Plant Growth Regulator- and Elicitor-Mediated Enhancement of Biomass and Andrographolide Production of Shoot Tip-Culture-Derived Plantlets of Andrographis paniculata (Burm.f.) Wall. (Hempedu Bumi)
Abstract
:1. Introduction
2. Results
2.1. Surface Sterilization
2.2. Shoot-tip Culture
2.3. Elicitation
2.4. Quantification of Andrographolide in Shoot-tip Extracts of Micropropagated A. paniculata
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Explant Surface Sterilization
4.3. Axillary Shoot Multiplication
4.4. Elicitation
4.5. Growing Conditions
4.6. Extraction of Andrographolide
4.7. Chromatographic Parameters
4.8. Analysis of Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawande, A.A.; Sanjay, S. Copper sulphate elicitation of optimized suspension culture of Andrographis paniculata Nees yields unprecedented level of andrographolide. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 688–694. [Google Scholar] [CrossRef]
- Wang, Z.; Rong, D.; Chen, D.; Xiao, Y.; Liu, R.; Wu, S. Salicylic acid promotes quiescent center cell division through ROS accumulation and down-regulation of PLT1, PLT2, and WOX5. J. Integr. Plant Biol. 2021, 63, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Daud, N.H.; Jayaraman, S.; Mohamed, R. An improved surface sterilization technique for introducing leaf, nodal and seed explants of Aquilaria malaccensis from field sources into tissue culture. Asia-Pac. J. Mol. Biol. Biotechnol. 2012, 20, 55–58. [Google Scholar]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Suraya, A.A.; Misran, A.; Hakiman, M. The efficient and easy micropropagation protocol of Phyllanthus niruri. Plants 2021, 10, 2141. [Google Scholar] [CrossRef] [PubMed]
- Golkar, P.; Taghizadeh, M.; Yousefian, Z. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue Organ Cult. 2019, 137, 575–585. [Google Scholar] [CrossRef]
- Roy, P.K. In vitro propagation of Andrographis paniculata Nees.—A threatened medicinal plant of Bangladesh. J. Biol. Sci. 2014, 3, 67–73. [Google Scholar] [CrossRef]
- Jindal, N.; Chaudhury, A.; Kajla, S. Shoot proliferation and multiplication from nodes of Andrographis paniculata. Int. Res. J. Pharm. 2015, 6, 654–657. [Google Scholar] [CrossRef]
- Yadav, R.K.; Ram, L.; Mahala, K.R.; Maheshwari, R.K. Rapid in vitro multiplication, regeneration and rooting of Kalneg (Andrographis paniculata Nees.). J. Emerg. Technol. Innov. Res. 2021, 8, 5. [Google Scholar]
- Benoy, G.K.; Animesh, D.K.; Aninda, M.; Priyanka, D.K.; Sandip, H. An overview on A. paniculata (Burm.f.) Nees. Int. J. Res. Ayurveda Pharm. 2012, 3, 752–760. [Google Scholar]
- Matthias, E.; Daniel, J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar]
- Rahman, N.N.A.; Rosli, R.; Kadzimin, S.; Hakiman, M. Effects of auxin and cytokinin on callus induction in Catharanthus roseus (L.) G. Don. Fundam. Appl. Agric. 2019, 4, 928–932. [Google Scholar] [CrossRef]
- Khan, T.; Khan, T.; Hano, C.; Abbasi, B.A. Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Ind. Crops Prod. 2019, 129, 525–535. [Google Scholar] [CrossRef]
- Ahmad, A.; Qamar, M.T.; Shoukat, A.; Aslam, M.M.; Tariq, M.; Hakiman, M.; Joyia, F.A. The effects of genotypes and media composition on callogenesis, regeneration and cell suspension culture of chamomile (Matricaria chamomilla L.). PeerJ 2021, 9, e11464. [Google Scholar] [CrossRef] [PubMed]
- Najhah, M.Y.; Jaafar, H.Z.; Nakasha, J.J.; Hakiman, M. Shoot multiplication and callus induction of Labisia pumila var. alata as influenced by different plant growth regulators treatments and its polyphenolic activities compared with the wild plant. Molecules 2021, 26, 3229. [Google Scholar] [CrossRef]
- Ana, K.P.; Ana, P.S.; Joselita, C.S.; Silvio, L.T.; Juliana, M.R.; Ana, R.P.; Cristiane, D.P. Sodium hypochlorite sterilization of culture medium in micropropagation of Gerbera hybrida cv. Essandre. Afr. J. Biotechnol. 2016, 15, 1995–1998. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; David, A.E. General techniques in tissue culture in perennial crops, in hand. In Book of Plant Cell Culture; McGraw-Hill Publishing Company: New York, NY, USA, 2011; Volume 6, pp. 22–57. [Google Scholar]
- Cesar, A.H.; Lucia, A.K.; Rafael, A.I.; Mario, L.A. Analysis of genetic variation in clones of rubber (Hevea brasiliensis) from Asian, South and Central American origin using RAPDs markers. Rev. Colomb. Biotecnol. 2009, 2, 29–34. [Google Scholar]
- Ong, C.W.; Shamsul, B.A.R. The introduction of rubber planting recommendations by The Rubber Research Institute of Malaysia since 1925. J. Biol. 2011, 4, 2224–3208. [Google Scholar]
- Zahid, N.A.; Jaafar, H.Z.E.; Hakiman, M. Micropropagation of ginger (Zingiber officinale Roscoe) ‘Bentong’ and evaluation of its secondary metabolites and antioxidant activities compared with the conventionally propagated plant. Plants 2021, 10, 630. [Google Scholar] [CrossRef]
- Sameer, N.M.; Nabeel, K.A. Effect of different sterilization methods on contamination and viability of nodal segments of Cestrum nocturnum L. Int. J. Res. Stud. Biosci. 2016, 4, 4–9. [Google Scholar]
- Anoop, B.; Chauhan, J.S. In vitro sterilization protocol for in vitro regeneration of Solanum tuberosum cv. ‘Kufri Himalini’. Sci. Publ. J. 2010, 1, 24–27. [Google Scholar]
- Zahid, N.A.; Jaafar, H.Z.E.; Hakiman, M. Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale Roscoe) var. Bentong with regards to sucrose and plant growth regulators application. Agronomy 2021, 11, 320. [Google Scholar] [CrossRef]
- Chawla, H.S. Introduction to Plant Biotechnology, 2nd ed.; Science Press: Beijing, China, 2002. [Google Scholar]
- Nowakowska, K.; Pińkowska, A.; Siedlecka, E. The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of Rhododendron ‘Kazimierz Odnowiciel’ in the in vitro cultures. Plant Cell Tissue Organ Cult. 2022, 149, 675–684. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bryan, G.J.; Winfield, M.O.; Millam, S. Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: A comparative phenotypic, cytogenetic and molecular assessment. Planta 2007, 226, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.; Naruka, R.; Sain, M.; Dwiredi, A.; Sharma, D.; Mirza, J. An efficient protocol for clonal micropropagation of Mentha piperita L. (Pipperment). Asian J. Plant Sci. Res. 2012, 2, 518–523. [Google Scholar]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Wysokińska, H. The influence of cytokinins of proliferation and polyphenol accumulation in shoot cultures of Scutellaria altissima L. Phytochem. Lett. 2017, 20, 449–455. [Google Scholar] [CrossRef]
- Nor Mayati, C.H.; Jamnah, A.R. Induction of shoots and roots from vegetative tissue culture of Hevea brasiliensis RRIM 2020. J. Trop. Plant Physiol. 2014, 6, 1–9. [Google Scholar]
- Otroshy, M.; Moradi, K. Rapid regeneration of Dracocephalum kotschyi Boiss. from nodal explants. Int. Life Sci. Med. Res. 2013, 3, 11–14. [Google Scholar]
- Jafari, N.; Rofina Yasmin, O.; Norzulaani, K. Effect of benzylaminopurine (BAP) pulsing on in vitro shoot multiplication of Musa acuminata (banana) cv. Berangan. Afr. J. Biotechnol. 2010, 10, 2446–2450. [Google Scholar]
- Shah, M.; Jan, H.; Drouet, S.; Tungmunnithum, D.; Shirazi, J.H.; Hano, C.; Abbasi, B.H. Chitosan elicitation impacts flavonolignan biosynsthesis in Silybum marianum (L.) Gaertn cell suspension and enhances antioxidant and anti-inflammatory activities of cell extracts. Molecules 2021, 26, 791. [Google Scholar] [CrossRef]
- Sharif, R.; Mujtaba, M.; Ur Rahman, M.; Shalmani, A.; Ahmad, H.; Anwar, T.; Tianchan, D.; Wang, X. The multifunctional role of chitosan in horticultural crops; A review. Molecules 2018, 23, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asghari, G.R.; Ghasemi, R.; Yosefi, M.; Mehdinezhad, N. Effect of hormones, salicylic acid, chitosan on phenolic compounds in Artemisia aucheri in vitro. J. Plant Process Funct. 2015, 3, 93–100. [Google Scholar]
- Kaur, P.; Gupta, R.C.; Dey, A.; Malik, T.; Pandey, D.K. Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network. BMC Plant Biol. 2020, 20, 225. [Google Scholar] [CrossRef] [PubMed]
- Dzung, N.A. Enhancing crop production with chitosan and its derivatives. In Chitin, Chitosan, Oligosaccharides and their Derivatives: Biological Activity and Application; Kim, S.K., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2010; pp. 619–632. [Google Scholar]
- Li, A.; Sun, X.; Liu, L. Action of salicylic acid on plant growth. Front. Plant Sci. 2022, 13, 878076. [Google Scholar] [CrossRef]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef]
- Lee, C.W.; Mahendra, S.; Zodrow, K.; Li, D.; Tsai, Y.C.; Braam, J.; Alvarez, P.J.J. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 2010, 29, 669–675. [Google Scholar] [CrossRef]
- Haida, Z.; Ab Ghani, S.; Nakasha, J.J.; Hakiman, M. Determination of experimental domain factors of polyphenols, phenolic acids and flavonoids of lemon (Citrus limon) peel using two-level factorial design. Saudi J. Biol. Sci. 2022, 29, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Savithramma, N.; Linga Rao, M.; Suhrulatha, D. Screening of medicinal plants for secondary metabolites. Middle-East J. Sci. Res. 2011, 8, 579–584. [Google Scholar]
- Ranjha, M.M.A.N.; Shafeeqa, I.; José, M.L.; Bakhtawar, S.; Rabia, K.; Mirian, P.; Rai, N.A.; Lufeng, W.; Gulzar, A.N.; Roobab, U.; et al. Sonication, a potential technique for extraction of phytoconstituents: A systematic review. Processes 2021, 9, 1406. [Google Scholar] [CrossRef]
- Jindal, N.; Kajla, S.; Chaudhury, A. Establishment of callus cultures of Andrographis paniculata for the assessment of andrographolide content. Int. J. Res. Ayurveda Pharm. 2016, 7, 197–201. [Google Scholar] [CrossRef]
- Pawar, S.D.; Yeole, P.T.; Bhadane, P.V.; Kadam, S.R. Standardization of callus induction protocol and effect of hormone concentration on synthesis of andrographolide from Andrographis paniculata. Int. J. Chem. Stud. J. 2018, 6, 1384–1387. [Google Scholar]
- Sae-Lee, N.; Kerdchoechuen, O.; Laohakunjit, N.; Thumthanaruk, B.; Sarkar, D.; Shetty, K. Improvement of phenolic antioxidant-linked cancer cell cytotoxicity of grape cell culture elicited by chitosan and chemical treatments. Hortic. Sci. 2017, 52, 1577–1584. [Google Scholar] [CrossRef] [Green Version]
- Eganathan, P.; Ravi Mahalakshmi, R.; Kumar, A.P. Salicylic acid elicitation on production of secondary metabolite by cell cultures of Jatropha curcas L. Int. J. Pharm. Pharm. Sci. 2013, 5, 655–659. [Google Scholar]
- Lovelock, D.A.; Šola, I.; Marschollek, S.; Donald, C.E.; Rusak, G.; van Pée, K.H.; Ludwig-Müller, J.; Cahill, D.M. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. Mol. Plant Pathol. 2016, 17, 1237–1251. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Masaenah, E.; Elya, B.; Setiawan, H.; Fadhilah, Z.; Arianti, V. Quantification of andrographolide in Andrographis paniculata (Burm.f.) Nees, myricetin in Syzygium cumini (L.) Skeels, and Brazilin in Caesalpinia sappan L. by HPLC method. Pharmacogn. J. 2021, 13, 1437–1444. [Google Scholar] [CrossRef]
Treatment | Number of Leaves | Number of Shoots | Length of Shoot (cm) |
---|---|---|---|
T1 (control) | 5.03 ± 0.08 e | 1.70 ± 0.04 d | 2.25 ± 0.02 e |
T2 (2.22 µM BAP + 0.49 µM IBA) | 8.43 ± 0.17 d | 2.00 ± 0.05 c | 2.46 ± 0.01 d |
T3 (2.22 µM BAP) + 5.37 µM NAA) | 8.40 ± 0.18 d | 1.80 ± 0.05 cd | 2.28 ± 0.01 e |
T4 (8.88 µM BAP + 2.69 µM NAA) | 18.30 ± 0.21 c | 3.60 ± 0.05 b | 2.71 ± 0.02 c |
T5 (8.88 µM BAP) | 19.70 ± 0.38 b | 3.8 ± 0.05 b | 2.82 ± 0.01 b |
T6 (17.76 µM BAP) | 23.57 ± 0.48 a | 7.33 ± 0.10 a | 3.06 ± 0.02 a |
Treatment (mg/L) | Number of Leaves | Number of Shoots | Length of Shoots (cm) |
---|---|---|---|
Control | 23.57 ± 0.48 b | 7.33 ± 0.07 c | 3.06 ± 0.02 de |
1.0 SA | 23.60 ± 0.31 b | 7.37 ± 0.10 c | 2.69 ± 0.02 h |
2.0 SA | 23.63 ± 0.24 b | 7.47 ± 0.04 c | 2.88 ± 0.02 g |
3.0 SA | 24.70 ± 0.33 ab | 7.53 ± 0.04 c | 2.93 ± 0.02 gf |
4.0 SA | 25.97 ± 0.06 a | 7.97 ± 0.10 b | 3.19 ± 0.00 c |
5.0 SA | 24.77 ± 0.13 ab | 7.90 ± 0.04 b | 2.98 ± 0.01 ef |
1.0 Chitosan | 23.80 ± 0.50 b | 7.37 ± 0.06 c | 3.09 ± 0.02 d |
2.0 Chitosan | 24.03 ± 0.37 b | 7.57 ± 0.03 c | 3.10 ± 0.02 d |
3.0 Chitosan | 24.17 ± 0.30 b | 7.90 ± 0.04 b | 3.33 ± 0.02 b |
4.0 Chitosan | 24.53 ± 0.08 b | 7.93 ± 0.04 b | 3.34 ± 0.02 b |
5.0 Chitosan | 26.07 ± 0.14 a | 8.33 ± 0.07 a | 3.63 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patuhai, A.; Wahab, P.E.M.; Yusoff, M.M.; Dewir, Y.H.; Alsughayyir, A.; Hakiman, M. Plant Growth Regulator- and Elicitor-Mediated Enhancement of Biomass and Andrographolide Production of Shoot Tip-Culture-Derived Plantlets of Andrographis paniculata (Burm.f.) Wall. (Hempedu Bumi). Plants 2023, 12, 2953. https://doi.org/10.3390/plants12162953
Patuhai A, Wahab PEM, Yusoff MM, Dewir YH, Alsughayyir A, Hakiman M. Plant Growth Regulator- and Elicitor-Mediated Enhancement of Biomass and Andrographolide Production of Shoot Tip-Culture-Derived Plantlets of Andrographis paniculata (Burm.f.) Wall. (Hempedu Bumi). Plants. 2023; 12(16):2953. https://doi.org/10.3390/plants12162953
Chicago/Turabian StylePatuhai, Aicah, Puteri Edaroyati Megat Wahab, Martini Mohammad Yusoff, Yaser Hassan Dewir, Ali Alsughayyir, and Mansor Hakiman. 2023. "Plant Growth Regulator- and Elicitor-Mediated Enhancement of Biomass and Andrographolide Production of Shoot Tip-Culture-Derived Plantlets of Andrographis paniculata (Burm.f.) Wall. (Hempedu Bumi)" Plants 12, no. 16: 2953. https://doi.org/10.3390/plants12162953
APA StylePatuhai, A., Wahab, P. E. M., Yusoff, M. M., Dewir, Y. H., Alsughayyir, A., & Hakiman, M. (2023). Plant Growth Regulator- and Elicitor-Mediated Enhancement of Biomass and Andrographolide Production of Shoot Tip-Culture-Derived Plantlets of Andrographis paniculata (Burm.f.) Wall. (Hempedu Bumi). Plants, 12(16), 2953. https://doi.org/10.3390/plants12162953