Modeling the Impact of Agricultural Mitigation Measures on the Spread of Sharka Disease in Sweet Cherry Orchards
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemente-Moreno, M.J.; Hernández, J.A.; Diaz-Vivancos, P. Sharka: How do plants respond to Plum pox virus infection? J. Exp. Bot. 2014, 66, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.; García-Ibarra, A.; Dicenta, F.; Martínez-Gómez, P. Plum pox virus (sharka) sensitivity in Prunus salicina and Prunus cerasifera cultivars against a Dideron-type isolate. Plant Breed. 2011, 130, 283–286. [Google Scholar] [CrossRef]
- Invasive Species Compendium. Plum Pox Virus (Sharka). Available online: https://www.cabi.org/isc/datasheet/42203 (accessed on 27 October 2022).
- Madariaga, V.M. La Enfermedad de Sharka: Descripción y Situación en Chile; Informativo Instituto de Investigación Agropecuarias (INIA) La Platina: Santiago, Chile, 2020; [en línea]; Available online: https://hdl.handle.net/20.500.14001/5011 (accessed on 13 August 2023).
- Herrera, G. Investigations of the Plum pox virus in Chile in the past 20 years. Chil. J. Agric. Res. 2013, 73, 60–65. [Google Scholar] [CrossRef]
- Llácer, G.; Cambra, M. Hosts and symptoms of Plum pox virus: Fruiting Prunus species. EPPO Bull. 2006, 36, 219–221. [Google Scholar] [CrossRef]
- Damsteegt, V.; Scorza, R.; Stone, A.; Schneider, W.; Webb, K.; Demuth, M.; Gildow, F. Prunus host range of Plum pox virus (PPV) in the United States by aphid and graft inoculation. Plant Dis. 2007, 91, 18–23. [Google Scholar] [CrossRef]
- Gougherty, A.; Nutter Jr, F. Impact of Eradication Programs on the Temporal and Spatial Dynamics of Plum pox virus on Prunus spp. in Pennsylvania and Ontario, Canada. Plant Dis. 2015, 99, 593–603. [Google Scholar] [CrossRef] [PubMed]
- D, A. Chile Launches 2022/23 Cherry Season, Expects $3 Billion in Exports to China, Produce Report. 2022. Available online: https://www.producereport.com/article/chile-launches-202223-cherry-season-expects-3-billion-exports-china (accessed on 14 August 2023).
- Jeger, M.; Madden, L.; Van Den Bosch, F. Plant virus epidemiology: Applications and prospects for mathematical modeling and analysis to improve understanding and disease control. Plant Dis. 2018, 102, 837–854. [Google Scholar] [CrossRef] [PubMed]
- Arias, J.H.; Gómez-Gardenes, J.; Meloni, S.; Estrada, E. Epidemics on plants: Modeling long-range dispersal on spatially embedded networks. J. Theor. Biol. 2018, 453, 1–13. [Google Scholar] [CrossRef]
- Tankam-Chedjou, I.; Touzeau, S.; Mailleret, L.; Tewa, J.J.; Grognard, F. Modelling and control of a banana soilborne pest in a multi-seasonal framework. Math. Biosci. 2020, 322, 108324. [Google Scholar] [CrossRef]
- Savary, S.; Nelson, A.; Willocquet, L.; Pangga, I.; Aunario, J. Modeling and mapping potential epidemics of rice diseases globally. Crop Prot. 2012, 34, 6–17. [Google Scholar] [CrossRef]
- Goleniewski, G. Modelling cultivar mixtures using SEIR compartmental models. Biom. J. 1996, 38, 281–297. [Google Scholar] [CrossRef]
- Fishman, S.; Marcus, R.; Talpaz, H.; Bar-Joseph, M.; Oren, Y.; Salomon, R.; Zohar, M. Epidemiological and economic models for spread and control of citrus tristeza virus disease. Phytoparasitica 1983, 11, 39–49. [Google Scholar] [CrossRef]
- Fishman, S.; Marcus, R. A model for spread of plant disease with periodic removals. J. Math. Biol. 1984, 21, 149–158. [Google Scholar] [CrossRef]
- Chan, M.S.; Jeger, M.J. An analytical model of plant virus disease dynamics with roguing and replanting. J. Appl. Ecol. 1994, 31, 413–427. [Google Scholar] [CrossRef]
- Jeger, M.; Van Den Bosch, F.; Madden, L.; Holt, J. A model for analysing plant-virus transmission characteristics and epidemic development. Math. Med. Biol. A J. IMA 1998, 15, 1–18. [Google Scholar] [CrossRef]
- Jackson, M.; Chen-Charpentier, B.M. Modeling plant virus propagation with seasonality. J. Comput. Appl. Math. 2019, 345, 310–319. [Google Scholar] [CrossRef]
- Chen-Charpentier, B. Stochastic modeling of plant virus propagation with biological control. Mathematics 2021, 9, 456. [Google Scholar] [CrossRef]
- Rimbaud, L.; Dallot, S.; Gottwald, T.; Decroocq, V.; Jacquot, E.; Soubeyrand, S.; Thébaud, G. Sharka Epidemiology and Worldwide Management Strategies: Learning Lessons to Optimize Disease Control in Perennial Plants. Annu. Rev. Phytopathol. 2015, 53, 357–378. [Google Scholar] [CrossRef]
- Ritter, C.; Jansen, J.; Roche, S.; Kelton, D.; Adams, C.L.; Orsel, K.; Erskine, R.J.; Benedictus, G.; Lam, T.J.G.M.; Barkema, H.W. Invited review: Determinants of farmers’ adoption of management-based strategies for infectious disease prevention and control. J. Dairy Sci. 2016, 100, 3329–3347. [Google Scholar] [CrossRef]
- Hilaire, J.; Tindale, S.; Jones, G.; Pingarron-Cardenas, G.; Bacnik, K.; Ojo, M.; Frewer, L. Risk perception associated with an emerging agri-food risk in Europe: Plant viruses in agriculture. Agric. Food Secur. 2022, 11, 21. [Google Scholar] [CrossRef]
- Abtew, A.; Niassy, S.; Affognon, H.; Subramanian, S.; Kreiter, S.; Tropea Garzia, G.; Martin, T. Farmers’ knowledge and perception of grain legume pests and their management in the Eastern province of Kenya. Crop Prot. 2016, 87, 90–97. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive Differential Equations and Inclusions; Contemporary Mathematics and Its Applications; Hindawi Publishing Corporation: London, UK, 2006. [Google Scholar]
- Córdova-Lepe, F.; Pinto, M.; González-Olivares, E. A new class of differential equations with impulses at instants dependent on preceding pulses. Applications to management of renewable resources. Nonlinear Anal. Real World Appl. 2012, 13, 2313–2322. [Google Scholar] [CrossRef]
- Gutiérrez-Jara, J.P.; Córdova-Lepe, F.; Muñoz-Quezada, M.T.; Chowell, G. Pesticide application, educational treatment and infectious respiratory diseases: A mechanistic model with two impulsive controls. PLoS ONE 2020, 15, e0243048. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Córdova-Lepe, F.; Gutiérrez-Jara, J.P.; Vogt-Geisse, K. An SIR-type epidemiological model that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral factors. Sci. Rep. 2021, 11, 10170. [Google Scholar] [CrossRef]
- Gutiérrez-Jara, J.P.; Vogt-Geisse, K.; Cabrera, M. Collateral effects of insecticide-treated nets on human and environmental safety in an epidemiological model for malaria with human risk perception. Int. J. Environ. Res. Public Health 2022, 19, 16327. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Jara, J.P.; Vogt-Geisse, K.; Cabrera, M.; Córdova-Lepe, F.; Muñoz-Quezada, M.T. Effects of human mobility and behavior on disease transmission in a COVID-19 mathematical model. Sci. Rep. 2022, 12, 10840. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Fereres, A.; Cambra, M. Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae. Arch. Virol. 2009, 154, 1391–1399. [Google Scholar] [CrossRef]
- Gao, S.; Xia, L.; Liu, Y.; Xie, D. A Plant Virus Disease Model with Periodic Environment and Pulse Roguing. Stud. Appl. Math. 2016, 136, 357–381. [Google Scholar] [CrossRef]
- Nicaise, V. Crop immunity against viruses: Outcomes and future challenges. Front. Plant Sci. 2014, 5, 660. [Google Scholar] [CrossRef]
- Farhan, S.S.; Darwesh, D.; Nsr, M.M. Grafting “Pioneer” plum cultivar on two different rootstocks 1-Effect of different rootstock and grafting technique on “Pioneer” plum cultivar seedlings. Egypt. J. Agric. Res. 2022, 100, 653–660. [Google Scholar]
- Tedesco, S.; Fevereiro, P.; Kragler, F.; Pina, A. Plant grafting and graft incompatibility: A review from the grapevine perspective. Sci. Hortic. 2022, 299, 111019. [Google Scholar] [CrossRef]
- Svanes, E.; Johnsen, F.M. Environmental life cycle assessment of production, processing, distribution and consumption of apples, sweet cherries and plums from conventional agriculture in Norway. J. Clean. Prod. 2019, 238, 117773. [Google Scholar] [CrossRef]
- Li, S.; Travadon, R.; Trouillas, F. Seasonal susceptibility of sweet cherry pruning wounds to Calosphaeria pulchella, Cytospora sorbicola and Eutypa lata. Plant Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.J.; Ives, A.R. Identifying environmental factors affecting the production of pea aphid dispersal morphs in field populations. Ecol. Entomol. 2023, 48, 597–609. [Google Scholar] [CrossRef]
- Kansman, J.T.; Nersten, C.E.; Hermann, S.L. Smelling danger: Lady beetle odors affect aphid population abundance and feeding, but not movement between plants. Basic Appl. Ecol. 2023, 71, 1–8. [Google Scholar] [CrossRef]
- Hazir, A.; Yurtmen, M.; Fidan, H. Potential aphid (Hemiptera: Aphididae) vectors of Plum-pox virus (virus: Potyviridae) and status of Sharka disease in stone fruit orchards in the East Mediterranean region of Turkey. J. Agric. Sci. 2021, 27, 484–492. [Google Scholar] [CrossRef]
- Saleesha, F.M.A.; Kennedy, J.; Rajabaskar, D.; Geethalakshmi, V. Temperature dependent development of Myzus persicae Sulzer (Hemiptera: Aphididae) in Cauliflower (Brassica oleracea var. botrytis). Agric. Res. 2022, 11, 488–498. [Google Scholar] [CrossRef]
- Bernardi, D.; Garcia, M.S.; Botton, M.; Nava, D.E. Biology and fertility life table of the green aphid Chaetosiphon fragaefolli on strawberry cultivars. J. Insect Sci. 2012, 12, 28. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Gutiérrez-Jara, J.P.; Buralli, R.J.; Zúñiga-Venegas, L.; Muñoz, M.P.; Ponce, K.V.; Iglesias, V. Longitudinal exposure to pyrethroids (3-PBA and trans-DCCA) and 2, 4-D herbicide in rural schoolchildren of Maule region, Chile. Sci. Total Environ. 2020, 749, 141512. [Google Scholar] [CrossRef]
- Cinar, C.T.; Gazel, M.; Kaya, K.; Olmos, A.; Caglayan, K. Susceptibility of different prunus rootstocks to natural infection of plum pox virus-Turkey (PPV-T) in Central Anatolia. Physiol. Mol. Plant Pathol. 2022, 119, 101837. [Google Scholar] [CrossRef]
- Yang, Q.; Umina, P.A.; Wei, S.; Bass, C.; Yu, W.; Robinson, K.L.; Gill, A.; Zhan, D.; Ward, S.E.; van Rooyen, A.; et al. Diversity and Regional Variation of Endosymbionts in the Green Peach Aphid, Myzus persicae (Sulzer). Diversity 2023, 15, 206. [Google Scholar] [CrossRef]
- De Mori, G.; Savazzini, F.; Geuna, F. Chapter 10—Molecular tools to investigate Sharka disease in Prunus species. In Applied Plant Biotechnology for Improving Resistance to Biotic Stress; Poltronieri, P., Hong, Y., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 203–223. [Google Scholar] [CrossRef]
- Espinoza, C.; Bascou, B.; Calvayrac, C.; Bertrand, C. Deciphering Prunus Responses to PPV Infection: A Way toward the Use of Metabolomics Approach for the Diagnostic of Sharka Disease. Metabolites 2021, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Chaschatzis, C.; Karaiskou, C.; Mouratidis, E.G.; Karagiannis, E.; Sarigiannidis, P.G. Detection and Characterization of Stressed Sweet Cherry Tissues Using Machine Learning. Drones 2022, 6, 3. [Google Scholar] [CrossRef]
- Kil, E.J.; Ho, P.T.; Fadhila, C.; Lal, A.; Vo, T.T.B.; Kim, M.; Lee, S. Plum pox virus: Diagnosis and spread inhibition by weed control. J. Plant Dis. Prot. 2021, 128, 1091–1099. [Google Scholar] [CrossRef]
- Collum, T.D.; Stone, A.L.; Sherman, D.J.; Damsteegt, V.D.; Schneider, W.L.; Rogers, E.E. Viral Reservoir Capacity of Wild Prunus Alternative Hosts of Plum Pox Virus Through Multiple Cycles of Transmission and Dormancy. Plant Dis. 2022, 106, 101–106. [Google Scholar] [CrossRef]
- Zhou, J.; Xing, F.; Wang, H.; Li, S. Occurrence, Distribution, and Genomic Characteristics of Plum Pox Virus Isolates from Common Apricot (Prunus armeniaca) and Japanese Apricot (Prunus mume) in China. Plant Dis. 2021, 105, 3474–3480. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, Y.; Li, B.; Li, C.; Shi, Q.; Zhu-Salzman, K.; Ge, F.; Sun, Y. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses. Proc. Natl. Acad. Sci. USA 2023, 120, e2222040120. [Google Scholar] [CrossRef]
Variable | Description | Units * |
---|---|---|
Susceptible trees at time t | T | |
Exposed trees at time t | T | |
Infectious symptomatic trees at time t | T | |
Infectious asymptomatic trees at time t | T | |
Removed (uprooted) trees at time t | V | |
Susceptible vectors at time t | V | |
Infectious vectors at time t | V | |
Human risk perception to Sharka disease at time t | R |
Param. | Description | Units * | Baseline | Value | Ref. + |
---|---|---|---|---|---|
Tree | |||||
Transmission rate to tree through vector, on season . | [31] | ||||
Transmission rate to tree through pruning, on season . | |||||
Average virus-PPV incubation time. | d | [32] | |||
Average time until a symptomatic infectious tree is uprooted. | d | C.A. | |||
Average time until an asymptomatic infectious tree is uprooted. | d | 0 | C.A. | ||
Transition rate from symptomatic to asymptomatic infectious. | [6] | ||||
Transition rate from asymptomatic to symptomatic infectious. | [6] | ||||
Replacement rate of removed trees. | [33] | ||||
Recruitment rate. | |||||
Grafting rate. | [34,35] | ||||
Proportion of infected grafts. | Unitless | C.A. | |||
Natural mortality rate | [36] | ||||
Time instants where grafting occurs. | d | 0 | [34,35] | ||
Time instants where pruning occurs. | d | , | [37] | ||
Vector | |||||
Transmission rate to vector, on season . | [31] | ||||
Vector–host transmission rate reduction due to vector movement. | Unitless | [38,39] | |||
Average time a vector remains infectious. | d | [40] | |||
Recruitment rate. | |||||
Natural mortality rate. | [41,42] | ||||
Mortality rate increase factor, on season . | Unitless | C.A. | |||
Time instants where vector control occurs. | d | ; , . | [33] | ||
Human | |||||
Rate of resistance to change risk perception. | 0.01 | [29,30,43] | |||
Per capita reaction rate to change risk perception. | 0.01 | [29,30,43] | |||
Natural risk perception. | R | 0.5 | [29,30,43] | ||
Risk perception increase factor. | Unitless | 0.1 | C.A. | ||
Time instants where educational prevention campaigns occur. | d | , | C.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Jara, J.P.; Vogt-Geisse, K.; Correa, M.C.G.; Vilches-Ponce, K.; Pérez, L.M.; Chowell, G. Modeling the Impact of Agricultural Mitigation Measures on the Spread of Sharka Disease in Sweet Cherry Orchards. Plants 2023, 12, 3442. https://doi.org/10.3390/plants12193442
Gutiérrez-Jara JP, Vogt-Geisse K, Correa MCG, Vilches-Ponce K, Pérez LM, Chowell G. Modeling the Impact of Agricultural Mitigation Measures on the Spread of Sharka Disease in Sweet Cherry Orchards. Plants. 2023; 12(19):3442. https://doi.org/10.3390/plants12193442
Chicago/Turabian StyleGutiérrez-Jara, Juan Pablo, Katia Vogt-Geisse, Margarita C. G. Correa, Karina Vilches-Ponce, Laura M. Pérez, and Gerardo Chowell. 2023. "Modeling the Impact of Agricultural Mitigation Measures on the Spread of Sharka Disease in Sweet Cherry Orchards" Plants 12, no. 19: 3442. https://doi.org/10.3390/plants12193442
APA StyleGutiérrez-Jara, J. P., Vogt-Geisse, K., Correa, M. C. G., Vilches-Ponce, K., Pérez, L. M., & Chowell, G. (2023). Modeling the Impact of Agricultural Mitigation Measures on the Spread of Sharka Disease in Sweet Cherry Orchards. Plants, 12(19), 3442. https://doi.org/10.3390/plants12193442