Plants of the Rubiaceae Family with Effect on Metabolic Syndrome: Constituents, Pharmacology, and Molecular Targets
Abstract
:1. Introduction
2. Metabolic Syndrome: Causes and Physiopathology
3. Plants Used for Treatment of Metabolic Syndrome
3.1. Rubiaceae Family
3.2. Plants from the Rubiaceae Family for Treating MetS: Coffea spp.
3.3. Plants from the Rubiaceae Family for Treating MetS: Exosterma spp.
3.4. Plants from the Rubiaceae Family for Treating MetS: Hamelia spp.
3.5. Plants from the Rubiaceae Family for Treating MetS: Ixora spp.
3.6. Plants from the Rubiaceae Family for Treating MetS: Hintonia latiflora
3.7. Plants from the Rubiaceae Family for Treating MetS: Miscellaneous Members
Genus | Species | Extract, Dosage Form, and Doses | Chemical Constituents (Secondary Metabolites) | Experimental Model or Clinical Disease | Effects and Mechanism of Action Suggested | References |
---|---|---|---|---|---|---|
Alibertia | edulis | Lyophilized aqueous extract of leaves (a) 20–200 mg/kg for 1 and 7 days, p.o. (b) 200–400 mg/kg for 2 weeks, p.o. | Caffeic acid, quercetin 3-rhamnosyl-(1→6)-galactoside, iridoid ixoside, ferulic acid, and rutin | (a) Renovascular hypertension by two-kidney, one-clip Goldblatt model (b) High-fat-diet (HFD)-fed mice | (a) Antihypertensive, diuretic by high excretion of Na+, K+, Cl-, and Ca++. Antioxidant effects by free radical scavengers (b) Anti-hyperglycemic effect by regulation of IKKb/NF-κB pathway as a mediator of IR and insulin sensitization | [66,67,68] |
Alseis | yucatanensis | Aqueous extract of bark. Blocking of calcium channels, internal ED50 = 0.49 mg/mL, and external ED50 = 2.34 mg/mL- Relaxation of norepinephrine-contracted ED50 = 0.12 and KCl-contracted EC50 = 1.73 mg/mL | Not reported | Relaxation of isolated endothelium-denuded rat aortic tissues | Anti-hypertensive, by blocking of Ca++ channels with a sustained vasorelaxant effect by opening K+ channels | [74] |
Bouvardia | ternifolia | (a) Chloroform extract of dried stem at 100, 200, and 300 mg/kg, i.p. (b) Pure compounds at 25, 50, and 75 mg/kg, i.p. | Two triterpenes, ursolic and oleanolic acids | (a) and (b) Alloxan-induced diabetic mice | (a) and (b) Extract and pure compounds lowered blood glucose levels in normal and diabetic mice | [78,79] |
Coffea | arabica | (a) Aqueous extract of ground roasted coffee beans, 200 mg/kg, intragastric tube (b) Pure compound, caffeic acid 71.4 mg/kg, trigonelline 47.6 mg/kg, and cafestol 2.4 mg/kg, p.o., a day per rat for 12 weeks (c) Aqueous extract of pulp, 5–200 mg/mL CPE, with chlorogenic acid 2.33 mg/mL and caffeine 0.79 mg/mL in vitro. For in vivo, 1000 mg/kg a day for 12 weeks (d) Five % of spent coffee grounds in diet for 8 weeks (e) Soluble green/roasted coffee product mixture (35:65, w/w), 2 g serving of coffee blend three times a day for 8 weeks (f) Capsules with 400 mg of green coffee hydro-alcoholic extract containing 2400 mg of green coffee bean and 186 mg of chlorogenic acid twice daily for 64 days. 53.8% of total polyphenols per capsule | (a) 5-caffeoylquinic acid (chlorogenic acid), 3,5-dicaffeoylquinic acid, and 5-feruloylquinic acid (b) Caffeic acid, trigonelline, and cafestol (c) Chlorogenic acid, caffeine, and epicatechin (d) Chlorogenic acid, caffeine, trigonelline, and diterpenes (e) Hydroxycinnamic acids (caffeoylquinic acids, mostly 5-O-caffeoylquinic acid) and methylxanthines (caffeine) (f) Caffeoylquinic acid (35–40%), 3-caffeoylquinic acid (10–15%), 4-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 3-feruloylquinic acid, 4-feruloylquinic acid, and 5-feruloylquinic acid | (a) Mice administered with a mixed lipid–carbohydrate emulsion, 4 g/kg, intragastric tube (b) MetS in rats caused by HFD and high-fructose diet (c) Cholesterol micelle transport in cultivated Caco-2 cells and rat jejunal loops, and hypercholesterolemic HFD-fed rats (d) MetS in HFD- and H-carbohydrates-D-fed rats (e) Healthy and hypercholesterolemic subjects to prevent MetS (f) Patients diagnosed with MetS | (a) Reduced postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide (GIP), and TGs. Inhibition of digestive enzymes such as maltase and sucrase modulates complete lipid and carbohydrate oxidation (b) Improved fed hyperinsulinemia, IR, and plasma adiponectin levels. Diminished plasma and liver ALT, besides hepatic TG and steatosis. Pronounced postprandial glycemia after acute administration. Effects of enhanced insulin sensitivity and hepatoprotection (c) Inhibition of cholesterol transport in the cells and jejunal loops in a concentration-dependent but non-competitive way. Diminishing of body weight and weight gain, improved plasma lipid profiles by activation of LXRα and down-regulation of NPC1L1 (d) Reduction of body weight, abdominal and total fat, systolic blood pressure, plasma TG and non-esterified fatty acids. Enhanced glucose tolerance and heart and hepatic function. Changes correlated with an increased diversity of the gut microbiota and the reduced ratio of Firmicutes to Bacteroidetes phyla (e) Lowered blood pressure, glucose, and triglyceride levels may be due to reduced leptin, plasminogen activator inhibitor-1 (PAI-1), and resistin levels (f) Improved MetS components, high systolic blood pressure, fasting blood glucose, and MetS etiological factors comprising IR and abdominal obesity. Capsules could reduce appetite level in patients | [19,22,23,25,27] |
canephora robusta | (a) Ethanolic extracts of unroasted beans, 20–500 µg/mL for cell culture and 330 mg/kg a day for 25 days for the in vivo model (b) Aqueous extract of green coffee beans, equivalent to 220 mg/kg of chlorogenic acid trice a week for 14 weeks, intragastric (c) Extract of a mixture of medicinal plants with 30 mg of chlorogenic acid from C. canephora in 1 tablet per day for six months | (a) Caffeine, caffeic acid, and caffeic quinic acids (b) Caffeine, caffeic acid, chlorogenic acid, and their quinic derivatives (c) Chlorogenic acid among diverse from other species | (a) In vitro insulin-induced adipogenesis in 3T3-L1 preadipocytes and in vivo HFD-fed mice (b) Atherogenic diet-fed apolipoprotein E-deficient (ApoE-/-) mice (c) Patients with NAFLD associated with IR and diabetes | (a) Reduced blood concentrations of lipids, glucose, leptin, body and fat weight, improved liver steatosis, and smaller epididymal adipocytes. Lowered adipogenesis in adipocytes by down-regulation of adipogenesis-related genes adiponectin and PPAR-γ (b) Improved fasting glucose, IR, serum leptin, urinary catecholamines, and liver TGs, diminished weight gain, adiposity, inflammatory infiltrate in adipose tissue, and hepatoprotection, all by immune-stimulatory effect increasing hepatic IL-6 and total serum IgM, which induced shifts in intestinal microbiota (c) Reduction in serum glucose, insulin levels, IR, and hepatic steatosis correlated with an increased serum insulin receptor expression | [21,24,28] | |
Exostema | caribaeum | Macerated CH2Cl2–MeOH (1:1) of stem bark (a) 10, 30, 100, 300 mg/kg for 30 days, p.o. (b) 1. Aqueous extract of Exostema caribaeum stem bark (500 mg/kg). 2. In oral sucrose tolerance test, the same aqueous extract (100, 300 and 500 mg/kg) | (a) Cucurbitacins and 4-phenylcoumarins, phenyl styrene, as well as an indole monoterpenoid alkaloid (b) Chlorogenic acid, seven 4-phenylcoumarins | (a) STZ-induced T2D in rats by a single i.p. injection (b) Nicotinamide/streptozotocin (NA/STZ)-diabetic mice | (a) Antihyperglycemic effect could be due to insulin release stimulation that might increase renewal of β-cells or permit recovery of partially destroyed β-cells stimulating pancreatic insulin secretion (b) 1. Causes a significant antihyperglycemic effect similar to glibenclamide 2. Significant decrease in the postprandial glycemia peak | [33,36] [34,36] |
Hamelia | patens | (a) Hexane, DCM–EtOAc, MeOH–EtOAc, and MeOH–aqueous (b) MeOH crude extract and fractional MeOH extracts; 35, 75, and 150 mg/kg (c) Water (30 and 300 mg/kg) and ethanol-water (60 and 600 mg/kg) extracts (d) Ethanolic extract 100 mg/kg and 400 mg/kg petroleum ether extract 100 mg/kg and 400 mg/kg. Extracts were administered orally for 20 days | (a) β-sitosterol and stigmasterol (b) Acarbose, ursolic acid, quercetin, epicatechin and chlorogenic acid (c) Chlorogenic acid, caffeic acid, and quercetin. Rutin was not detected (d) Not reported | (a) α-glucosidase inhibition in vitro (b) Wistar rats induced with streptozotocin and in vitro α-glucosidase inhibitory activity (c) NA/STZ-induced hyperglycemic Wistar rats (d) Alloxan-induced diabetic Wistar rats | (a) Significant decrease in blood glucose level and total cholesterol triglyceride level in model of alloxan-induced diabetes (b) Extract hexane showed α-glucosidase inhibition (c) Both extracts exert antihyperglycemic effect at doses tested. Water extract produces statistically significant effect at 120 min, while ethanol-water extract produces antihyperglycemic effect at 60 min (d) Extracts at 150 mg/kg dose showed more significant decrease in glucose level and serum insulin compared to diabetic control. High α-glucosidase inhibitory activity was found in both extracts | [38] [27] [40] [42] |
Ixora | coccinea | (a) Aqueous extract of leaves administered orally with doses of 100, 200, and 400 mg/kg (b) MeOH extract of flowers (20–100 mg/mL) | (a) Alkaloids, tannins, saponins, flavonoids, anthraquinones, anthocyanosides, and reducing sugars in the extract (b) Flavonoids, phenols, steroids, and tannins | (a) Wistar rats with alloxan-induced diabetes (b) In vitro inhibition of α-amylase and α-glucosidase enzymes | (a) Antihyperglycemic and hypolipidemic (lowered TGs and cholesterol) effects of aqueous extract (b) MeOH extract of flowers inhibited up to 70–72% of both the α-amylase and α-glucosidase enzymes in a concentration-dependent manner, suggesting an in vitro antidiabetic effect | [58,59,60,61] |
Nauclea | latifolia | Ethanol extract of leaves | Flavonoids, phenols, saponins, and sterols | Sixty overnight-fasted rats were injected intraperitoneally with 150 mg/kg alloxan for diabetes induction | Decreased total cholesterol, LDL cholesterol, and fasting blood glucose concentrations with improved level of HDL by fractions indicates that fractions have antihyperglycemic and hypolipidemic activity | [70] |
Morinda | citrifolia | Noni fruit and other parts of the plant Noni fruit juice Ethanolic extract of leaves Aqueous fruit extract | Phenolic compounds, anthraquinones, flavonoids, iridoids, ketones, lignans, triterpenoids, nucleosides, sterols, fatty acids, carbohydrates, organic acids, alcohols, vitamins, and carotenoids; iridoids, flavonoid (rutin), 18 novel trisaccharide fatty acid esters | Mice received 1.5 µL/g twice daily/5 weeks Rats 250 mg/mL/9 weeks 500 mg/mL/9 weeks 250 and 500 mg/kg of Morinda citrifolia in high-fat/high-fructose-fed Swiss mice | It reduced body weight by 40% in mice fed control and 25% in HFD mice. It reduced adipose tissue weights and plasma TG and improved glucose tolerance. Positive effects on adiposity, fecal fat content, plasm lipids, insulin, and leptin levels, especially MLE 60 and 500 mg/kg. Both concentrations of extract improved the metabolic perturbations caused by obesity. AE at 500 mg/kg downregulated hepatic PPAR-γ, SREBP-1c, and fetuin-A mRNA but upregulated PPAR-α mRNA in white adipose tissue; hypoglycemic effects could be associated with de novo expression of genes involved in lipogenesis | [72,73,74] |
Uncaria | tomentosa | Crude plant extract: 50 mg/kg/5 days in both obese mouse models: C57BL/6 HFD and genetically obese (ob/ob+). GlucoMedix® (Uncaria and Stevia): Daily oral doses of 250–1000 mg/kg | Uncarine D, uncarine F, mitraphylline, isomitraphylline, uncarine C, and uncarine E Stevia (e.g., steviol glycosides) and Uncaria (e.g., pentacyclic oxindole alkaloids, lacking of tetracyclic oxindole alkaloids) | (a) Genetically obese mice (ob/ob+) High-fat-diet (HFD) fed C57BL/6 mice Effects in hyperglycemic (alloxan)/28 days, hyperlipidemia (cholesterol) 21 days, and hypertensive (L-NAME)/28 days in rat models. | Significantly reduced liver steatosis and inflammation in both models: (a) Liver of ob/ob+ group had reduced levels of phosphorylated Ikkβ and NFκB compared to ob/ob+ vehicle mice, at 80% and 20%, respectively, p < 0.05. But it did not affect TNF-α expression (b) Treatment induced a substantial reduction in TNF-α, levels of F4/80 mRNA, and reverted enhanced IL-1β and induced enhancement of IL-10 and arginase-1 expression. Subacute oral toxicity was >2000 mg/kg. GlucoMedix® was a safe and effective treatment for hyperglycemia, hyperlipidemia, and hypertension | [75] [76] |
Chinese herbal medicine formula Jiangzhuoqinggan (JZQG) | Formula consists of rhubarb, Coptis, Cassia, and Uncaria | For the JZQG treatment group, 170 mL of heated decoction was administered twice a day orally. For the irbesartan control group, a 150 mg tablet (Sanofi-Aventis Hangzhou Minsheng Pharmaceutical Co., Ltd., Hangzhou, China) was given orally once per day for 4 weeks | Berberine, palmatine, cory noxeine or isocory noxeine, coptisine, magnoflorine, epiberberine, and rhynchophylline compounds can also be used as quality control markers for JZQG decoction | 240 subjects, ages 18–65 years old, having mild to moderate hypertension with the following characteristics: (1) TG 150 mg/dL or have received antidyslipidemia treatment (2) HDL-C): men < 40 mg/dL, women < 50 mg/dL, or have received the related treatment (3) Fasting plasma glucose (FPG) 100 mg/dL, diagnosed type 2 diabetes, or have received glycemic control treatment, and (4) TCM diagnosed for liver and stomach damp heat syndrome. Patients were distributed into JZQG group and irbesartan group | There was a significant reduction in systolic and diastolic blood pressure in JZQG group (p < 0.01). JZQG group showed a more significant reduction in systolic and diastolic blood pressures at 24 h than irbesartan group. A significant difference in waist circumference was observed in JZQG group but not in irbesartan group | [77] |
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Bennett, J.E.; Stevens, G.A.; Mathers, C.D.; Bonita, R.; Rehm, J.; Kruk, M.E.; Ezzati, M. NCD Countdown 2030: Worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet 2018, 392, 1072–1088. [Google Scholar] [CrossRef]
- Lillich, F.F.; Imig, J.D.; Proschak, E. Multi-target approaches in metabolic syndrome. Front. Pharmacol. 2021, 11, 554961. [Google Scholar] [CrossRef]
- Cao, R.Y.; Zheng, H.; Redfearn, D.; Yang, J. FNDC5: A novel player in metabolism and metabolic syndrome. Biochimie 2019, 158, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Okwu, D.E.; Uchenna, N.F. Exotic multifaceted medicinal plants of drugs and pharmaceutical industries. Afr. J. Biotechnol. 2009, 8, 7271–7282. [Google Scholar]
- Salmerón, M.E.; Garrido, C.A.; Manzano, A.F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef]
- Palhares, R.M.; Gonçalves, D.M.; dos Santos Alves, F.B.; Pereira, C.G.; Graças, B.M.; Oliveira, G. Medicinal plants recommended by the World Health Organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS ONE 2015, 10, e0127866. [Google Scholar] [CrossRef] [PubMed]
- Karou, S.D.; Tchacondo, T.; Ilboudo, D.P.; Simpore, J. Sub-Saharan Rubiaceae: A Review of their traditional uses, phytochemistry and biological activities. Pak. J. Biol. Sci. 2011, 14, 149–169. [Google Scholar] [CrossRef]
- Guzmán-Hernández, E.A.; Segura-Cobos, D.; López-Sánchez, P. Plants present in Mexico with studies in metabolic syndrome. J. Med. Plants Stud. 2016, 4, 95–103. [Google Scholar]
- Powell, E.E.; Jonsson, J.R.; Clouston, A.D. Metabolic factors and non-alcoholic fatty liver disease as co-factors in other liver diseases. Dig. Dis. 2010, 28, 186–191. [Google Scholar] [CrossRef]
- Elabbassi, W.N.; Haddad, H.A. The epidemic of the metabolic syndrome. Saudi Med. J. 2005, 26, 373–375. [Google Scholar]
- Matsuzawa, Y.; Funahashi, T.; Nakamura, T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011, 18, 629–639. [Google Scholar] [CrossRef]
- Boden, G.; Shulman, G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of IR and β-cell dysfunction. Eur. J. Clin. Investig. 2002, 32, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003, 52, 2882–2887. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.M.; McMahon, A.D.; Packard, C.J.; Kelly, A.; Shepherd, J.; Gaw, A.; Sattar, N. Plasma leptin and the risk of cardiovascular disease in the West of Scotland Coronary Prevention Study [WOSCOPS]. Circulation 2001, 104, 3052–3056. [Google Scholar] [CrossRef]
- Pant, S.; Deshmukh, A.; Gurumurthy, G.S.; Pothineni, N.V.; Watts, T.E.; Romeo, F.; Mehta, J.L. Inflammation and atherosclerosis—Revisited. J. Cardiovasc. Pharmacol. Ther. 2014, 19, 170–178. [Google Scholar] [CrossRef]
- The World Flora Online. Available online: https://www.worldfloraonline.org/search?query=Rubiaceae (accessed on 8 October 2023).
- Campbell, G.; Rabelo, G.R.; da Cunha, M. Ecological significance of wood anatomy of Alseis pickelii Pilg. & Schmale [Rubiaceae] in a tropical dry forest. Acta Bot. Bras. 2016, 30, 124–130. [Google Scholar]
- Torres, N.; Torre-Villalvazo, I.; Tovar, A.R. Nutrigenomics as a tool in the prevention of lipotoxicity: The case of soy protein. Rev. Investig. Clin. 2019, 71, 157–167. [Google Scholar] [CrossRef]
- Murase, T.; Yokoi, Y.; Misawa, K.; Ominami, H.; Suzuki, Y.; Shibuya, Y.; Hase, T. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidemia. Br. J. Nutr. 2012, 107, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Silvério Ados, S.; Pereira, R.G.; Lima, A.R.; Paula, F.B.; Rodrigues, M.R.; Baldissera, L., Jr.; Duarte, S.M. The Effects of the decaffeination of Coffee samples on platelet aggregation in hyperlipidemic rats. Plant Foods Hum. Nutr. 2013, 68, 268–273. [Google Scholar] [CrossRef]
- Kim, J.; Jang, J.Y.; Cai, J.; Kim, Y.; Shin, K.; Choi, E.K.; Lee, S.P.; Kim, J.C.; Kim, T.S.; Jeong, H.S.M.; et al. Ethanol extracts of unroasted Coffea canephora robusta beans suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet. Food Sci. Biotechnol. 2014, 23, 2029–2035. [Google Scholar] [CrossRef]
- Shokouh, P.; Jeppesen, P.B.; Hermansen, K.; Nørskov, N.P.; Laustsen, C.; Hamilton-Dutoit, S.J.; Qi, H.; Stødkilde-Jørgensen, H.; Gregersen, S. A combination of coffee compounds shows insulin-sensitising and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients 2018, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Ontawong, A.; Duangjai, A.; Muanprasat, C.; Pasachan, T.; Pongchaidecha, A.; Amornlerdpison, D.; Srimaroeng, C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 2019, 52, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Caro-Gómez, E.; Sierra, J.A.; Escobar, J.S.; Álvarez-Quintero, R.; Naranjo, M.; Medina, S.; Velásquez-Mejía, E.P.; Tabares-Guevara, J.H.; Jaramillo, J.C.; León-Varela, Y.M.; et al. Green coffee extract improves cardiometabolic parameters and modulates gut microbiota in high-fat-diet-fed ApoE−/− mice. Nutrients 2019, 11, 497. [Google Scholar] [CrossRef] [PubMed]
- Bhandarkar, N.S.; Mouatt, P.; Goncalves, P.; Thomas, T.; Brown, L.; Panchal, S.K. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J. 2020, 34, 4783–4797. [Google Scholar] [CrossRef]
- Sarriá, B.; Martínez-López, S.; Sierra-Cinos, J.L.; García-Diz, L.; Mateos, R.; Bravo-Clemente, L. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. Eur. J. Nutr. 2018, 57, 269–278. [Google Scholar] [CrossRef]
- Roshan, H.; Nikpayam, O.; Sedaghat, M.; Sohrab, G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, IR and appetite in patients with the metabolic syndrome: A randomized clinical trial. Br. J. Nutr. 2018, 119, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Cossiga, V.; Lembo, V.; Guarino, M.; Tuccillo, C.; Morando, F.; Pontillo, G.; Fiorentino, A.; Caporaso, N.; Morisco, F. Berberis aristata, Elaeis guineensis and Coffea canephora extracts modulate the insulin receptor expression and improve hepatic steatosis in NAFLD patients: A pilot clinical trial. Nutrients 2019, 11, 3070. [Google Scholar] [CrossRef]
- Baspinar, B.; Eskici, G.; Ozcelik, A.O. How coffee affects metabolic syndrome and its components. Food Funct. 2017, 8, 2089–2101. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; DiNicolantonio, J.J.; Lavie, C.J. Coffee for cardioprotection and longevity. Prog. Cardiovasc. Dis. 2018, 61, 38–42. [Google Scholar] [CrossRef]
- Noster, S.; Kraus, L. In vitro antimalarial activity of Coutarea latiflora and Exostema caribaeum extracts on plasmodium falciparum. Planta Med. 1990, 56, 63–65. [Google Scholar] [CrossRef]
- Deciga-Campos, M.; González-Trujano, E.; Navarrete, A.; Mata, R. Antinociceptive effect of selected Mexican traditional medicinal species. Proc. West. Pharmacol. Soc. 2005, 48, 70–72. [Google Scholar] [PubMed]
- Guerrero-Analco, J.; Medina-Campos, O.; Brindis, F.; Bye, R.; Pedraza-Chaverri, J.; Navarrete, A.; Mata, R. Antidiabetic properties of selected Mexican copalchis of the Rubiaceae family. Phytochemistry 2007, 68, 2087–2095. [Google Scholar] [CrossRef]
- Froelich, S.; Siems, K.; Hernández, M.A.; Ibarra, R.A.; Berendsohn, W.G.; Jenett-Siems, K. Phenolic glycosides from Exostema mexicanum leaves. Pharmazie 2006, 61, 641–644. [Google Scholar] [CrossRef]
- Rodriguez de Sotillo, D.V.; Hadley, M. Chlorogenic acid modifies plasma and liver concentrations of: Cholesterol, triacylglycerol, and minerals in [fa/fa] Zucker rats. J. Nutr. Biochem. 2002, 13, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vásquez, A.; Castillejos-Ramírez, E.; Cristians, S.; Mata, R. Validation of an UPLC-PDA Method for the simultaneous quantification of 4-phenylcoumarins and chlorogenic acid in Exostema caribaeum stembark. Planta Med. 2013, 79, PO18. [Google Scholar] [CrossRef]
- Levy, J.M.; Zhou, D. Cyclic adenosine monophosphate signaling in inflammatory skin disease. J. Clin. Exp. Dermatol. Res. 2015, 7, 2. [Google Scholar] [CrossRef]
- Jiménez-Suárez, V.; Nieto-Camacho, A.; Jiménez-Estrada, M.; Alvarado Sánchez, B. Anti-inflammatory, free radical scavenging and alpha-glucosidase inhibitory activities of Hamelia patens and its chemical constituents. Pharm. Biol. 2016, 54, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Zaid, H.; Tamrakar, A.K.; Razzaque, M.S.; Efferth, T. Diabetes and metabolism disorders medicinal plants: A glance at the past and a look to the future 2018. Evid. Based Complement. Altern. Med. 2018, 2018, 5843298. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Cetto, A.; Escandón-Rivera, S.; Garcia-Luna, V. Hypoglycaemic effect of Hamelia patens Jacq., aerial part in STZ-NA-induced diabetic rats. Pharmacol. Online 2015, 3, 65–69. [Google Scholar]
- Sosa, S.; Balick, M.J.; Arvigo, R.; Esposito, R.G.; Pizza, C.; Altinier, G.; Tubaro, A. Screening of the topical anti-inflammatory activity of some Central American plants. J. Ethnopharmacol. 2002, 81, 211–215. [Google Scholar] [CrossRef]
- Okoye, E.; Ezeogo, J. Antimicrobial activity of the crude extracts of Hamelia patens on some selected clinical samples. J. Complement. Altern. Med. Res. 2016, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Paz, J.E.W.; Contreras, C.R.; Munguía, A.R.; Aguilar, C.N.; Inungaray, M.L.C. Phenolic content and anti-bacterial activity of extracts of Hamelia patens obtained by different extraction methods. Braz. J. Microbiol. 2018, 49, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Terán, F.; Medrano-Martínez, A.; Navarro-Ocaña, A. Antioxidant and free radical scavenging activities of plant extracts used in traditional medicine in Mexico. Afr. J. Biotechnol. 2008, 7, 1886–1893. [Google Scholar]
- Surana, A.R.; Wagh, R.D. GC-MS profiling and antidepressant-like effect of the extracts of Hamelia patens in animal model. Bangladesh J. Pharmacol. 2017, 12, 410–416. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Balleza-Ramos, S.; Hernández-Morales, A.; Zapata-Morales, J.R.; González-Chávez, M.M.; Carranza-Álvarez, C. Toxicity and antinociceptive effects of Hamelia patens. Rev. Bras. Farmacogn. 2015, 25, 170–176. [Google Scholar] [CrossRef]
- Perez-Meseguer, J.; Delgado-Montemayor, C.; Ortíz-Torres, T.; Salazar-Aranda, R.; Cordero-Perez, P.; de Torres, N.W. Antioxidant and hepatoprotective activity of Hamelia patens extracts. Pak. J. Pharm. Sci. 2016, 29, 343–348. [Google Scholar]
- Mena-Rejon, G.; Caamal-Fuentes, E.; Cantillo-Ciau, Z.; Cedillo-Rivera, R.; Flores-Guido, J.; Moo-Puc, R. In vitro cytotoxic activity of nine plants used in Mayan traditional medicine. J. Ethnopharmacol. 2009, 121, 462–465. [Google Scholar] [CrossRef]
- Kumar, S.; Bodla, R.; Kant, R. Non-targeted analysis and cytotoxic activity of Hamelia patens Jacq. Int. J. Pharm. Sci. Res. 2018, 9, 1093. [Google Scholar]
- Gómez Estrada, H.A.; González Ruiz, K.N.; Medina, J.D. Actividad antiinflamatoria de productos naturales. Bol. Latinoam. Caribe Plantas Med. Aromat. 2011, 10, 182–217. [Google Scholar]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta 2014, 436, 332–347. [Google Scholar] [CrossRef]
- Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab. 2015, 12, 60. [Google Scholar] [CrossRef]
- Pandurangan, A.; Ahmad, A.; Koul, S.; Sharma, B.M.; Kumar, M. Blood glucose lowering potential of Hamelia patens stem in alloxan-induced diabetic rat. Glob. J. Pharm. Educ. Res. 2016, 2, 61–65. [Google Scholar]
- Kumar, A.; Kaur, R.; Arora, S. Free radical scavenging potential of some Indian medicinal plants. J. Med. Plants Res. 2010, 4, 2034–2042. [Google Scholar]
- Marella, S. Flavonoids-The most potent polyphenols as antidiabetic agents: An overview. Mod. Approaches Drug Des. 2017, 1, 2–6. [Google Scholar]
- DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. Acarbose: Safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2015, 2, e000327. [Google Scholar] [CrossRef]
- Ogawa, S.; Takaeuchi, K.; Ito, S. Acarbose lowers serum triglyceride and postprandial chylomicron levels in type 2 diabetes. Diabetes Obes. Metab. 2004, 6, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Mandal, S.K.; Das, P.; Nandy, S.; Das, A.; Dutta, D.; Chakraborti, C.K.; Sarkar, D.; Dey, S. Comparative evaluation of anti-inflammatory, antipyretic and analgesic properties of Ixora coccinea and mussaenda frondosa [Rubiaceae] leaves. Jordan J. Pharm. Sci. 2020, 13, 303–316. [Google Scholar]
- Baliga, M.S.; Kurian, P.J. Ixora coccinea Linn.: Traditional uses, phytochemistry and pharmacology. Chin. J. Integr. Med. 2012, 18, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Maniyar, Y.; Bhixavatimath, P. Evaluation of the hypoglycaemic and hypolipidaemic activities of the aqueous extract of the leaves of Ixora coccinea Linn. in diabetic rats. J. Clin. Diag. Res. 2011, 5, 1381–1384. [Google Scholar]
- Anila, L.; Hashim, M.S. Evaluation of in vitro antidiabetic activity of methanolic extract of Ixora coccinea flowers. J. Pharm. Sci. Res. 2019, 11, 2367–2372. [Google Scholar]
- Park, C.H.; Yamabe, N.; Noh, J.S.; Kang, K.S.; Tanaka, T.; Yokozawa, T. The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice. Biol. Pharm. Bull. 2009, 32, 1734–1740. [Google Scholar] [CrossRef]
- Mata, R.; Acevedo, L.; Méndez-Bautista, D.I.; Guerrero-Analco, J.A.; Rivero, B.E.; Rodríguez, J.M. Development and validation of liquid chromatography method for quantification of the active markers of Hintonia standleyana and Hintonia latiflora crude drugs. Pharm. Biol. 2008, 46, 105–110. [Google Scholar] [CrossRef]
- Ghisalberti, E.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 1998, 5, 147–163. [Google Scholar] [CrossRef]
- Cristians, S.; Guerrero-Analco, J.A.; Pérez-Vásquez, A.; Palacios-Espinosa, F.; Ciangherotti, C.; Bye, R.; Mata, R. Hypoglycaemic activity of extracts and compounds from the leaves of Hintonia standleyana and H. latiflora: Potential alternatives to the use of the stem bark of these species. J. Nat. Prod. 2009, 72, 408–413. [Google Scholar]
- De Santana Aquino, D.F.; Monteiro, T.A.; Lima Cardoso, C.A.; Heredia Vieira, S.C.; Vieira, M.d.C.; de Picoli Souza, K.; Amaya-Farfan, J.; Borges Castro Carvalho, G.C.; Moura, C.S.; Morato, P.N. Investigation of the antioxidant and hypoglycemiant properties of Alibertia edulis (L.C. Rich.) A.C. Rich. leaves. J. Ethnopharmacol. 2020, 253, 112648. [Google Scholar] [CrossRef]
- De Santana Aquino, D.F.; Signor Tirloni, C.A.; Tolouei Menegati, S.E.L.; Lima Cardoso, C.A.; Heredia Vieira, S.C.; do Carmo Vieira, M.; Simonet, A.M.; Macías, F.A.; Gasparotto, A. Alibertia edulis (L.C. Rich.) A.C. Rich—A potent diuretic arising from Brazilian indigenous species. J. Ethnopharmacol. 2017, 196, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Menegati, S.E.L.T.; de Lima, F.F.; Traesel, G.K.; Souza, R.I.C.; dos Santos, A.C.; de Santana Aquino, D.F.; de Oliveira, V.S.; Heredia Vieira, S.C.; Cardoso, C.A.L.; Vieira, M.d.C.; et al. Acute and subacute toxicity of the aqueous extract of Alibertia edulis (Rich.) A. Rich. ex DC. in rats. J. Ethnopharmacol. 2016, 194, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Asanga, E.E.; Eseyin, O.; Ebong, P.; Igile, G.; Thomas, P.S.; Ebong, A. Antiplasmodial activity of ethanol extract and fractions of Nauclea latifolia Smith [Rubiaceae] Roots. World J. Pharm. Sci. 2017, 5, 106–118. [Google Scholar]
- Grace, S.E.; Grace, E.E. Comparative effect of Nauclea latifolia leaf fractions on blood glucose and lipid profile parameters of alloxan induced-diabetic rats. J. Med. Plants Res. 2017, 11, 387–392. [Google Scholar] [CrossRef]
- Zhang, W.M.; Wang, W.; Zhang, J.J.; Wang, Z.R.; Wang, Y.; Hao, W.J.; Huang, W.Y. Anti-bacterial Constituents of Hainan Morinda citrifolia [Noni] Leaves. J. Food Sci. 2016, 81, M1192–M1196. [Google Scholar] [CrossRef] [PubMed]
- Inada, A.C.; Figueiredo, P.S.; Santos-Eichler, R.A.D.; Freitas, K.C.; Hiane, P.A.; Castro, A.P.; Guimarães, R.C.A. Morinda citrifolia Linn. (noni) and its potential in obesity-related metabolic dysfunction. Nutrients 2017, 9, 540. [Google Scholar] [CrossRef]
- Ida, S.R.; Quintana, C.R.; Rodríguez, A.J.; Xicoténcatl, R.I.; Lagunes, R.L.; Aguirre, M.I.; Alexander, A. Beneficial effects of Morinda citrifolia Linn. [Noni] leaf extract on obesity, dyslipidemia and adiponectinemia in rats with metabolic syndrome. Int. J. Pharm. Sci. Res. 2017, 8, 2496–2503. [Google Scholar]
- Inada, A.C.; Silva, G.T.; Silva, L.P.R.D.; Alves, F.M.; Filiú, W.F.O.; Asato, M.A.; Junior, W.H.K.; Corsino, J.; Figueiredo, P.O.; Garcez, F.R.; et al. Therapeutic Effects of Morinda citrifolia Linn. (Noni) Aqueous Fruit Extract on the Glucose and Lipid Metabolism in High-Fat/High-Fructose-Fed Swiss Mice. Nutrients 2020, 10, 3439. [Google Scholar] [CrossRef] [PubMed]
- Araujo, L.C.C.; Feitosa, K.B.; Murata, G.M.; Furigo, I.C.; Teixeira, S.A.; Lucena, C.F.; Ribeiro, L.M.; Muscará, M.N.; Costa, S.K.P.; Donato, J.; et al. Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD. Sci. Rep. 2018, 8, 11013. [Google Scholar] [CrossRef]
- Villegas-Vílchez, L.F.; Ascencios, J.H.; Dooley, T.P. GlucoMedix®, an extract of Stevia rebaudiana and Uncaria tomentosa, reduces hyperglycemia, hyperlipidemia, and hypertension in rat models without toxicity: A treatment for metabolic syndrome. BMC Complement. Med. Ther. 2022, 22, 62. [Google Scholar]
- Tong, X.L.; Lian, F.M.; Zhou, Q.; Xu, L.P.; Ji, H.Y.; Xu, G.C.; Hu, Y.H.; Zhao, L.H.; Xia, L.; Wang, J.; et al. A prospective multicenter clinical trial of Chinese herbal formula JZQG [Jiangzhuoqinggan] for hypertension. Am. J. Chin. Med. 2013, 41, 33–42. [Google Scholar] [CrossRef]
- Slish, D.F.; Arvigo, R.; Balick, M.J. Alseis yucatanensis: A natural product from Belize that exhibits multiple mechanisms of vasorelaxation. J. Ethnopharmacol. 2004, 92, 297–302. [Google Scholar] [CrossRef]
- Pérez-Gutiérrez, R.M.; Pérez-González, C.; Zavala-Sánchez, M.A.; Pérez-Gutiérrez, S. Actividad hipoglucemiante de Bouvardia terniflora, Brickellia veronicaefolia y Parmentiera edulis. Salud Publica Mex. 1998, 40, 354–358. [Google Scholar] [CrossRef]
- Perez, G.R.M.; Perez, G.C.; Perez, G.S.; Zavala, S.M.A. Effect of triterpenoids of Bouvardia terniflora on blood sugar levels of normal and alloxan diabetic mice. Phytomedicine 1998, 5, 475–478. [Google Scholar] [CrossRef]
- Kojima, K.; Shimada, T.; Nagareda, Y.; Watanabe, M.; Ishizaki, J.; Sai, Y.; Miyamoto, K.; Aburada, M. Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HepG2 cells. Biol. Pharm. Bull. 2011, 34, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Castelazo, F.; Soria-Jasso, L.E.; Torre-Villalvazo, I.; Cariño-Cortés, R.; Muñoz-Pérez, V.M.; Ortiz, M.I.; Fernández-Martínez, E. Plants of the Rubiaceae Family with Effect on Metabolic Syndrome: Constituents, Pharmacology, and Molecular Targets. Plants 2023, 12, 3583. https://doi.org/10.3390/plants12203583
González-Castelazo F, Soria-Jasso LE, Torre-Villalvazo I, Cariño-Cortés R, Muñoz-Pérez VM, Ortiz MI, Fernández-Martínez E. Plants of the Rubiaceae Family with Effect on Metabolic Syndrome: Constituents, Pharmacology, and Molecular Targets. Plants. 2023; 12(20):3583. https://doi.org/10.3390/plants12203583
Chicago/Turabian StyleGonzález-Castelazo, Fabiola, Luis E. Soria-Jasso, Ivan Torre-Villalvazo, Raquel Cariño-Cortés, Víctor M. Muñoz-Pérez, Mario I. Ortiz, and Eduardo Fernández-Martínez. 2023. "Plants of the Rubiaceae Family with Effect on Metabolic Syndrome: Constituents, Pharmacology, and Molecular Targets" Plants 12, no. 20: 3583. https://doi.org/10.3390/plants12203583
APA StyleGonzález-Castelazo, F., Soria-Jasso, L. E., Torre-Villalvazo, I., Cariño-Cortés, R., Muñoz-Pérez, V. M., Ortiz, M. I., & Fernández-Martínez, E. (2023). Plants of the Rubiaceae Family with Effect on Metabolic Syndrome: Constituents, Pharmacology, and Molecular Targets. Plants, 12(20), 3583. https://doi.org/10.3390/plants12203583