Liu, S.; Li, Q.; Yu, J.; Zhong, J. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochem. 1999, 34, 639–642. [Google Scholar] [CrossRef]
- Thanh, N.T.; Murthy, H.N.; Paek, K.-Y. Ginseng cell culture for production of ginsenosides. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 121–142. [Google Scholar]
- Thanh, N.T.; Murthy, H.N.; Yu, K.-W.; Jeong, C.S.; Hahn, E.-J.; Paek, K.-Y. Effect of inoculum size on biomass accumulation and ginsenoside production by large-scale cell suspension cultures of Panax ginseng. J. Plant Biotechnol. 2004, 6, 265–268. [Google Scholar]
- Paek, K.-Y.; Hahn, E.-J.; Son, S.-H. Application of bioreactors for large-scale micropropagation systems of plants. Vitro Cell. Dev. Biol.-Plant 2001, 37, 149–157. [Google Scholar] [CrossRef]
- Bhatia, S.; Sharma, K.; Dahiya, R.; Bera, T. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Dong, L.; Wei-Wen, L.I.; Ning, Z.Y.; Liao, H.J.; Jiang, Q.; Yao, Q.S. Status and Prospect of Medicinal Plant Breeding in China. Res. Pract. Chin. Med. 2014, 28, 3–6. [Google Scholar]
- Ma, X.J.; Mo, C.M. Prospects of molecular breeding in medical plants. Zhongguo Zhong Yao Za Zhi 2017, 42, 2021–2031. [Google Scholar] [CrossRef]
- Ying, Z.; Awais, M.; Akter, R.; Xu, F.; Baik, S.; Jung, D.; Yang, D.C.; Kwak, G.-Y.; Wenying, Y. Discrimination of Panax ginseng from counterfeits using single nucleotide polymorphism: A focused review. Front. Plant Sci. 2022, 13, 903306. [Google Scholar] [CrossRef]
- Dong, L.-L.; Chen, Z.-J.; Wang, Y.; Wei, F.-G.; Zhang, L.-J.; Xu, J.; Wei, G.-F.; Wang, R.; Yang, J.; Liu, W.-L.; et al. DNA marker-assisted selection of medicinal plants (I). Breeding research of disease-resistant cultivars of Panax notoginseng. Zhongguo Zhong Yao Za Zhi=China J. Chin. Mater. Medica 2017, 42, 56–62. [Google Scholar] [CrossRef]
- Wang, H.; Sun, H.; Kwon, W.-S.; Jin, H.; Yang, D.-C. Molecular identification of the Korean ginseng cultivar “Chunpoong” using the mitochondrial nad7 intron 4 region. Mitochondrial Dna 2009, 20, 41–45. [Google Scholar] [CrossRef]
- Wang, H.; Xu, F.; Wang, X.; Kwon, W.-S.; Yang, D.-C. Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene. J. Ginseng Res. 2019, 43, 482–487. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kim, Y.-C.; Jo, I.-H.; Seo, A.-Y.; Lee, J.-H.; Kim, O.-T.; Hyun, D.-Y.; Cha, S.-W.; Bang, K.H.; Cho, J.-H. Development of an ISSR-derived SCAR marker in Korean ginseng cultivars (Panax ginseng CA Meyer). J. Ginseng Res. 2011, 35, 52–59. [Google Scholar] [CrossRef]
- Choi, H.-I.; Kim, N.H.; Kim, J.H.; Choi, B.S.; Ahn, I.-O.; Lee, J.-S.; Yang, T.-J. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J. Ginseng Res. 2011, 35, 399. [Google Scholar] [CrossRef]
- Wang, W.; Xu, J.; Fang, H.; Li, Z.; Li, M. Advances and challenges in medicinal plant breeding. Plant Sci. 2020, 298, 110573. [Google Scholar] [CrossRef]
- Shaw, C.H.; Leemans, J.; Shaw, C.H.; Van Montagu, M.; Schell, J. A general method for the transfer of cloned genes to plant cells. Gene 1983, 23, 315–330. [Google Scholar] [CrossRef]
- Klein, T.M.; Wolf, E.D.; Wu, R.; Sanford, J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987, 327, 70–73. [Google Scholar] [CrossRef]
- Hess, D. Investigations on the intra-and interspecific transfer of anthocyanin genes using pollen as vectors. Z. Für Pflanzenphysiol. 1980, 98, 321–337. [Google Scholar] [CrossRef]
- Wang, Y.X.; Long, S.P.; Zeng, L.X.; Xiang, L.E.; Lin, Z.; Chen, M.; Liao, Z.H. Enhancement of artemisinin biosynthesis in transgenic Artemisia annua L. by overexpressed HDR and ADS genes. Yao Xue Xue Bao 2014, 49, 1346–1352. [Google Scholar]
- Choi, Y.; Jeong, J.; In, J.; Yang, D. Production of herbicide-resistant transgenic Panax ginseng through the introduction of the phosphinothricin acetyl transferase gene and successful soil transfer. Plant Cell Rep. 2003, 21, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.T.; Hyun, D.Y.; Bang, K.H.; Jung, S.J.; Kim, Y.C.; Shin, Y.S.; Kim, D.H.; Kim, S.W.; Seong, N.S.; Cha, S.W. Thermotolerant transgenic ginseng (Panax ginseng CA Meyer) by introducing isoprene synthase gene through Agrobacterium tumefaciens-mediated transformation. J. Korean Med. Crops 2007, 15, 95–99. [Google Scholar]
- Passioura, J.B. Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Funct. Plant Biol. 2012, 39, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Anwar, S.; Yu, S.; Sun, M.; Yang, Z.; Gao, Z.-Q. Development of drought-tolerant transgenic wheat: Achievements and limitations. Int. J. Mol. Sci. 2019, 20, 3350. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Feng, Q.; Qian, Q.; Zhao, Q.; Wang, L.; Wang, A.; Guan, J.; Fan, D.; Weng, Q.; Huang, T.; et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, I.; Cantarella, C.; Fasano, C.; Cardi, T.; Mennella, G.; D’Agostino, N. Liquid-phase sequence capture and targeted re-sequencing revealed novel polymorphisms in tomato genes belonging to the MEP carotenoid pathway. Sci. Rep. 2017, 7, 5616. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Miller, M.R.; Dunham, J.P.; Amores, A.; Cresko, W.A.; Johnson, E.A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007, 17, 240–248. [Google Scholar] [CrossRef]
- Davey, J.W.; Blaxter, M.L. RADSeq: Next-generation population genetics. Brief. Funct. Genom. 2010, 9, 416–423. [Google Scholar] [CrossRef]
- Pavan, S.; Marcotrigiano, A.R.; Ciani, E.; Mazzeo, R.; Zonno, V.; Ruggieri, V.; Lotti, C.; Ricciardi, L. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genom. 2017, 18, 59. [Google Scholar] [CrossRef]
- Pavan, S.; Curci, P.L.; Zuluaga, D.L.; Blanco, E.; Sonnante, G. Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS ONE 2018, 13, e0205988. [Google Scholar] [CrossRef]
- D’Agostino, N.; Taranto, F.; Camposeo, S.; Mangini, G.; Fanelli, V.; Gadaleta, S.; Miazzi, M.; Pavan, S.; di Rienzo, V.; Sabetta, W.; et al. GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars OPEN. Sci. Rep. 2018, 8, 15877. [Google Scholar] [CrossRef]
- Brazas, M.D.; Blackford, S.; Attwood, T.K. Plug gap in essential bioinformatics skills. Nature 2017, 544, 161. [Google Scholar] [CrossRef] [PubMed]
- Jayakodi, M.; Choi, B.-S.; Lee, S.-C.; Kim, N.-H.; Park, J.Y.; Jang, W.; Lakshmanan, M.; Mohan, S.V.; Lee, D.-Y.; Yang, T.-J. Ginseng Genome Database: An open-access platform for genomics of Panax ginseng. BMC Plant Biol. 2018, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.; Jang, Y.; Cho, W.; Lee, S.H.; Shim, H.; Park, J.Y.; Xu, J.; Shen, X.; Liao, B.; Jo, I.-H. High-throughput digital genotyping tools for Panax ginseng based on diversity among 44 complete plastid genomes. Plant Breed. Biotechnol. 2022, 10, 174–185. [Google Scholar] [CrossRef]
- Varshney, R.K.; Singh, V.K.; Kumar, A.; Powell, W.; Sorrells, M.E. Can genomics deliver climate-change ready crops? Curr. Opin. Plant Biol. 2018, 45, 205–211. [Google Scholar] [CrossRef]
No. | Scientific Name | Common Name | Rank | Cultivation Area |
---|---|---|---|---|
1 | P. ginseng C. A. Meyer | Korean ginseng, Ginseng | Species | China, Republic of Korea, Russia |
2 | P. notoginseng (Burkill) F. H. Chen | Chinese ginseng, Sanchi ginseng | Species | China |
3 | P. quinquefolius | American ginseng | Species | China, America, Canada |
4 | P. japonicus C.A. Meyer | Japanese ginseng | Species | China, Japan |
5 | P. pseudoginseng Wallich | Himalayan ginseng | Species | China, Nepal |
6 | P. vietnamensis Ha & Grushv | Vietnamese ginseng | Species | China, Vietnam |
7 | P. stipuleanatus H.T. Tsai & K.M. Feng | Not mentioned | Species | China, Vietnam |
8 | P. trifolius L. | Dwarf ginseng | Species | America, Canada, Germany |
9 | P. zingiberensis C.Y. Wu & K.M. Feng | Not mentioned | Species | China, Nepal, Bhutan, Myanmar |
10 | P. wangianum S.C. Sun | Not mentioned | Species | China |
11 | P. assamocus R.N. Banerjee | Not mentioned | Species | India |
12 | P. variabilis J. Wen | Not mentioned | Species | China, India |
13 | P. omeiensis J. Wen | Not mentioned | Species | Not mentioned |
14 | P. sinensis J. Wen | Not mentioned | Species | East Himalaya |
15 | P. shangianus | Not mentioned | Species | Not mentioned |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Valappil, A.K.; Mathiyalagan, R.; Tran, T.N.A.; Ramadhania, Z.M.; Awais, M.; Yang, D.C. In Vitro Cultivation and Ginsenosides Accumulation in Panax ginseng: A Review. Plants 2023, 12, 3165. https://doi.org/10.3390/plants12173165
Xu F, Valappil AK, Mathiyalagan R, Tran TNA, Ramadhania ZM, Awais M, Yang DC. In Vitro Cultivation and Ginsenosides Accumulation in Panax ginseng: A Review. Plants. 2023; 12(17):3165. https://doi.org/10.3390/plants12173165
Chicago/Turabian StyleXu, Fengjiao, Anjali Kariyarath Valappil, Ramya Mathiyalagan, Thi Ngoc Anh Tran, Zelika Mega Ramadhania, Muhammad Awais, and Deok Chun Yang. 2023. "In Vitro Cultivation and Ginsenosides Accumulation in Panax ginseng: A Review" Plants 12, no. 17: 3165. https://doi.org/10.3390/plants12173165
APA StyleXu, F., Valappil, A. K., Mathiyalagan, R., Tran, T. N. A., Ramadhania, Z. M., Awais, M., & Yang, D. C. (2023). In Vitro Cultivation and Ginsenosides Accumulation in Panax ginseng: A Review. Plants, 12(17), 3165. https://doi.org/10.3390/plants12173165