Advancing the Conservation and Utilization of Barley Genetic Resources: Insights into Germplasm Management and Breeding for Sustainable Agriculture
Abstract
:1. Introduction
1.1. The Diversity and Main Uses of Barley: An Outline of the Plant Domestication, Adaptation, Agronomic Classifications, and Health Claims
1.2. Aim of the Review
2. Genetic Resources of Barley
2.1. In Situ Conservation of Barley Genetic Resources: Main Natural Habitats and Traditional Cultivation Areas Worldwide
2.2. Ex Situ Conservation of Barley Genetic Resources: The Role of the Gene Banks
3. Leveraging Barley Resources: Utilization, Participatory Activities, and Capacity Enhancement in Breeding
3.1. Participatory Breeding Approaches to Empower Farmers for Genetic Diversity Conservation and Variety Selection
3.2. Key Policy and Legal Frameworks to Sustain the Conservation and Use of Barley Genetic Resources
3.3. A Selection of Initiatives and Partnerships for Barley Genetic Resources Management
4. Exploring and Utilizing Barley Genetic Resources at ICARDA: A Historical Appraisal
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Newman, R.K.; Newman, C.W. Barley for Food and Health: Science, Technology, and Products; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Mayer, K.; Waugh, R.; Langridge, P.; Close, T.; Wise, R.; Graner, A.; Matsumoto, T.; Sato, K.; Schulman, A.; Muehlbauer, G. A physical, genetic and functional sequence assembly of the barley genome. Nature 2012, 491, 711–716. [Google Scholar] [PubMed]
- Mascher, M.; Gundlach, H.; Himmelbach, A.; Beier, S.; Twardziok, S.O.; Wicker, T.; Radchuk, V.; Dockter, C.; Hedley, P.E.; Russell, J. A chromosome conformation capture ordered sequence of the barley genome. Nature 2017, 544, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, C. The barley chloroplast genome: Physical structure and transcriptional activity in vivo. Carlsberg Res. Commun. 1983, 48, 57–80. [Google Scholar] [CrossRef]
- Middleton, C.P.; Senerchia, N.; Stein, N.; Akhunov, E.D.; Keller, B.; Wicker, T.; Kilian, B. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 2014, 9, e85761. [Google Scholar] [CrossRef] [PubMed]
- Hisano, H.; Tsujimura, M.; Yoshida, H.; Terachi, T.; Sato, K. Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare). BMC Genom. 2016, 17, 824. [Google Scholar] [CrossRef] [PubMed]
- Badr, A.; Rabey, H.E.; Effgen, S.; Ibrahim, H.; Pozzi, C.; Rohde, W.; Salamini, F. On the origin and domestication history of barley (Hordeum vulgare). Mol. Biol. Evol. 2000, 17, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Knüpffer, H.; Terentyeva, I.; Hammer, K.; Kovaleva, O.; Sato, K.; Yasuda, S. Ecogeographical diversity—A Vavilovian approach. In Diversity in Barley (Hordeum vulgare); von Bothmer, R., van Hintum, T.J.L., Knüpffer, H., Sato, K., Eds.; Eslevier: Amsterdam, The Netherlands, 2003; pp. 53–76. [Google Scholar]
- Blattner, F.R. Taxonomy of the genus Hordeum and barley (Hordeum vulgare). In The Barley Genome; Stein, N., Muehlbauer, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 11–23. [Google Scholar]
- Slafer, G.A.; Molina-Cano, J.L.; Savin, R.; Araus, J.L.; Romagosa, I. Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality; Food Products Press: New York, NY, USA; London, UK; Oxford, UK, 2002. [Google Scholar]
- Ullrich, S.E. (Ed.) Barley: Production, Improvement, and Uses; World Agriculture Series; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 12. [Google Scholar]
- Komatsuda, T.; Pourkheirandish, M.; He, C.; Azhaguvel, P.; Kanamori, H.; Perovic, D.; Stein, N.; Graner, A.; Wicker, T.; Tagiri, A. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 2007, 104, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Zwirek, M.; Waugh, R.; McKim, S.M. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytol. 2019, 221, 1950–1965. [Google Scholar] [CrossRef]
- Koppolu, R.; Schnurbusch, T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. J. Integr. Plant Biol. 2019, 61, 278–295. [Google Scholar] [CrossRef]
- Qi, J.-C.; Zhang, G.-P.; Zhou, M.-X. Protein and hordein content in barley seeds as affected by nitrogen level and their relationship to beta-amylase activity. J. Cereal Sci. 2006, 43, 102–107. [Google Scholar] [CrossRef]
- Fox, G. Chemical composition in barley grains and malt quality. In Genetics and Improvement of Barley Malt Quality; Zhang, G., Li, C., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Vieira, E.; Rocha, M.A.M.; Coelho, E.; Pinho, O.; Saraiva, J.A.; Ferreira, I.M.; Coimbra, M.A. Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Ind. Crops Prod. 2014, 52, 136–143. [Google Scholar] [CrossRef]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Bouhlal, O.; Affricot, J.R.; Puglisi, D.; El-Baouchi, A.; El Otmani, F.; Kandil, M.; Hafidi, A.; Keser, M.; Sanchez-Garcia, M.; Visioni, A. Malting quality of ICARDA elite winter barley (Hordeum vulgare L.) germplasm grown in Moroccan middle atlas. J. Am. Soc. Brew. Chem. 2022, 80, 401–412. [Google Scholar] [CrossRef]
- Sakellariou, M.; Mylona, P.V. New uses for traditional crops: The case of barley biofortification. Agronomy 2020, 10, 1964. [Google Scholar] [CrossRef]
- Brown, G.D.; Gordon, S. Fungal β-glucans and mammalian immunity. Immunity 2003, 19, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Yan, J.; Baran, J.T.; Allendorf, D.J.; Hansen, R.D.; Ostroff, G.R.; Xing, P.X.; Cheung, N.-K.V.; Ross, G.D. Mechanism by which orally administered β-1, 3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 2004, 173, 797–806. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2207. [Google Scholar]
- Stein, N.; Muehlbauer, G.J. (Eds.) The Barley Genome; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Pourkheirandish, M.; Komatsuda, T. The importance of barley genetics and domestication in a global perspective. Ann. Bot. 2007, 100, 999–1008. [Google Scholar] [CrossRef]
- Von Bothmer, R.; van Hintum, T.; Knüpffer, H.; Sato, K. (Eds.) Diversity in Barley (Hordeum vulgare); Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Russell, J.; Mascher, M.; Dawson, I.K.; Kyriakidis, S.; Calixto, C.; Freund, F.; Bayer, M.; Milne, I.; Marshall-Griffiths, T.; Heinen, S. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet. 2016, 48, 1024–1030. [Google Scholar] [CrossRef]
- McNeill, J.R. Something New under the Sun: An Environmental History of the Twentieth-Century World; W. W. Norton: New York, NY, USA, 2001. [Google Scholar]
- Russell, J.R.; Ellis, R.P.; Thomas, W.T.; Waugh, R.; Provan, J.; Booth, A.; Fuller, J.; Lawrence, P.; Young, G.; Powell, W. A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Mol. Breed. 2000, 6, 553–568. [Google Scholar] [CrossRef]
- Brush, S.B. (Ed.) The issues of in situ conservation of crop genetic resources. In Genes in the Field: On-Farm Conservation of Crop Diversity; IPGRI: Rome, Italy; IDRC: Ottawa, ON, Canada; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 3–26. [Google Scholar]
- Russell, J.; Booth, A.; Fuller, J.; Baum, M.; Ceccarelli, S.; Grando, S.; Powell, W. Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan. Theor. Appl. Genet. 2003, 107, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S.; Grando, S. Barley landraces from the Fertile Crescent. In Genes in the Field: On-Farm Conservation of Crop Diversity; Brush, S.B., Ed.; IPGRI: Rome, Italy; IDRC: Ottawa, ON, Canada; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 51–76. [Google Scholar]
- Weltzien, E. Differentiation among barley landrace populations from the Near East. Euphytica 1989, 43, 29–39. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Bailey, E.; Amri, A.; El-Felah, M.; Nassif, F.; Rezgui, S.; Yahyaoui, A. Farmer participation in barley breeding in Syria, Morocco and Tunisia. Euphytica 2001, 122, 521–536. [Google Scholar] [CrossRef]
- Harlan, J.R.; Zohary, D. Distribution of wild wheats and barley: The present distribution of wild forms may provide clues to the regions of early cereal domestication. Science 1966, 153, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Zohary, D.; Harlan, J.R.; Vardi, A. The wild diploid progenitors of wheat and their breeding value. Euphytica 1969, 18, 58–65. [Google Scholar] [CrossRef]
- Von Bothmer, R.; Komatsuda, T. Barley origin and related species. In Barley: Production, Improvement and Uses; Ullrich, S.E., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 14–62. [Google Scholar]
- Nevo, E. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology; Shewry, P.R., Ed.; CABI: Wallingford, UK, 1992; pp. 19–43. [Google Scholar]
- Negassa, M. Patterns of phenotypic diversity in an Ethiopian barley collection, and the Arussi-Bale Highland as a center of origin of barley. Hereditas 1985, 102, 139–150. [Google Scholar] [CrossRef]
- Jørgensen, I.H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 1992, 63, 141–152. [Google Scholar] [CrossRef]
- Konishi, T. Genetic diversity in Hordeum agriocrithon E. Åberg, six-rowed barley with brittle rachis, from Tibet. Genet. Resour. Crop Evol. 2001, 48, 27–34. [Google Scholar] [CrossRef]
- Yadav, R.K.; Gautam, S.; Palikhey, E.; Joshi, B.K.; Ghimire, K.H.; Gurung, R.; Adhikari, A.R.; Pudasaini, N.; Dhakal, R. Agro-morphological diversity of Nepalese naked barley landraces. Agric. Food Secur. 2018, 7, 86. [Google Scholar] [CrossRef]
- Witcombe, J. Two-rowed and six-rowed wild barley from the Western Himalaya. Euphytica 1978, 27, 601–604. [Google Scholar] [CrossRef]
- Konishi, T.; Yano, Y.; Fukushima, Y. Genetic variation in barley landraces from Bhutan. Genet. Resour. Crop Evol. 1993, 40, 33–38. [Google Scholar] [CrossRef]
- Lata, S.; Negi, P.S.; Samant, S.S.; Seth, M.K.; Shrama, S. Documentation of traditional alcoholic beverages and their indigenous utilization pattern by Kinnaura tribes of Himachal Pradesh, North Western Himalaya. Indian J. Tradit. Knowl. 2021, 20, 1002–1013. [Google Scholar]
- Joshi, M. An ethnobotanical study of the Kumaon region of India. Econ. Bot. 1971, 25, 414–422. [Google Scholar]
- Tamang, J.P.; Okumiya, K.; Kosaka, Y. Cultural adaptation of the Himalayan ethnic foods with special reference to Sikkim, Arunachal Pradesh and Ladakh. Himal. Study Monogr. Kyoto Univ. 2010, 11, 177–185. [Google Scholar]
- Hardwick, W.A.; van Oevelen, D.E.; Novellie, L.; Yoshizawa, K. Kinds of beer and beerlike beverages. In Handbook of Brewing; Hardwick, W.A., Ed.; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1995; pp. 53–86. [Google Scholar]
- Danial, D.; Parlevliet, J.; Almekinders, C.; Thiele, G. Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica 2007, 153, 385–396. [Google Scholar] [CrossRef]
- von Bothmer, R.; Jacobsen, N.; Baden, C.; Jorgensen, R.B.; Linde Laursen, I. An Ecogeographical Study of the Genus Hordeum; International Board for Plant Genetic Resources: Rome, Italy, 1991. [Google Scholar]
- Martín, A.; Martínez-Araque, C.; Rubiales, D.; Ballesteros, J. Triticale: Today and Tomorrow; Guedes-Pinto, H., Darvey, N., Carnide, V.P., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 57–72. [Google Scholar]
- Dickie, J.B.; Ellis, R.H.; Kraak, H.; Ryder, K.; Tompsett, P. Temperature and seed storage longevity. Ann. Bot. 1990, 65, 197–204. [Google Scholar] [CrossRef]
- Probert, R.; Adams, J.; Coneybeer, J.; Crawford, A.; Hay, F. Seed quality for conservation is critically affected by pre-storage factors. Aust. J. Bot. 2007, 55, 326–335. [Google Scholar] [CrossRef]
- Knüpffer, H. Triticeae genetic resources in ex situ genebank collections. In Genetics and Genomics of the Triticeae; Muehlbauer, G., Feuillet, C., Eds.; Springer: New York, NY, USA, 2009; pp. 31–79. [Google Scholar]
- Shaw, P.D.; Weise, S.; Obreza, M.; Raubach, S.; McCouch, S.; Kilian, B.; Werner, P. Database solutions for genebanks and germplasm collections. In Plant Genetic Resources for the 21st Century: The OMICS Era; Ghamkhar, K., Williams, W.M., Brown, A.H.D., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 285–309. [Google Scholar]
- Oppermann, M.; Weise, S.; Dittmann, C.; Knüpffer, H. GBIS: The information system of the German Genebank. Database 2015, 2015, bav021. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Participatory plant breeding. Cereals 2009, 3, 395–414. [Google Scholar]
- Ceccarelli, S.; Grando, S.; Singh, M.; Michael, M.; Shikho, A.; Al Issa, M.; Al Saleh, A.; Kaleonjy, G.; Al Ghanem, S.; Al Hasan, A. A methodological study on participatory barley breeding II. Response to selection. Euphytica 2003, 133, 185–200. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. From participatory to evolutionary plant breeding. In Farmers and Plant Breeding: Current Approaches and Perspectives; Westengen, O.T., Winge, T., Eds.; Routledge: London, UK, 2019; pp. 231–244. [Google Scholar]
- Amri, A.; Yazbek, M.; Shehadeh, A.; Nawar, M.F.; Tsivelikas, A.; Chandrashekhar, B. ICARDA efforts to promote in situ/on-farm conservation of dryland agrobiodiversity. Indian J. Plant Genet. Resour. 2016, 29, 265–267. [Google Scholar] [CrossRef]
- Alary, V.; Yigezu, Y.A.; Bassi, F.M. Participatory farmers-weighted selection (PWS) indices to raise adoption of durum cultivars. Crop Breed. Genet. Genom. 2020, 2, e200014. [Google Scholar] [CrossRef]
- Reeves, J. Quantitative Analysis of Data from Participatory Methods in Plant Breeding; Bellon, M.R., Reeves, J., Eds.; CIMMYT: Mexico City, Mexico, 2002. [Google Scholar]
- Westengen, O.T.; Winge, T. (Eds.) New perspectives on farmer–breeder collaboration in plant breeding. In Farmers and Plant Breeding: Current Approaches and Perspectives; Routledge: London, UK, 2019; pp. 3–16. [Google Scholar]
- Wilkus, E.L.; Francesconi, G.N.; Jäger, M. Rural seed sector development through participatory varietal selection: Synergies and trade-offs in seed provision services and market participation among household bean producers in Western Uganda. J. Agribus. Dev. Emerg. Econ. 2017, 7, 174–196. [Google Scholar] [CrossRef]
- Abebe, G. Participatory selection of drought tolerant maize varieties using mother and baby methodology: A case study in the semi arid zones of the central rift valley of Ethiopia. Afr. Crop Sci. Conf. Proc. 2005, 7, 1479–1485. [Google Scholar]
- Singh, Y.; Nayak, A.; Sharma, D.; Gautam, R.; Singh, R.; Singh, R.; Mishra, V.; Paris, T.; Ismail, A. Farmers’ participatory varietal selection: A sustainable crop improvement approach for the 21st century. Agroecol. Sustain. Food Syst. 2014, 38, 427–444. [Google Scholar] [CrossRef]
- Walker, T.S. Participatory Varietal Selection, Participatory Plant Breeding, and Varietal Change. Background Paper for the World Development Report 2008. Available online: https://documents1.worldbank.org/curated/en/829781468778811451/pdf/413790Veriatal0selection01PUBLIC1.pdf (accessed on 23 August 2023).
- Mohammadi, R.; Mahmoodi, K.N.; Haghparast, R.; Grando, S.; Rahmanian, M.; Ceccarelli, S. Identifying superior rainfed barley genotypes in farmers’ fields using participatory varietal selection. J. Crop Sci. Biotechnol. 2011, 14, 281–288. [Google Scholar] [CrossRef]
- Aynewa, Y.; Dessalegn, T.; Bayu, W. Participatory evaluation of malt barley (Hordeum vulgare L.) genotypes for yield and other agronomic traits at North-West Ethiopia. Wudpecker J. Agric. Res. 2013, 2, 218–222. [Google Scholar]
- Ferede, M.; Demsie, Z. Participatory evaluation of malt barley (Hordium disticum L.) varieties in barley-growing highland areas of Northwestern Ethiopia. Cogent Food Agric. 2020, 6, 1756142. [Google Scholar] [CrossRef]
- Buli, W.M. Participatory varietal selection of food barley (Hordeum vulgare L.) genotypes in Ethiopia. Int. J. Res. Stud. Agric. Sci. 2021, 7, 32–36. [Google Scholar]
- Ebert, A.W.; Engels, J.M.; Schafleitner, R.; Hintum, T.v.; Mwila, G. Critical Review of the Increasing Complexity of Access and Benefit-Sharing Policies of Genetic Resources for Genebank Curators and Plant Breeders—A Public and Private Sector Perspective. Plants 2023, 12, 2992. [Google Scholar] [CrossRef]
- Bockelman, H.E.; Valkoun, J. Barley germplasm conservation and resources. In Barley: Improvement, Production, and Uses; Ullrich, S., Ed.; Wiley-Blackwell: Oxford, UK, 2011; pp. 144–159. [Google Scholar]
- Schulte, D.; Close, T.J.; Graner, A.; Langridge, P.; Matsumoto, T.; Muehlbauer, G.; Sato, K.; Schulman, A.H.; Waugh, R.; Wise, R.P. The International Barley Sequencing Consortium—At the threshold of efficient access to the barley genome. Plant Physiol. 2009, 149, 142–147. [Google Scholar] [CrossRef]
- El Haddad, N.; Sanchez-Garcia, M.; Visioni, A.; Jilal, A.; El Amil, R.; Sall, A.T.; Lagesse, W.; Kumar, S.; Bassi, F.M. Crop Wild relatives crosses: Multi-location assessment in durum wheat, barley, and lentil. Agronomy 2021, 11, 2283. [Google Scholar] [CrossRef]
- Isayenkov, S.; Hilo, A.; Rizzo, P.; Tandron Moya, Y.A.; Rolletschek, H.; Borisjuk, L.; Radchuk, V. Adaptation strategies of halophytic barley Hordeum marinum ssp. marinum to high salinity and osmotic stress. Int. J. Mol. Sci. 2020, 21, 9019. [Google Scholar] [CrossRef] [PubMed]
- Devaux, P. The Hordeum bulbosum (L.) method. In Doubled Haploid Production in Crop Plants: A Manual; Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Kluwer: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2003; pp. 15–19. [Google Scholar]
- von Bothmer, R.; Jacobsen, N. Origin, taxonomy, and related species. In Barley; Rasmusson, D.C., Ed.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Publishers: Madison, WI, USA, 1985; pp. 19–56. [Google Scholar]
- Li, R.; Zhang, J.; Wu, G.; Wang, H.; Chen, Y.; Wei, J. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ. 2012, 35, 1582–1600. [Google Scholar] [CrossRef] [PubMed]
- Eliáš, P.; Dítě, D.; Šuvada, R.; Píš, V.; Ikrényi, I. Hordeum geniculatum in the Pannonian Basin: Ecological requirements and grassland vegetation on salt-affected soils. Plant Biosyst. 2013, 147, 429–444. [Google Scholar] [CrossRef]
- Von Bothmer, R. Distribution and habitat preferences in the genus Hordeum in Iran and Turkey. In Annalen des Naturhistorischen Museums in Wien; Serie B für Botanik und Zoologie; Naturhistorisches Museum: Bern, Switzerland, 1996; pp. 107–116. [Google Scholar]
- Hou, Y.-C.; Liu, Q.; Long, H.; Wei, Y.-M.; Zheng, Y.-L. Characterization of low-molecular-weight glutenin subunit genes from Hordeum brevisubulatum ssp. turkestanicum. Biol. Bull. 2006, 33, 35–42. [Google Scholar] [CrossRef]
- Preston, C.; Holtum, J.A.; Powles, S.B. On the mechanism of resistance to paraquat in Hordeum glaucum and H. leporinum: Delayed inhibition of photosynthetic O2 evolution after paraquat application. Plant Physiol. 1992, 100, 630–636. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Valkoun, J.; Erskine, W.; Weigand, S.; Miller, R.; Van Leur, J.A.G. Plant genetic resources and plant improvement as tools to develop sustainable agriculture. Exp. Agric. 1992, 28, 89–98. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Erskine, W.; Hamblin, J.; Grando, S. Genotype by environment interaction and international breeding programmes. Exp. Agric. 1994, 30, 177–187. [Google Scholar] [CrossRef]
- Weltzien, E. Barley collecting and evaluation in Syria and Jordan. FAO Plant Genet. Resour. Newsl. 1982, 52, 5–6. [Google Scholar]
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Ceccarelli, S. Utilization of landraces and Hordeum spontaneum in barley breeding for dry areas at ICARDA. Barley Wheat Triticale Newsl. 1984, 3, 8–11. [Google Scholar]
- Baum, M.; Grando, S.; Backes, G.; Jahoor, A.; Sabbagh, A.; Ceccarelli, S. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor. Appl. Genet. 2003, 107, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Lakew, B.; Eglinton, J.; Henry, R.J.; Baum, M.; Grando, S.; Ceccarelli, S. The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Res. 2011, 120, 161–168. [Google Scholar] [CrossRef]
- Baum, M.; Grando, S.; Ceccarelli, S.; Backes, G.; Jahoor, A. Localization of Quantitative Trait Loci for dryland characters in barley by linkage mapping. Chall. Strateg. Dryland Agric. 2004, 32, 191–202. [Google Scholar]
- Grando, S.; Baum, M.; Ceccarelli, S.; Goodchild, A.; El-Haramein, F.J.; Jahoor, A.; Backes, G. QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment. Theor. Appl. Genet. 2005, 110, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitl, A. High diversity of powdery mildew resistance in the ICARDA wild barley collection. Crop Pasture Sci. 2017, 68, 134–139. [Google Scholar] [CrossRef]
- Genger, R.; Williams, K.; Raman, H.; Read, B.; Wallwork, H.; Burdon, J.; Brown, A. Leaf scald resistance genes in Hordeum vulgare and Hordeum vulgare ssp. spontaneum: Parallels between cultivated and wild barley. Aust. J. Agric. Res. 2003, 54, 1335–1342. [Google Scholar] [CrossRef]
- Rehman, S.; Amouzoune, M.; Hiddar, H.; Aberkane, H.; Benkirane, R.; Filali-Maltouf, A.; Al-Jaboobi, M.; Acqbouch, L.; Tsivelikas, A.; Verma, R.P.S. Traits discovery in Hordeum vulgare sbsp. spontaneum accessions and in lines derived from interspecific crosses with wild Hordeum species for enhancing barley breeding efforts. Crop Sci. 2021, 61, 219–233. [Google Scholar] [CrossRef]
- Elouadi, F.; Amri, A.; El-baouchi, A.; Kehel, Z.; Salih, G.; Jilal, A.; Kilian, B.; Ibriz, M. Evaluation of a set of Hordeum vulgare subsp. spontaneum accessions for β-Glucans and microelement contents. Agriculture 2021, 11, 950. [Google Scholar]
- Knüpffer, H.; van Hintum, T. Summarised diversity-The barley core collection. In Diversity in Barley (Hordeum vulgare); von Bothmer, R., van Hintum, T.J.L., Knüpffer, H., Sato, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 259–267. [Google Scholar]
- Azough, Z.; Kehel, Z.; Benomar, A.; Bellafkih, M.; Amri, A. Predictive characterization of ICARDA genebank barley accessions using FIGS and machine learning. In Intelligent Environments 2019; Workshop Proceedings of the 15th International Conferende on Intelligent Environments; Muñoz, A., Ouhbi, S., Minker, W., Echabbi, L., Navarro-Cía, M., Eds.; IOS Press: Amsterdam, The Netherlands, 2019; pp. 121–129. [Google Scholar]
- Endresen, D.T.F.; Street, K.; Mackay, M.; Bari, A.; De Pauw, E. Predictive association between biotic stress traits and eco-geographic data for wheat and barley landraces. Crop Sci. 2011, 51, 2036–2055. [Google Scholar] [CrossRef]
- Hiddar, H.; Rehman, S.; Lakew, B.; Verma, R.P.S.; Al-Jaboobi, M.; Moulakat, A.; Kehel, Z.; Filali-Maltouf, A.; Baum, M.; Amri, A. Assessment and modeling using machine learning of resistance to scald (Rhynchosporium commune) in two specific barley genetic resources subsets. Sci. Rep. 2021, 11, 15967. [Google Scholar] [CrossRef] [PubMed]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 40, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, G.; Seyoum, A.; Halewood, M.; López Noriega, I.; Welch, E.W. The Role of genetic resources in breeding for climate change: The case of public breeding programmes in eighteen developing countries. Plants 2020, 9, 1129. [Google Scholar] [CrossRef] [PubMed]
- Dhehibi, B.; Rudiger, U.; Moyo, H.P.; Dhraief, M.Z. Agricultural technology transfer preferences of smallholder farmers in Tunisia’s arid regions. Sustainability 2020, 12, 421. [Google Scholar] [CrossRef]
- Chávez-Dulanto, P.N.; Thiry, A.A.; Glorio-Paulet, P.; Vögler, O.; Carvalho, F.P. Increasing the impact of science and technology to provide more people with healthier and safer food. Food Energy Secur. 2021, 10, e259. [Google Scholar] [CrossRef]
- Kosmowski, F.; Alemu, S.; Mallia, P.; Stevenson, J.; Macours, K. Shining a Brighter Light: Comprehensive Evidence on Adoption and Diffusion of CGIAR-Related Innovations in Ethiopia; SPIA Synthesis Report; Standing Panel on Impact Assessment (SPIA): Rome, Italy, 2020. [Google Scholar]
- Krishna, V.V.; Lantican, M.A.; Prasanna, B.; Pixley, K.; Abdoulaye, T.; Menkir, A.; Bänziger, M.; Erenstein, O. Impact of CGIAR maize germplasm in Sub-Saharan Africa. Field Crops Res. 2023, 290, 108756. [Google Scholar] [CrossRef] [PubMed]
- Birhanu, M.Y.; Jensen, N. Dynamics of improved agricultural technologies adoption: The chicken and maize paradox in Ethiopia. Sustain. Futures 2023, 5, 100112. [Google Scholar] [CrossRef]
- Mascher, M.; Schreiber, M.; Scholz, U.; Graner, A.; Reif, J.C.; Stein, N. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 2019, 51, 1076–1081. [Google Scholar] [CrossRef]
- Zair, W.; Maxted, N.; Brehm, J.M.; Amri, A. Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. Genet. Resour. Crop Evol. 2021, 68, 693–709. [Google Scholar] [CrossRef]
- Braverman, I. Conservation without nature: The trouble with in situ versus ex situ conservation. Geoforum 2014, 51, 47–57. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Reif, J.C. Redesigning the exploitation of wheat genetic resources. Trends Plant Sci. 2014, 19, 631–636. [Google Scholar] [CrossRef]
- Milner, S.G.; Jost, M.; Taketa, S.; Mazón, E.R.; Himmelbach, A.; Oppermann, M.; Weise, S.; Knüpffer, H.; Basterrechea, M.; König, P. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 2019, 51, 319–326. [Google Scholar] [CrossRef]
- Ghamkhar, K.; Williams, W.M.; Brown, A.H.D. (Eds.) Plant Genetic Resources for the 21st Century: The OMICS Era; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Mochida, K.; Shinozaki, K. Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol. 2011, 52, 2017–2038. [Google Scholar] [CrossRef]
- Bari, A.; Street, K.; Mackay, M.; Endresen, D.T.F.; De Pauw, E.; Amri, A. Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genet. Resour. Crop Evol. 2012, 59, 1465–1481. [Google Scholar] [CrossRef]
- Adenle, A.A.; Wedig, K.; Azadi, H. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technol. Soc. 2019, 58, 101143. [Google Scholar] [CrossRef]
Taxon | Common Name | Accessions (n) |
---|---|---|
Hordeum vulgare subsp. vulgare | Cultivated barley | 30,215 |
Hordeum vulgare subsp. spontaneum | Wild barley | 2005 |
Hordeum murinum | wall barley or mouse barley | 284 |
Hordeum bulbosum | bulbous barley | 197 |
Hordeum marinum | sea barley | 54 |
Hordeum brevisubulatum | short-awned barley | 16 |
Hordeum turkestanicum | syn: H. brevisubulatum subsp. turkestanicum Tzvelev | 6 |
Hordeum geniculatum | kneed barley | 4 |
Hordeum hrasdanicum | synonym: H. murinum subsp. leporinum | 3 |
Other | 6 | |
Grand total | 32,790 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visioni, A.; Basile, B.; Amri, A.; Sanchez-Garcia, M.; Corrado, G. Advancing the Conservation and Utilization of Barley Genetic Resources: Insights into Germplasm Management and Breeding for Sustainable Agriculture. Plants 2023, 12, 3186. https://doi.org/10.3390/plants12183186
Visioni A, Basile B, Amri A, Sanchez-Garcia M, Corrado G. Advancing the Conservation and Utilization of Barley Genetic Resources: Insights into Germplasm Management and Breeding for Sustainable Agriculture. Plants. 2023; 12(18):3186. https://doi.org/10.3390/plants12183186
Chicago/Turabian StyleVisioni, Andrea, Boris Basile, Ahmed Amri, Miguel Sanchez-Garcia, and Giandomenico Corrado. 2023. "Advancing the Conservation and Utilization of Barley Genetic Resources: Insights into Germplasm Management and Breeding for Sustainable Agriculture" Plants 12, no. 18: 3186. https://doi.org/10.3390/plants12183186
APA StyleVisioni, A., Basile, B., Amri, A., Sanchez-Garcia, M., & Corrado, G. (2023). Advancing the Conservation and Utilization of Barley Genetic Resources: Insights into Germplasm Management and Breeding for Sustainable Agriculture. Plants, 12(18), 3186. https://doi.org/10.3390/plants12183186