Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses
Abstract
:1. Introduction
2. The Exploitation of the CWRs in Specific Cultivated Species
2.1. Tomato
2.1.1. Drought Stress Tolerance
2.1.2. Salt Stress Tolerance
2.1.3. Heat/Cold Stress Tolerance
2.2. Alfalfa
2.2.1. Drought Stress Tolerance
2.2.2. Salt Stress Tolerance
2.2.3. Cold Stress Tolerance
2.3. Grain Legumes
2.3.1. Cowpea
Drought and Other Types of Stress Tolerance
Salt Stress Tolerance
2.3.2. Groundnut
Drought Stress Tolerance
Heat/Cold Stress Tolerance
Combined Abiotic Stress Tolerance
2.4. Woody Perennial Crops
2.4.1. Apple
2.4.2. Cranberry
2.4.3. Grapevine
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022.
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022. [Google Scholar]
- United Nations Convention to Combat Disertification. The Global Land Outlook, 1st ed.; United Nations Convention to Combat Disertification: Bonn, Germany, 2017. [Google Scholar]
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security: 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Müller, J.V.; Toll, J. Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.-B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Ali, S.; Manghwar, H.; Saqib, S.; Ullah, F.; Ayaz, A.; Zaman, W. Melatonin Function and Crosstalk with Other Phytohormones under Normal and Stressful Conditions. Genes 2022, 13, 1699. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, N.; Iqbal, S.; Hayat, F.; Raziq, A.; Ayaz, A.; Zaman, W. Melatonin in Micro-Tom Tomato: Improved Drought Tolerance via the Regulation of the Photosynthetic Apparatus, Membrane Stability, Osmoprotectants, and Root System. Life 2022, 12, 1922. [Google Scholar] [CrossRef]
- Renzi, J.P.; Coyne, C.J.; Berger, J.; von Wettberg, E.; Nelson, M.; Ureta, S.; Hernández, F.; Smýkal, P.; Brus, J. How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments? Front. Plant Sci. 2022, 13, 886162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B.-H. Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 2017, 10, 5–24. [Google Scholar] [CrossRef] [PubMed]
- Smýkal, P.; Nelson, M.N.; Berger, J.D.; Von Wettberg, E.J.B. The Impact of Genetic Changes during Crop Domestication. Agronomy 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.; Singh, V.; Muthusamy, V.; Wani, S. Harnessing Crop Wild Relatives for Crop Improvement. LS Int. J. Life Sci. 2017, 6, 73. [Google Scholar] [CrossRef]
- Kashyap, A.; Garg, P.; Tanwar, K.; Sharma, J.; Gupta, N.C.; Ha, P.T.T.; Bhattacharya, R.C.; Mason, A.S.; Rao, M. Strategies for utilization of crop wild relatives in plant breeding programs. Theor. Appl. Genet. 2022, 135, 4151–4167. [Google Scholar] [CrossRef]
- Quezada-Martinez, D.; Addo Nyarko, C.P.; Schiessl, S.V.; Mason, A.S. Using wild relatives and related species to build climate resilience in Brassica crops. Theor. Appl. Genet. 2021, 134, 1711–1728. [Google Scholar] [CrossRef]
- Araújo, S.S.; Beebe, S.; Crespi, M.; Delbreil, B.; González, E.M.; Gruber, V.; Lejeune-Henaut, I.; Link, W.; Monteros, M.J.; Prats, E.; et al. Abiotic Stress Responses in Legumes: Strategies Used to Cope with Environmental Challenges. Crit. Rev. Plant Sci. 2015, 34, 237–280. [Google Scholar] [CrossRef]
- Hichri, I.; Muhovski, Y.; Žižková, E.; Dobrev, P.I.; Gharbi, E.; Franco-Zorrilla, J.M.; Lopez-Vidriero, I.; Solano, R.; Clippe, A.; Errachid, A.; et al. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato. Front. Plant Sci. 2017, 8, 1343. [Google Scholar] [CrossRef]
- Barone, A.; Chiusano, M.L.; Ercolano, M.R.; Giuliano, G.; Grandillo, S.; Frusciante, L. Structural and functional genomics of tomato. Int. J. Plant Genom. 2008, 2008, 820274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Kissoudis, C.; Yan, Z.; Visser, R.G.F.; van der Linden, G. Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. Plant J. 2018, 93, 781–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redden, R.; Yadav, S.S.; Maxted, N.; Dulloo, M.E.; Guarino, L.; Smith, P. Crop Wild Relatives and Climate Change; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ram, H.H. Vegetable Breeding: Principles and Practices; Kalyani Publishers: New Delhi, India, 2005. [Google Scholar]
- Rai, N.; Rai, M. Heterosis Breeding in Vegetable Crops; New India Publishing Agency: New Delhi, India, 2006. [Google Scholar]
- O’Connell, M.A.; Medina, A.L.; Sanchez, P.; Trevino, M. Molecular genetics of drought resistance response in tomato and related species. In Genetic Improvement of Solanaceous Crops, Volume 2: Tomato; Razdan, M.K., Mattoo, A.K., Eds.; Science Publishers: Enfield, CT, USA, 2007; pp. 261–283. [Google Scholar]
- Krishna, R.; Ansari, W.A.; Soumia, P.S.; Yadav, A.; Jaiswal, D.K.; Kumar, S.; Singh, A.K.; Singh, M.; Verma, J.P. Biotechnological Interventions in Tomato (Solanum lycopersicum) for Drought Stress Tolerance: Achievements and Future Prospects. BioTech 2022, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Pailles, Y.; Awlia, M.; Julkowska, M.; Passone, L.; Zemmouri, K.; Negrão, S.; Schmöckel, S.M.; Tester, M. Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands1 [OPEN]. Plant Physiol. 2019, 182, 534–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.K. Genetic Resources of Solanaceous Vegetables in India; Indian Institute of Vegetable Research: Jakkhini, India, 2011.
- Molitor, C.; Kurowski, T.J.; Fidalgo de Almeida, P.M.; Eerolla, P.; Spindlow, D.J.; Kashyap, S.P.; Singh, B.; Prasanna, H.C.; Thompson, A.J.; Mohareb, F.R. De novo genome assembly of Solanum sitiens reveals structural variation associated with drought and salinity tolerance. Bioinformatics 2021, 37, 1941–1945. [Google Scholar] [CrossRef]
- Foolad, M.R.; Chen, F.Q.; Lin, G.Y. RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor. Appl. Genet. 1998, 97, 1133–1144. [Google Scholar] [CrossRef]
- Foolad, M.R.; Jones, R.A. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor. Appl. Genet. 1993, 87, 184–192. [Google Scholar] [CrossRef]
- Frary, A.; Göl, D.; Keleş, D.; Ökmen, B.; Pınar, H.; Şığva, H.Ö.; Yemenicioğlu, A.; Doğanlar, S. Salt tolerance in Solanum pennellii: Antioxidant response and related QTL. BMC Plant Biol. 2010, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Rao, E.S.; Kadirvel, P.; Symonds, R.C.; Geethanjali, S.; Thontadarya, R.N.; Ebert, A.W. Variations in DREB1A and VP1.1 Genes Show Association with Salt Tolerance Traits in Wild Tomato (Solanum pimpinellifolium). PLoS ONE 2015, 10, e0132535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalo, M.J.; Nájera, I.; Baixauli, C.; Gil, D.; Montoro, T.; Soriano, V.; Olivieri, F.; Rigano, M.M.; Ganeva, D.; Grozeva-Tileva, S.; et al. Identification of tomato accessions as source of new genes for improving heat tolerance: From controlled experiments to field. BMC Plant Biol. 2021, 21, 345. [Google Scholar] [CrossRef] [PubMed]
- Golam, F.; Prodhan, Z.H.; Nezhadahmadi, A.; Rahman, M. Heat Tolerance in Tomato. Life Sci. J. 2012, 99, 1936–1950. [Google Scholar]
- Nahar, K. Effect of Water Stress on Moisture Content Distribution in Soil and Morphological Characters of Two Tomato (Lycopersicon esculentum Mill) Cultivars. J. Sci. Res. 2011, 3, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Young, N.D.; Debellé, F.; Oldroyd, G.E.D.; Geurts, R.; Cannon, S.B.; Udvardi, M.K.; Benedito, V.A.; Mayer, K.F.X.; Gouzy, J.; Schoof, H.; et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, M.; Zhang, S.; Du, X.; Mateo, R.G.; Guo, W.; Li, A.; Wang, Z.; Wu, S.; Chen, J.; Liu, J.; et al. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Mol. Ecol. Resour. 2021, 21, 1641–1657. [Google Scholar] [CrossRef]
- Wang, T.; Ren, L.; Li, C.; Zhang, D.; Zhang, X.; Zhou, G.; Gao, D.; Chen, R.; Chen, Y.; Wang, Z.; et al. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biol. 2021, 19, 96. [Google Scholar] [CrossRef]
- Cui, J.; Lu, Z.; Wang, T.; Chen, G.; Mostafa, S.; Ren, H.; Liu, S.; Fu, C.; Wang, L.; Zhu, Y.; et al. The genome of Medicago polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume. Hortic. Res. 2021, 8, 47. [Google Scholar] [CrossRef]
- Jenczewski, E.; Prosperi, J.M.; Ronfort, J. Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers andquantitative traits. Am. J. Bot. 1999, 86, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Naito, K.; Wakatake, T.; Shibata, T.F.; Iseki, K.; Shigenobu, S.; Takahashi, Y.; Ogiso-Tanaka, E.; Muto, C.; Teruya, K.; Shiroma, A.; et al. Genome sequence of 12 Vigna species as a knowledge base of stress tolerance and resistance. tommoka 2022. [Google Scholar] [CrossRef]
- Van Zonneveld, M.; Rakha, M.; Tan, S.Y.; Chou, Y.Y.; Chang, C.H.; Yen, J.Y.; Schafleitner, R.; Nair, R.; Naito, K.; Solberg, S. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 2020, 10, 2111. [Google Scholar] [CrossRef] [Green Version]
- Chankaew, S.; Isemura, T.; Naito, K.; Ogiso-Tanaka, E.; Tomooka, N.; Somta, P.; Kaga, A.; Vaughan, D.A.; Srinives, P. QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor. Appl. Genet. 2014, 127, 691–702. [Google Scholar] [CrossRef]
- Sanjeewani, B.L.G.; Jayasuriya, K.M.G.G.; Kirthisinghe, J.P. Effect of salinity on seed germination of Vigna marina a wild relative of crop Vigna species using hydrotime modelling. In Proceedings of the 17th International Forestry and Environment Symposium, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, 16–17 November 2012. [Google Scholar]
- Yoshida, Y.; Marubodee, R.; Ogiso-Tanaka, E.; Iseki, K.; Isemura, T.; Takahashi, Y.; Muto, C.; Naito, K.; Kaga, A.; Okuno, K.; et al. Salt tolerance in wild relatives of adzuki bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet. Resour. Crop Evol. 2016, 63, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Iseki, K.; Takahashi, Y.; Muto, C.; Naito, K.; Tomooka, N. Diversity and Evolution of Salt Tolerance in the Genus Vigna. PLoS ONE 2016, 11, e0164711. [Google Scholar] [CrossRef]
- Tomooka, N.; Naito, K.; Kaga, A.; Sakai, H.; Isemura, T.; Ogiso-Tanaka, E.; Iseki, K.; Takahashi, Y. Evolution, domestication and neo-domestication of the genus Vigna. Plant Genet. Resour. 2014, 12, S168–S171. [Google Scholar] [CrossRef]
- Takahashi, Y.; Somta, P.; Muto, C.; Iseki, K.; Naito, K.; Pandiyan, M.; Natesan, S.; Tomooka, N. Novel Genetic Resources in the Genus Vigna Unveiled from Gene Bank Accessions. PLoS ONE 2016, 11, e0147568. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.; Williams, W.J.T.G. Tolerance of some tropical legumes to six months of simulated waterlogging. Trop. Grassl. 1981, 15, 39–43. [Google Scholar]
- Cason, J.M. Introgression Pathway for Drought Tolerance in Peanut (Arachis hypogea L.). Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2018. [Google Scholar]
- Rampuria, S.; Bag, P.; Rogan, C.J.; Sharma, A.; Gassmann, W.; Kirti, P.B. Pathogen-induced AdDjSKI of the wild peanut, Arachis diogoi, potentiates tolerance of multiple stresses in E. coli and tobacco. Plant Sci. Int. J. Exp. Plant Biol. 2018, 272, 62–74. [Google Scholar] [CrossRef]
- Vinson, C.C.; Mota, A.P.Z.; Oliveira, T.N.; Guimaraes, L.A.; Leal-Bertioli, S.C.M.; Williams, T.C.R.; Nepomuceno, A.L.; Saraiva, M.A.P.; Araujo, A.C.G.; Guimaraes, P.M.; et al. Early responses to dehydration in contrasting wild Arachis species. PLoS ONE 2018, 13, e0198191. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Li, E.; Song, H.; Du, G.; Li, S.; Zhu, H.; Chen, G.; Zhao, C.; Qiao, L.; Wang, J.; et al. Genome-wide identification and characterization of nonspecific lipid transfer protein (nsLTP) genes in Arachis duranensis. Genomics 2020, 112, 4332–4341. [Google Scholar] [CrossRef]
- Zhao, C.; He, L.; Xia, H.; Zhou, X.; Geng, Y.; Hou, L.; Li, P.; Li, G.; Zhao, S.; Ma, C.; et al. De novo full length transcriptome analysis of Arachis glabrata provides insights into gene expression dynamics in response to biotic and abiotic stresses. Genomics 2021, 113, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Brasileiro, A.C.; Morgante, C.V.; Araujo, A.C.; Leal-Bertioli, S.C.; Silva, A.K.; Martins, A.C.; Vinson, C.C.; Santos, C.M.; Bonfim, O.; Togawa, R.C.; et al. Transcriptome Profiling of Wild Arachis from Water-Limited Environments Uncovers Drought Tolerance Candidate Genes. Plant Mol. Biol. Rep. 2015, 33, 1876–1892. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Song, H.; Li, C.; Li, P.; Li, A.; Guan, H.; Hou, L.; Wang, X. Genome-wide dissection of the heat shock transcription factor family genes in Arachis. Front. Plant Sci. 2017, 8, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nautiyal, P.C.; Rajgopal, K.; Zala, P.V.; Pujari, D.S.; Basu, M.; Dhadhal, B.A.; Nandre, B.M. Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations. Euphytica 2008, 159, 43–57. [Google Scholar] [CrossRef]
- Yuan, C.; Li, C.; Lu, X.; Zhao, X.; Yan, C.; Wang, J.; Sun, Q.; Shan, S. Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut. BMC Plant Biol. 2020, 20, 454. [Google Scholar] [CrossRef]
- Martins, A.C.Q.; Mota, A.P.Z.; Carvalho, P.; Passos, M.A.S.; Gimenes, M.A.; Guimaraes, P.M.; Brasileiro, A.C.M. Transcriptome Responses of Wild Arachis to UV-C Exposure Reveal Genes Involved in General Plant Defense and Priming. Plants 2022, 11, 408. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Y.; Shao, Y.; Li, M.; Ma, F. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh. Gene 2015, 561, 225–234. [Google Scholar] [CrossRef]
- Volk, G.M.; Chao, C.T.; Norelli, J.; Brown, S.K.; Fazio, G.; Peace, C.; McFerson, J.; Zhong, G.-Y.; Bretting, P. The vulnerability of US apple (Malus) genetic resources. Genet. Resour. Crop Evol. 2015, 62, 765–794. [Google Scholar] [CrossRef]
- Zhao, K.; Shen, X.; Yuan, H.; Liu, Y.; Liao, X.; Wang, Q.; Liu, L.; Li, F.; Li, T. Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem. Plant Cell Physiol. 2013, 54, 1415–1430. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Liang, D.; Wang, P.; Liu, J.; Ma, F. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol. Genet. Genom. 2012, 287, 423–436. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Zhang, D.; Han, M.; Jin, X.; Zhao, C.; Wang, S.; Xing, L.; Ma, J.; Ji, J.; et al. Sequencing of a Wild Apple (Malus baccata) Genome Unravels the Differences Between Cultivated and Wild Apple Species Regarding Disease Resistance and Cold Tolerance. G3 Genes Genomes Genet. 2019, 9, 2051–2060. [Google Scholar] [CrossRef]
- Kawash, J.; Colt, K.; Hartwick, N.T.; Abramson, B.W.; Vorsa, N.; Polashock, J.J.; Michael, T.P. Contrasting a reference cranberry genome to a crop wild relative provides insights into adaptation, domestication, and breeding. PLoS ONE 2022, 17, e0264966. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, P.; Chen, C.; Zhang, J. VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera. Plant Cell Rep. 2022. [Google Scholar] [CrossRef]
- Carrasco, D.; Zhou-Tsang, A.; Rodriguez-Izquierdo, A.; Ocete, R.; Revilla, M.A.; Arroyo-García, R. Coastal Wild Grapevine Accession (Vitis vinifera L. ssp. sylvestris) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110. Plants 2022, 11, 2688. [Google Scholar] [CrossRef]
- Fischer, I.; Steige, K.A.; Stephan, W.; Mboup, M. Sequence Evolution and Expression Regulation of Stress-Responsive Genes in Natural Populations of Wild Tomato. PLoS ONE 2013, 8, e78182. [Google Scholar] [CrossRef] [Green Version]
- Eshed, Y.; Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995, 141, 1147–1162. [Google Scholar] [CrossRef]
- Sellitto, S.; Chiaiese, P.; Rigano, M.; Barone, A.; Frusciante, L.; Di Matteo, A. Dissecting drought tolerance in a tomato introgression line. In Proceedings of the 57th Italian Society of Agricultural Genetics Annual Congress, Foggia, Italy, 16–19 September 2013. Poster Communication Abstract—8.22. [Google Scholar]
- Solankey, S.S.; Singh, R.; Baranwal, D.; Singh, D.K. Genetic Expression of Tomato for Heat and Drought Stress Tolerance: An Overview. Int. J. Veg. Sci. 2015, 21, 496–515. [Google Scholar] [CrossRef]
- Razali, R.; Bougouffa, S.; Morton, M.J.L.; Lightfoot, D.J.; Alam, I.; Essack, M.; Arold, S.T.; Kamau, A.A.; Schmöckel, S.M.; Pailles, Y.; et al. The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. Front. Plant Sci. 2018, 9, 1402. [Google Scholar] [CrossRef] [Green Version]
- Böndel, K.B.; Nosenko, T.; Stephan, W. Signatures of natural selection in abiotic stress-responsive genes of Solanum chilense. R. Soc. Open Sci. 2018, 5, 171198. [Google Scholar] [CrossRef] [Green Version]
- Salinas-Cornejo, J.; Madrid-Espinoza, J.; Ruiz-Lara, S. Identification and transcriptional analysis of SNARE vesicle fusion regulators in tomato (Solanum lycopersicum) during plant development and a comparative analysis of the response to salt stress with wild relatives. J. Plant Physiol. 2019, 242, 153018. [Google Scholar] [CrossRef]
- Foolad, M.R.; Subbiah, P.; Zhang, L. Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions. Int. J. Plant Genom. 2007, 2007, 97386. [Google Scholar] [CrossRef]
- Bretó, M.P.; Aśins, M.J.; Carbonell, E.A. Salt tolerance in Lycopersicon species. III. Detection of quantitative trait loci by means of molecular markers. Theor. Appl. Genet. Theor. Angew. Genet. 1994, 88, 395–401. [Google Scholar] [CrossRef]
- Foolad, M.R.; Lin, G.Y.; Chen, F.Q. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed. 1999, 118, 167–173. [Google Scholar] [CrossRef]
- Kashyap, S.P.; Kumari, N.; Mishra, P.; Moharana, D.P.; Aamir, M. Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: Perspectives and challenges. Genet. Resour. Crop Evol. 2021, 68, 2207–2233. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Ungelenk, S.; Moayed, F.; Ho, C.-T.; Grousl, T.; Scharf, A.; Mashaghi, A.; Tans, S.; Mayer, M.P.; Mogk, A.; Bukau, B. Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat. Commun. 2016, 7, 13673. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, C.M.; Wang, Y.J.; Liu, J. Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao J. Plant Physiol. Mol. Biol. 2005, 31, 167–174. [Google Scholar]
- Elkelish, A.; Qari, S.H.; Mazrou, Y.S.A.; Abdelaal, K.A.A.; Hafez, Y.M.; Abu-Elsaoud, A.M.; Batiha, G.E.; El-Esawi, M.A.; El Nahhas, N. Exogenous Ascorbic Acid Induced Chilling Tolerance in Tomato Plants Through Modulating Metabolism, Osmolytes, Antioxidants, and Transcriptional Regulation of Catalase and Heat Shock Proteins. Plants 2020, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.A.; Tanveer, M.; Hussain, S.; Bao, M.; Wang, L.; Khan, I.; Ullah, E.; Tung, S.A.; Samad, R.A.; Shahzad, B. Cadmium toxicity in Maize (Zea mays L.): Consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ. Sci. Pollut. Res. Int. 2015, 22, 17022–17030. [Google Scholar] [CrossRef]
- Benedito, V.A.; Torres-Jerez, I.; Murray, J.D.; Andriankaja, A.; Allen, S.; Kakar, K.; Wandrey, M.; Verdier, J.; Zuber, H.; Ott, T.; et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. Cell Mol. Biol. 2008, 55, 504–513. [Google Scholar] [CrossRef]
- Bouton, J.H. Breeding lucerne for persistence. J. Crop Pasture Sci. 2012, 63, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Collino, D.; Dardanelli, J.; de Luca, M.; Racca, R. Temperature and water availability effects on radiation and water use efficiencies in alfalfa (Medicago sativa L.). Aust. J. Exp. Agric. 2005, 45, 383–390. [Google Scholar] [CrossRef]
- Cornacchione, M.V.; Suarez, D.L. Emergence, Forage Production, and Ion Relations of Alfalfa in Response to Saline Waters. Crop Sci. 2015, 55, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Dear, B.; Reed, K.; Craig, A. Outcomes of the search for new perennial and salt tolerant pasture plants for southern Australia. Aust. J. Exp. Agric 2008, 48, 576–588. [Google Scholar] [CrossRef]
- Zhang, W.H.; Longyu, H.; Yang, J.; Shihuan, S.; Mao, X.; Zhang, Q.; Bai, W.; Pan, Q.; Zhou, Q.J.C.S.B. Establishment and management of alfalfa pasture in cold regions of China. Chin. Sci. Bull. 2018, 63, 1651–1663. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Ren, X.L.; Qi, X.T.; Yang, Z.M.; Feng, X.L.; Zhang, T.; Wang, H.J.; Liang, P.; Jiang, Q.Y.; Yang, W.J.; et al. Evolution of the CBL and CIPK gene families in Medicago: Genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress. BMC Plant Biol. 2022, 22, 512. [Google Scholar] [CrossRef]
- Small, E.; Jomphe, M. A synopsis of the genus Medicago (Leguminosae). Can. J. Bot. 1989, 67, 3260–3294. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, Z.Y.; Cai, L.Y.; Shi, W.G.; Mi, F.G.; Shi, F.L. Analysis of genetic diversity of Ruthenia Medic (Medicago ruthenica (L.) Trautv.) in Inner Mongolia using ISSR and SSR markers. Genet. Resour. Crop Evol. 2013, 60, 1687–1694. [Google Scholar] [CrossRef]
- Campbell, J.; Pecaut, M.; Luttges, M. Prevalence and arrangement of lignified vascular elements in 6-day-old alfalfa (Medicago sativa L.) seedlings raised in reduced gravity. J. Plant Physiol. 1996, 149, 539–547. [Google Scholar] [CrossRef]
- Shu, Y.; Li, W.; Zhao, J.; Liu, Y.; Guo, C. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica. Genet. Mol. Biol. 2018, 41, 638–648. [Google Scholar] [CrossRef]
- Wu, R.; Xu, B.; Shi, F. MrERF, MrbZIP, and MrSURNod of Medicago ruthenica Are Involved in Plant Growth and Abiotic Stress Response. Front. Plant Sci. 2022, 13, 907674. [Google Scholar] [CrossRef]
- Quan, W.; Liu, X.; Wang, L.; Yin, M.; Yang, L.; Chan, Z. Ectopic expression of Medicago truncatula homeodomain finger protein, MtPHD6, enhances drought tolerance in Arabidopsis. BMC Genom. 2019, 20, 982. [Google Scholar] [CrossRef] [Green Version]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, S.; Pasquet, R.S.; Papa, R.; Gepts, P. AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 2002, 104, 358–366. [Google Scholar] [CrossRef]
- Herniter, I.A.; Muñoz-Amatriaín, M.; Close, T.J. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legume Sci. 2020, 2, e57. [Google Scholar] [CrossRef]
- Huynh, B.-L.; Close, T.J.; Roberts, P.A.; Hu, Z.; Wanamaker, S.; Lucas, M.R.; Chiulele, R.; Cissé, N.; David, A.; Hearne, S.; et al. Gene Pools and the Genetic Architecture of Domesticated Cowpea. Plant Genome 2013, 6, plantgenome2013.03.0005. [Google Scholar] [CrossRef] [Green Version]
- Vaillancourt, R.E.; Weeden, N.F. Chloroplast DNA polymorphism suggest Nigerian center of domestication for the cowpea Vigna unguiculata (Leguminosae). Am. J. Bot. 1992, 79, 1194–1199. [Google Scholar] [CrossRef]
- Pratap, A.; Kumar, J. Alien Gene Transfer in Crop Plants: An Introduction. In Alien Gene Transfer in Crop Plants; Springer: New York, NY, USA, 2014; Volume 1. [Google Scholar] [CrossRef]
- Maréchal, R.; Mascherpa, J.M.; Stainier, F. Extude taxonomique d’un groupe d’espèces des genres Phaseolus et Vigna (V. unguiculata) sur la base de données morphologiques et polliniques, traitées pour l’analyse informatique. Boissiera 1978, 28, 160–272. [Google Scholar]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.C.; et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. Cell Mol. Biol. 2019, 98, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Pan, L.; Zhang, R.; Ni, X.; Wang, Y.; Dong, X.; Gao, Y.; Zhang, Z.; Kui, L.; Li, Y.; et al. The genome assembly of asparagus bean, Vigna unguiculata ssp. sesquipedialis. Sci. Data 2019, 6, 124. [Google Scholar] [CrossRef]
- Srivastava, R.; Kobayashi, Y.; Koyama, H.; Sahoo, L. Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. J. Integr. Plant Biol. 2022. [Google Scholar] [CrossRef]
- Matos, M.; Benko-Iseppon, A.M.; Bezerra-Neto, J.P.; Ferreira-Neto, J.R.C.; Wang, Y.; Liu, H.; Pandolfi, V.; Amorim, L.L.B.; Willadino, L.; do Vale Amorim, T.C.; et al. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration. Gene 2022, 823, 146377. [Google Scholar] [CrossRef]
- Sadhukhan, A.; Kobayashi, Y.; Kobayashi, Y.; Tokizawa, M.; Yamamoto, Y.Y.; Iuchi, S.; Koyama, H.; Panda, S.K.; Sahoo, L. VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta 2014, 240, 645–664. [Google Scholar] [CrossRef] [PubMed]
- Garantizado, F.E.A.; Costa, J.H.; Maia, I.G.; Melo, M.D.F. Expressão diferencial dos genes VuUCP1a e VuUCP1b em caupi sob estresse salino. Rev. Ciência Agronômica 2011, 42, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.H.; Mota, E.F.; Cambursano, M.V.; Lauxmann, M.A.; de Oliveira, L.M.; Silva Lima Mda, G.; Orellano, E.G.; Fernandes de Melo, D. Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata. J. Plant Physiol. 2010, 167, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Simoes-Araujo, J.L.; Alves-Ferreira, M.; Rumjanek, N.G.; Margis-Pinheiro, M. VuNIP1 (NOD26-like) and VuHSP17.7 gene expression are regulated in response to heat stress in cowpea nodule. Environ. Exp. Bot. 2008, 63, 256–265. [Google Scholar] [CrossRef]
- Selinga, T.I.; Maseko, S.T.; Gabier, H.; Rafudeen, M.S.; Muasya, A.M.; Crespo, O.; Ogola, J.B.O.; Valentine, A.J.; Ottosen, C.-O.; Rosenqvist, E.; et al. Regulation and physiological function of proteins for heat tolerance in cowpea (Vigna unguiculata) genotypes under controlled and field conditions. Front. Plant Sci. 2022, 13, 954527. [Google Scholar] [CrossRef]
- Gazendam, I. Identification and functional evaluation of a drought-induced “late embryogenesis abundant” gene from cowpea plants. Ph.D. Thesis, Faculty of Natural and Agricultural Sciences Department of Plant Science, University of Pretoria, Pretoria, South Africa, 2012. [Google Scholar]
- Iseki, K.; Takahashi, Y.; Muto, C.; Naito, K.; Tomooka, N. Diversity of Drought Tolerance in the Genus Vigna. Front. Plant Sci. 2018, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Tomooka, N.; Kaga, A.; Isemura, T.; Vaughan, D.; Srinives, P.; Somta, P.; Thadavong, S.; Bounphanousay, C.; Kanyavong, K.; Inthapanya, P.; et al. Vigna Genetic Resources. In Proceedings of the 14th NIAS International Workshop on Genetic Resources—Genetic Resources and Comparative Genomics of Legumes (Glycine and Vigna), Tsukuba, Japan, 18 October 2011; National Institute of Agrobiological Science: Tsukuba, Japan, 2011. [Google Scholar]
- Yoshida, J.; Tomooka, N.; Yee Khaing, T.; Shantha, P.G.S.; Naito, H.; Matsuda, Y.; Ehara, H. Unique responses of three highly salt-tolerant wild Vigna species against salt stress. Plant Prod. Sci. 2020, 23, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Iseki, K.; Marubodee, R.; Ehara, H.; Tomooka, N. A rapid quantification method for tissue Na+ and K+ concentrations in salt-tolerant and susceptible accessions in Vigna vexillata (L.) A. Rich. Plant Prod. Sci. 2017, 20, 144–148. [Google Scholar] [CrossRef]
- Garba, M.; Pasquet, R. The Vigna vexillata (L.) A. Rich. gene pool. In Proceedings of the Tuberous Legumes: International Symposium, Copenhagen, Denmark, 5–8 August 1996; pp. 61–71. [Google Scholar]
- Padulosi, S.; Ng, N.Q. Origin, taxonomy and morphology of Vigna unguiculata (L.) Walp. In Advances in Cowpea Research; Singh, B.B., Mohan Raji, D.R., Dashiel, K.E., Eds.; IITA: Ibadan, Nigeria, 1997. [Google Scholar]
- Barone, A.; Del Giudice, A.; Ng, N.Q. Barriers to interspecific hybridization between Vigna unguiculata and Vigna vexillata. Sex. Plant Reprod. 1992, 5, 195–200. [Google Scholar] [CrossRef]
- Gomathinayagam, P.; Ganesh ram, S.; Rathnaswamy, R.; Ramaswamy, N.M. Interspecific hybridization between Vigna unguiculata (L.) Walp. and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica 1998, 102, 203–209. [Google Scholar] [CrossRef]
- Abady, S.; Shimelis, H.; Janila, P.; Yaduru, S.; Shayanowako, A.I.T.; Deshmukh, D.; Chaudhari, S.; Manohar, S.S. Assessment of the genetic diversity and population structure of groundnut germplasm collections using phenotypic traits and SNP markers: Implications for drought tolerance breeding. PLoS ONE 2021, 16, e0259883. [Google Scholar] [CrossRef] [PubMed]
- Harouna, D.V.; Venkataramana, P.B.; Matemu, A.O.; Ndakidemi, P.A. Agro-Morphological Exploration of Some Unexplored Wild Vigna Legumes for Domestication. Agronomy 2020, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Amorim, L.L.B.; Ferreira-Neto, J.R.C.; Bezerra-Neto, J.P.; Pandolfi, V.; de Araújo, F.T.; da Silva Matos, M.K.; Santos, M.G.; Kido, E.A.; Benko-Iseppon, A.M. Cowpea and abiotic stresses: Identification of reference genes for transcriptional profiling by qPCR. Plant Methods 2018, 14, 88. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, J.; Nigam, S.N.; Pandey, M.K.; Nagesh, P.; Varshney, R. Groundnut improvement: Use of genetic and genomic tools. Front. Plant Sci. 2013, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.S.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446. [Google Scholar] [CrossRef]
- Samoluk, S.S.; Robledo, G.; Podio, M.; Chalup, L.; Ortiz, J.P.; Pessino, S.C.; Seijo, J.G. First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica 2015, 143, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Bertioli, D.J.; Seijo, G.; Freitas, F.O.; Valls, J.F.M.; Leal-Bertioli, S.C.M.; Moretzsohn, M.C. An overview of peanut and its wild relatives. Plant Genet. Resour. 2011, 9, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Stalker, H.T. Utilizing Wild Species for Peanut Improvement. Crop Sci. 2017, 57, 1102–1120. [Google Scholar] [CrossRef]
- Kokkanti, R.; Hindu, V.; Latha, P.; Vasanthi, R.P.; Sudhakar, P.; Usha, R. Assessment of genetic variability and molecular characterization of heat stress tolerant genes in Arachis hypogaea L. through qRT-PCR. Biocatal. Agric. Biotechnol. 2019, 20, 101242. [Google Scholar] [CrossRef]
- Agarwal, M.; Hao, Y.; Kapoor, A.; Dong, C.H.; Fujii, H.; Zheng, X.; Zhu, J.K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 2006, 281, 37636–37645. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.K.; Gupta, K.; Lopato, S.; Agarwal, P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J. Exp. Bot. 2017, 68, 2135–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, M.; Jaiswal, A.; Taj, G.; Jaiswal, J.P.; Qureshi, M.I.; Singh, N.K. DREB1/CBF transcription factors: Their structure, function and role in abiotic stress tolerance in plants. J. Genet. 2012, 91, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Et Biophys. Acta (BBA)—Gene Regul. Mech. 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Bhatnagar-Mathur, P.; Devi, M.J.; Reddy, D.S.; Lavanya, M.; Vadez, V.; Serraj, R.; Yamaguchi-Shinozaki, K.; Sharma, K.K. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep. 2007, 26, 2071–2082. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar-Mathur, P.; Rao, J.S.; Vadez, V.; Dumbala, S.R.; Rathore, A.; Yamaguchi-Shinozaki, K.; Sharma, K.K. Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol. Breed. 2014, 33, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, T.; Thankappan, R.; Kumar, A.; Mishra, G.P.; Dobaria, J.R. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress. Front. Plant Sci. 2016, 7, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Liu, W.; Bi, Y.; Wang, Z. Isolation and Identification of pndreb1-A New DREB Transcription Factor from Peanut (Arachis hypogaea L.). Acta Agron. Sin. 2009, 35, 1973–1980. [Google Scholar] [CrossRef]
- Li, X.; Lu, J.; Liu, S.; Liu, X.; Lin, Y.; Li, L. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol. 2014, 14, 58. [Google Scholar] [CrossRef]
- Wan, L.; Wu, Y.; Huang, J.; Dai, X.; Lei, Y.; Yan, L.; Jiang, H.; Zhang, J.; Varshney, R.K.; Liao, B. Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct. Integr. Genom. 2014, 14, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhang, J.; Zhang, H.; Zhang, Z.; Quan, R.; Zhou, S.; Huang, R. Transcriptional Activation of OsDERF1 in OsERF3 and OsAP2-39 Negatively Modulates Ethylene Synthesis and Drought Tolerance in Rice. PLoS ONE 2011, 6, e25216. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Jiang, P.; Tang, Y.; Pan, L.; Ji, H.; Zhou, W.; Zhu, H.; Sui, J.; Jiang, D.; Wang, J. Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants. Electron. J. Biotechnol. 2021, 49, 42–49. [Google Scholar] [CrossRef]
- Sottosanto, J.B.; Saranga, Y.; Blumwald, E. Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biol. 2007, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Asif, M.A.; Zafar, Y.; Iqbal, J.; Iqbal, M.M.; Rashid, U.; Ali, G.M.; Arif, A.; Nazir, F. Enhanced Expression of AtNHX1, in Transgenic Groundnut (Arachis hypogaea L.) Improves Salt and Drought Tolerance. Mol. Biotechnol. 2011, 49, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Banavath, J.N.; Chakradhar, T.; Pandit, V.; Konduru, S.; Guduru, K.K.; Akila, C.S.; Podha, S.; Puli, C.O.R. Stress Inducible Overexpression of AtHDG11 Leads to Improved Drought and Salt Stress Tolerance in Peanut (Arachis hypogaea L.). Front. Chem. 2018, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cason, J.M.; Simpson, C.E.; Rooney, W.L.; Brady, J.A. Drought-tolerant transcription factors identified in Arachis dardani and Arachis ipaënsis. Agrosyst. Geosci. Environ. 2020, 3, e20069. [Google Scholar] [CrossRef]
- Guimarães, P.M.; Brasileiro, A.C.M.; Morgante, C.V.; Martins, A.C.Q.; Pappas, G.; Silva, O.B.; Togawa, R.; Leal-Bertioli, S.C.M.; Araujo, A.C.G.; Moretzsohn, M.C.; et al. Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom. 2012, 13, 387. [Google Scholar] [CrossRef] [Green Version]
- Mota, A.P.Z.; Brasileiro, A.C.M.; Vidigal, B.; Oliveira, T.N.; da Cunha Quintana Martins, A.; Saraiva, M.A.d.P.; de Araújo, A.C.G.; Togawa, R.C.; Grossi-de-Sá, M.F.; Guimaraes, P.M. Defining the combined stress response in wild Arachis. Sci. Rep. 2021, 11, 11097. [Google Scholar] [CrossRef] [PubMed]
- Gai, W.; Sun, H.; Hu, Y.; Liu, C.; Zhang, Y.; Gai, S.; Yuan, Y. Genome-Wide Identification of Membrane-Bound Fatty Acid Desaturase Genes in Three Peanut Species and Their Expression in Arachis hypogaea during Drought Stress. Genes 2022, 13, 1718. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hu, B.; Li, X.; Li, L. Characterization of mTERF family in allotetraploid peanut and their expression levels in response to dehydration stress. Biotechnol. Biotechnol. Equip. 2020, 34, 1176–1187. [Google Scholar] [CrossRef]
- Sharma, S. Prebreeding Using Wild Species for Genetic Enhancement of Grain Legumes at ICRISAT. Crop Sci. 2017, 57, 1132–1144. [Google Scholar] [CrossRef] [Green Version]
- Gowda, M.; Motagi, B.; Naidu, G.K.; Diddimani, S.B.; Sheshagiri, R. GPBD 4: A Spanish bunch Groundnut Genotype Resistant to Rust and Late leaf spot. Int. Arachis Newsl. 2002, 22, 29–32. [Google Scholar]
- Khedikar, Y.P.; Gowda, M.V.; Sarvamangala, C.; Patgar, K.V.; Upadhyaya, H.D.; Varshney, R.K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor. Appl. Genet. Theor. Angew. Genet. 2010, 121, 971–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal-Bertioli, S.C.M.; Bertioli, D.J.; Guimarães, P.M.; Pereira, T.D.; Galhardo, I.; Silva, J.P.; Brasileiro, A.C.M.; Oliveira, R.S.; Silva, P.Í.T.; Vadez, V.; et al. The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environ. Exp. Bot. 2012, 84, 17–24. [Google Scholar] [CrossRef]
- Simpson, C.E.; Nelson, S.C.; Starr, J.L.; Woodard, K.E.; Smith, O.D. Registration of TxAG-6 and TxAG-7 Peanut Germplasm Lines. Crop Sci. 1993, 33. [Google Scholar] [CrossRef]
- Stalker, H.T. Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica 1984, 33, 529–538. [Google Scholar] [CrossRef]
- Kumari, V.; Gowda, M.V.C.; Tasiwal, V.; Pandey, M.K.; Bhat, R.S.; Mallikarjuna, N.; Upadhyaya, H.D.; Varshney, R.K. Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop J. 2014, 2, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Michelotto, M.D.; de Godoy, I.J.; Pirotta, M.Z.; dos Santos, J.F.; Finoto, E.L.; Pereira Fávero, A. Resistance to thrips (Enneothrips flavens) in wild and amphidiploid Arachis species. PLoS ONE 2017, 12, e0176811. [Google Scholar] [CrossRef] [Green Version]
- Bera, S.K.; Chandrashekar, A.; Singh, A. WRKY and Na+/H+ antiporter genes conferring tolerance to salinity in interspecific derivatives of peanut (Arachis hypogaea L.). Aust. J. Crop Sci. 2013, 7, 1173–1180. [Google Scholar]
- Migicovsky, Z.; Myles, S. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops. Front. Plant Sci. 2017, 8, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migicovsky, Z.; Warschefsky, E.; Klein, L.L.; Miller, A.J. Using living germplasm collections to characterize, improve, and conserve woody perennials. Crop Sci. 2019, 59, 2365–2380. [Google Scholar] [CrossRef]
- Peace, C.P.; Bianco, L.; Troggio, M.; van de Weg, E.; Howard, N.P.; Cornille, A.; Durel, C.-E.; Myles, S.; Migicovsky, Z.; Schaffer, R.J.; et al. Apple whole genome sequences: Recent advances and new prospects. Hortic. Res. 2019, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, I.O.; Patocchi, A.; Frey, J.; Peil, A.; Kellerhals, M. Breeding Elite Lines of Apple Carrying Pyramided Homozygous Resistance Genes Against Apple Scab and Resistance Against Powdery Mildew and Fire Blight. Plant Mol. Biol. Rep. 2015, 33, 1573–1583. [Google Scholar] [CrossRef]
- Geng, D.-L.; Lu, L.-Y.; Yan, M.-J.; Shen, X.-X.; Jiang, L.-J.; Li, H.-Y.; Wang, L.-P.; Yan, Y.; Xu, J.-D.; Li, C.-Y.; et al. Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress. J. Integr. Agric. 2019, 18, 1280–1294. [Google Scholar] [CrossRef]
- Rodriguez-Bonilla, L.; Williams, K.A.; Rodríguez Bonilla, F.; Matusinec, D.; Maule, A.; Coe, K.; Wiesman, E.; Diaz-Garcia, L.; Zalapa, J. The Genetic Diversity of Cranberry Crop Wild Relatives, Vaccinium macrocarpon Aiton and V. oxycoccos L., in the US, with Special Emphasis on National Forests. Plants 2020, 9, 1446. [Google Scholar] [CrossRef]
- Neyhart, J.L.; Kantar, M.B.; Zalapa, J.; Vorsa, N. Genomic-environmental associations in wild cranberry (Vaccinium macrocarpon Ait.). G3 Genes Genomes Genet. 2022, 12, jkac203. [Google Scholar] [CrossRef]
- Walker, M.A.; Riaz, S.; Tenscher, A. Optimizing the breeding of pierce’s disease resistant winegrapes with marker-assisted selection. Acta Hortic. 2014, 1046, 139–143. [Google Scholar] [CrossRef]
- Eibach, R.; Zyprian, E.; Welter, L.; Toepfer, R. The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 2007, 46, 120–124. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Sawler, J.; Money, D.; Eibach, R.; Miller, A.J.; Luby, J.J.; Jamieson, A.R.; Velasco, D.; von Kintzel, S.; Warner, J.; et al. Genomic ancestry estimation quantifies use of wild species in grape breeding. BMC Genom. 2016, 17, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Heinitz, C.; Uretsky, J.; Dodson Peterson, J.; Huerta-Acosta, K.; Walker, M.A. Crop Wild Relatives of Grape (Vitis vinifera L.) Throughout North America. In North American Crop Wild Relatives; Springer: Cham, Switzerland, 2019; Volume 2, pp. 329–351. [Google Scholar] [CrossRef]
- Morales-Cruz, A.; Aguirre-Liguori, J.A.; Zhou, Y.; Minio, A.; Riaz, S.; Walker, A.M.; Cantu, D.; Gaut, B.S. Introgression Among North American wild grapes (Vitis) fuels biotic and abiotic adaptation. Genome Biol. 2021, 22, 254. [Google Scholar] [CrossRef]
- Aguirre-Liguori, J.; Morales-Cruz, A.; Gaut, B. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. Mol. Ecol. 2022. [Google Scholar] [CrossRef]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A History of Grafting. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 437–493. [Google Scholar] [CrossRef]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16022. [Google Scholar] [CrossRef]
- El Mokni, R.; Barone, G.; Maxted, N.; Kell, S.; Domina, G. A prioritised inventory of crop wild relatives and wild harvested plants of Tunisia. Genet. Resour. Crop Evol. 2022, 69, 1787–1816. [Google Scholar] [CrossRef]
- Perrino, E.V.; Wagensommer, R.P. Crop Wild Relatives (CWRs) Threatened and Endemic to Italy: Urgent Actions for Protection and Use. Biology 2022, 11, 193. [Google Scholar] [CrossRef]
- Satori, D.; Tovar, C.; Faruk, A.; Hammond Hunt, E.; Muller, G.; Cockel, C.; Kühn, N.; Leitch, I.J.; Lulekal, E.; Pereira, L.; et al. Prioritising crop wild relatives to enhance agricultural resilience in sub-Saharan Africa under climate change. Plants People Planet 2022, 4, 269–282. [Google Scholar] [CrossRef]
- Ulrich, J.C.; Moreau, T.L.; Luna-Perez, E.; Beckett, K.I.S.; Simon, L.K.; Migicovsky, Z.; Diederichsen, A.; Khoury, C.K. An inventory of crop wild relatives and wild-utilized plants in Canada. Crop Sci. 2022, 62, 2294–2318. [Google Scholar] [CrossRef]
Species | Type of Tolerance | Wild Species | Source |
---|---|---|---|
Tomato | drought tolerance | Solanum habrochaites (syn. Solanum hirsutum) | [20] |
S. pennellii | [21] | ||
S. pimpinellifolium | [22,23] | ||
S. cheesmanii | [24] | ||
S. chilense | [25] | ||
Solanum sitiens | [26] | ||
salt tolerance | S. pennellii | [27,28] | |
S. pimpinellifolium | [27] | ||
S. hirsutum (syn. S. habrochaites) | [29] | ||
Solanum parviflorum | [30] | ||
heat tolerance | S. habrochaites (syn. S. hirsutum) | [20] | |
S. pennellii | [31] | ||
S. pimpinellifolium | [31] | ||
S. cheesmanii | [32] | ||
Solanum chmielewskii | [33] | ||
Alfalfa | drought, salt, cold tolerance | Medicago truncatula | [34] |
Medicago ruthenica | [35,36] | ||
Medicago polymorpha | [37] | ||
Medicago falcata | [38] | ||
Cowpea | drought tolerance | Vigna exilis | [39] |
Vigna heterophylla | [40] | ||
Vigna kirkii | [40] | ||
Vigna trilobata | [39] | ||
Vigna riukiensis | [39] | ||
heat tolerance | Vigna hainiana | [40] | |
Vigna stipulacea | [40] | ||
salinity tolerance | Vigna luteola | [40] | |
Vigna marina | [41,42] | ||
Vigna nakashimae | [43] | ||
Vigna riukiuensis | [43,44] | ||
Vigna trilobata | [43,44] | ||
Vigna vexillata | [40] | ||
Vigna trilobata | [40] | ||
extreme types of soils | Vigna minima | [45] | |
Vigna indica | [46] | ||
water-logging tolerance | Vigna vexillata | [47] | |
Groundnut | drought tolerance | Arachis dardani | [48] |
Arachis diogoi | [49] | ||
Arachis duranensis | [50,51] | ||
Arachis glabrata | [52] | ||
Arachis magna | [53] | ||
heat tolerance | Arachis diogoi | [49] | |
Arachis duranensis | [54] | ||
Arachis glabrata | [55] | ||
Arachis ipaensis | [54] | ||
cold tolerance | Arachis duranensis | [56] | |
Arachis glabrata | [52] | ||
Arachis paraguariensis | [55] | ||
salinity tolerance | Arachis diogoi | [49] | |
Arachis duranensis | [51,56] | ||
Arachis glabrata | [52] | ||
UV-exposure tolerance | Arachis stenosperma | [57] | |
Apple | drought tolerance | Malus prunifolia | [58] |
Malus sieversii | [59,60] | ||
heat tolerance | Malus prunifolia | [61] | |
Malus sieversii | [60] | ||
cold tolerance | Malus prunifolia | [59,60] | |
Malus baccata | [62] | ||
Malus sieversii | [60] | ||
Cranberry | cold tolerance | Vaccinium oxycoccos | [63] |
Grapevine | drought tolerance | Vitis yeshanensis | [64] |
salt tolerance | Vitis sylvestris | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants 2023, 12, 328. https://doi.org/10.3390/plants12020328
Kapazoglou A, Gerakari M, Lazaridi E, Kleftogianni K, Sarri E, Tani E, Bebeli PJ. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants. 2023; 12(2):328. https://doi.org/10.3390/plants12020328
Chicago/Turabian StyleKapazoglou, Aliki, Maria Gerakari, Efstathia Lazaridi, Konstantina Kleftogianni, Efi Sarri, Eleni Tani, and Penelope J. Bebeli. 2023. "Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses" Plants 12, no. 2: 328. https://doi.org/10.3390/plants12020328
APA StyleKapazoglou, A., Gerakari, M., Lazaridi, E., Kleftogianni, K., Sarri, E., Tani, E., & Bebeli, P. J. (2023). Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants, 12(2), 328. https://doi.org/10.3390/plants12020328