Sensing Forests Directly: The Power of Permanent Plots
Abstract
:1. Introduction
The Nature of Plots
2. Achievements and Contributions
3. Threats Faced
4. Tackling the Challenges, Unleashing the Opportunities
5. Recommendations and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russell, R.; Guerry, A.D.; Balvanera, P.; Gould, R.K.; Basurto, X.; Chan, K.M.; Klain, S.; Levine, J.; Tam, J. Humans and nature: How knowing and experiencing nature affect well-being. Annu. Rev. Environ. Resour. 2013, 38, 473–502. [Google Scholar] [CrossRef]
- Dawkins, H.C.; Philip, M.S. Tropical Moist Forest Silviculture and Management: A History of Success and Failure; CAB International: Wallingford, UK, 1998. [Google Scholar]
- de Lima, R.A.; Phillips, O.L.; Duque, A.; Tello, J.S.; Davies, S.J.; de Oliveira, A.A.; Muller, S.; Honorio Coronado, E.N.; Vilanova, E.; Cuni-Sanchez, A.; et al. Making forest data fair and open. Nat. Ecol. Evol. 2022, 6, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Duque, A.; Sánchez, M.; Cavelier, J.; Duivenvoorden, J.F. Different floristic patterns of woody understorey and canopy plants in Colombian Amazonia. J. Trop. Ecol. 2002, 18, 499–525. [Google Scholar] [CrossRef]
- DRYFLOR; Banda-R, K.; Delgado-Salinas, A.; Dexter, K.G.; Linares-Palomino, R.; Oliveira-Filho, A.; Prado, D.; Pullan, M.; Quintana, C.; Riina, R.; et al. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 2016, 353, 1383–1387. [Google Scholar]
- Gentry, A.H. Tree species richness of upper Amazonian forests. Proc. Natl. Acad. Sci. USA 1988, 85, 156–159. [Google Scholar] [CrossRef]
- Gentry, A.H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 1988, 75, 1–34. [Google Scholar] [CrossRef]
- Ter Steege, H.; Pitman, N.C.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; Phillips, O.L.; Castilho, C.V.; Magnusson, W.E.; Molino, J.F.; et al. Hyperdominance in the Amazonian tree flora. Science 2013, 342, 1243092. [Google Scholar] [CrossRef]
- Cazzolla Gatti, R.; Reich, P.B.; Gamarra, J.G.; Crowther, T.; Hui, C.; Morera, A.; Bastin, J.F.; De-Miguel, S.; Nabuurs, G.J.; Svenning, J.C.; et al. The number of tree species on Earth. Proc. Natl. Acad. Sci. USA 2022, 119, e2115329119. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Girardin, C.; Metcalfe, D.B.; Doughty, C.E.; Aragão, L.E.; Rifai, S.W.; Oliveras, I.; Shenkin, A.; Aguirre-Gutiérrez, J.; Dahlsjö, C.A.; et al. The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 2021, 253, 108889. [Google Scholar] [CrossRef]
- Girardin, C.A.J.; Malhi, Y.; Aragao, L.E.O.C.; Mamani, M.; Huaraca Huasco, W.; Durand, L.; Feeley, K.J.; Rapp, J.; Silva-Espejo, J.E.; Silman, M.; et al. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob. Chang. Biol. 2010, 16, 3176–3192. [Google Scholar] [CrossRef]
- Baker, T.R.; Phillips, O.L.; Malhi, Y.; Almeida, S.; Arroyo, L.; Di Fiore, A.; Erwin, T.; Killeen, T.J.; Laurance, S.G.; Laurance, W.F.; et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 2004, 10, 545–562. [Google Scholar] [CrossRef]
- Phillips, O.L.; Sullivan, M.J.; Baker, T.R.; Monteagudo Mendoza, A.; Vargas, P.N.; Vásquez, R. Species matter: Wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 2019, 40, 913–935. [Google Scholar] [CrossRef]
- Chave, J.; Davies, S.J.; Phillips, O.L.; Lewis, S.L.; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T.R.; Coomes, D.; Disney, M.; et al. Ground data are essential for biomass remote sensing missions. Surv. Geophys. 2019, 40, 863–880. [Google Scholar] [CrossRef]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; Crowther, T.W.; et al. The importance of consistent global forest aboveground biomass product validation. Surv. Geophys. 2019, 40, 979–999. [Google Scholar] [CrossRef] [PubMed]
- Labrière, N.; Davies, S.J.; Disney, M.I.; Duncanson, L.I.; Herold, M.; Lewis, S.L.; Phillips, O.L.; Quegan, S.; Saatchi, S.S.; Schepaschenko, D.G.; et al. Toward a forest biomass reference measurement system for remote sensing applications. Glob. Chang. Biol. 2023, 29, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Crezee, B.; Dargie, G.C.; Ewango, C.E.; Mitchard, E.T.; Emba, B.O.; Kanyama, T.J.; Bola, P.; Ndjango, J.B.N.; Girkin, N.T.; Bocko, Y.E.; et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 2022, 15, 639–644. [Google Scholar] [CrossRef]
- Levis, C.; Costa, F.R.; Bongers, F.; Peña-Claros, M.; Clement, C.R.; Junqueira, A.B.; Neves, E.G.; Tamanaha, E.K.; Figueiredo, F.O.; Salomão, R.P.; et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 2017, 355, 925–931. [Google Scholar] [CrossRef]
- Quesada, C.A.; Phillips, O.L.; Schwarz, M.; Czimczik, C.I.; Baker, T.R.; Patiño, S.; Fyllas, N.M.; Hodnett, M.G.; Herrera, R.; Almeida, S.; et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 2012, 9, 2203–2246. [Google Scholar] [CrossRef]
- Sousa, T.R.; Schietti, J.; Ribeiro, I.O.; Emílio, T.; Fernández, R.H.; Ter Steege, H.; Castilho, C.V.; Esquivel-Muelbert, A.; Baker, T.; Pontes-Lopes, A.; et al. Water table depth modulates productivity and biomass across Amazonian forests. Glob. Ecol. Biogeogr. 2022, 31, 1571–1588. [Google Scholar] [CrossRef]
- Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.; Reich, P.B.; Nabuurs, G.J.; de-Miguel, S.; Zhou, M.; Picard, N.; et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 2019, 569, 404–408. [Google Scholar] [CrossRef]
- Phillips, O.L.; Malhi, Y.; Higuchi, N.; Laurance, W.F.; Núnez, P.V.; Vásquez, R.M.; Laurance, S.G.; Ferreira, L.V.; Stern, M.; Brown, S.; et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 1998, 282, 439–442. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Zuleta, D.; Duque, A.; Cardenas, D.; Muller-Landau, H.C.; Davies, S.J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 2017, 98, 2538–2546. [Google Scholar] [CrossRef]
- Duque, A.; Peña, M.A.; Cuesta, F.; González-Caro, S.; Kennedy, P.; Phillips, O.L.; Calderón-Loor, M.; Blundo, C.; Carilla, J.; Cayola, L.; et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 2021, 12, 2138. [Google Scholar] [PubMed]
- Brienen, R.J.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; et al. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef]
- Fadrique, B.; Báez, S.; Duque, Á.; Malizia, A.; Blundo, C.; Carilla, J.; Osinaga-Acosta, O.; Malizia, L.; Silman, M.; Farfán-Ríos, W.; et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 2018, 564, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E.; et al. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 2019, 25, 39–56. [Google Scholar] [CrossRef]
- Phillips, O.L.; Aragão, L.E.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López-González, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A.; et al. Drought sensitivity of the Amazon rainforest. Science 2009, 323, 1344–1347. [Google Scholar] [CrossRef]
- Bennett, A.C.; de Sousa, T.R.; Monteagudo-Mendoza, A.; Esquivel-Muelbert, A.; Morandi, P.S.; de Souza, F.C.; Castro, W.; Duque, L.F.; Llampazo, G.F.; dos Santos, R.M.; et al. Sensitivity of South American tropical forests to an extreme climate anomaly. Nat. Clim. Chang. 2023, 13, 967–974. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Lewis, S.L.; Affum-Baffoe, K.; Castilho, C.; Costa, F.; Sanchez, A.C.; Ewango, C.E.; Hubau, W.; Marimon, B.; Monteagudo-Mendoza, A.; et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 2020, 368, 869–874. [Google Scholar]
- Terborgh, J.; Nuñez-Iturri, G.; Pitman, N.C.; Valverde, F.H.C.; Alvarez, P.; Swamy, V.; Pringle, E.G.; Paine, C.T. Tree recruitment in an empty forest. Ecology 2008, 89, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Peres, C.A.; Emilio, T.; Schietti, J.; Desmoulière, S.J.; Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. USA 2016, 113, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Fyllas, N.M.; Bentley, L.P.; Shenkin, A.; Asner, G.P.; Atkin, O.K.; Díaz, S.; Enquist, B.J.; Farfan-Rios, W.; Gloor, E.; Guerrieri, R.; et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 2017, 20, 730–740. [Google Scholar] [CrossRef]
- Christoffersen, B.O.; Gloor, M.; Fauset, S.; Fyllas, N.M.; Galbraith, D.R.; Baker, T.R.; Kruijt, B.; Rowland, L.; Fisher, R.A.; Binks, O.J.; et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro). Geosci. Model Dev. 2016, 9, 4227–4255. [Google Scholar] [CrossRef]
- Huntingford, C.; Zelazowski, P.; Galbraith, D.; Mercado, L.M.; Sitch, S.; Fisher, R.; Lomas, M.; Walker, A.P.; Jones, C.D.; Booth, B.B.; et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 2013, 6, 268–273. [Google Scholar] [CrossRef]
- Tavares, J.V.; Oliveira, R.S.; Mencuccini, M.; Signori-Müller, C.; Pereira, L.; Diniz, F.C.; Gilpin, M.; Zevallos, M.J.M.; Yupayccana, C.A.S.; Acosta, M.; et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 2023, 617, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Alvarez, X.; Blanco, J.A.; Phillips, O.L.; Guadalupe, V.; Ortega–López, L.D.; Steege, H.T.; Rivas-Torres, G. MADERA: A standardized Pan-Amazonian dataset for tropical timber species. Ecology 2023, 104, e4135. [Google Scholar] [CrossRef]
- Sist, P.; Sheil, D.; Kartawinata, K.; Priyadi, H. Reduced-impact logging in Indonesian Borneo: Some results confirming the need for new silvicultural prescriptions. For. Ecol. Manag. 2003, 179, 415–427. [Google Scholar] [CrossRef]
- Rozendaal, D.M.; Bongers, F.; Aide, T.M.; Alvarez-Dávila, E.; Ascarrunz, N.; Balvanera, P.; Becknell, J.M.; Bentos, T.V.; Brancalion, P.H.; Cabral, G.A.; et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 2019, 5, eaau3114. [Google Scholar] [CrossRef]
- Requena Suarez, D.; Rozendaal, D.M.; De Sy, V.; Phillips, O.L.; Alvarez-Dávila, E.; Anderson-Teixeira, K.; Araujo-Murakami, A.; Arroyo, L.; Baker, T.R.; Bongers, F.; et al. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 2019, 25, 3609–3624. [Google Scholar] [CrossRef]
- Mitchard, E.T.; Feldpausch, T.R.; Brienen, R.J.; Lopez-Gonzalez, G.; Monteagudo, A.; Baker, T.R.; Lewis, S.L.; Lloyd, J.; Quesada, C.A.; Gloor, M.; et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 2014, 23, 935–946. [Google Scholar] [CrossRef]
- Avitabile, V.; Herold, M.; Heuvelink, G.B.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Ashton, P.S.; Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 2016, 22, 1406–1420. [Google Scholar] [CrossRef] [PubMed]
- Dalagnol, R.; Wagner, F.H.; Galvão, L.S.; Streher, A.S.; Phillips, O.L.; Gloor, E.; Pugh, T.A.M.; Ometto, J.P.H.B.; Aragão, L.E.O.C. Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates. Sci. Rep. 2021, 11, 1388. [Google Scholar] [CrossRef] [PubMed]
- Muscarella, R.; Kolyaie, S.; Morton, D.C.; Zimmerman, J.K.; Uriarte, M. Effects of topography on tropical forest structure depend on climate context. J. Ecol. 2020, 108, 145–159. [Google Scholar] [CrossRef]
- Vilanova, E.; Ettl, G.J.; Ramírez-Angulo, H.; Torres-Lezama, A.; Aymard, G.; Gámez, L.; Gutiérrez, N.; Durán, C.; Hernández, L.; Herrera, R.; et al. Collapse of Venezuelan Science Threatens the World’s Most Sustained Monitoring of Tropical Forests; Ecology & Evolution Community: Hoboken, NJ, USA, 2020; Available online: https://go.nature.com/3e4WrUs (accessed on 15 September 2023).
- Davies, S.J.; Abiem, I.; Salim, K.A.; Aguilar, S.; Allen, D.; Alonso, A.; Anderson-Teixeira, K.; Andrade, A.; Arellano, G.; Ashton, P.S.; et al. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 2021, 253, 108907. [Google Scholar] [CrossRef]
- ForestPlots.net; Blundo, C.; Carilla, J.; Grau, R.; Malizia, A.; Malizia, L.; Osinaga-Acosta, O.; Bird, M.; Bradford, M.; Catchpole, D.; et al. Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biol. Conserv. 2021, 260, 108849. [Google Scholar] [CrossRef]
- SEOSAW partnership. A network to understand the changing socio-ecology of the southern African woodlands (SEOSAW): Challenges, benefits, and methods. Plants, People, Planet 2021, 3, 249–267. [Google Scholar] [CrossRef]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; MacBean, N.; et al. Aboveground Woody Biomass Product Validation Good Practices Protocol. Version 1.0. In Good Practices for Satellite Derived Land Product Validation; Duncanson, L., Disney, M., Armston, J., Nickeson, J., Minor, D., Camacho, F., Eds.; Land Product Validation Subgroup (WGCV/CEOS): Washington, DC, USA, 2021; p. 236. [Google Scholar] [CrossRef]
Forest Science Domain | Theme | Examples | Plot Criticality |
---|---|---|---|
Composition | Understanding local and regional floristic variation | Amazon community floristics and its drivers [4] | Essential: discovered with plots, unknowable without them |
Understanding floristic variation within and across biomes | Neotropical dry forest species and differentiation [5] | Essential: discovered with plots, unknowable without them | |
Diversity | Understanding variation in species richness, diversity and dominance | North-west Amazon and Andean forests are the global epicentre of arboreal diversity [6,7] | Essential: discovered with plots, unknowable without them |
Revealing 15,000 tree species in Amazonia [8] | Essential: discovered with plots, unknowable without them | ||
Predicting 73,000 tree species worldwide [9] | Essential: discovered with plots, unknowable without them | ||
Ecosystem Processes | Productivity | Primary productivity and its large-scale climate and edaphic controls [10] | Essential complement: independent, direct bottom-up measure |
Respiration, Allocation | Tracking C fluxes and photosynthate allocation within ecosystems [11] | Essential: discovered with plots, unknowable without them | |
Biomass Carbon | Estimating and Mapping biomass | Species composition controls local to continent-wide biomass via taxon-dependent wood density [12,13] | Essential: impact of species on forest AGB is discovered with plots, unknowable without them |
Global biomass mapping with radar and airborne LiDAR needs plots (diameter, volume, species) [14,15,16] | Complements: parameterise or validate Earth Observation-informed modelling | ||
Buried Carbon | Mapping carbon hotspots | Quantifying Congo Basin peatland carbon [17] | Complements: validation of EO-informed modelling |
Forest Peoples’ Cultural Influence | Understanding where and how indigenous people managed forests | Legacies of indigenous forest domestication and management in Amazonia [18] | Essential: discovered with plots, unknowable without them |
Soils | Revealing how soils drive forest ecology | Soil physical and chemical conditions control forest biomass, productivity and dynamics [19] | Essential: discovered with plots, unknowable without them |
Topography and water table depth controls on forest ecology [20] | Complements: provides long-term ecology to compare with remote-sensing | ||
Soil interactions with climate and biota | Climate-sensitive mycorrhizal impacts on global forest ecology [21] | Essential: discovered with plots, unknowable without them | |
Forest Change and Global Change Drivers | Changing forest structure and carbon | Discovering the carbon sink in mature forests [22] | Essential: discovered with plots |
Measuring change within intact forests [23,24,25] | Essential: measured with plots, largely invisible from space | ||
Changing forest dynamics | Baseline and change in Amazon forest growth, recruitment, mortality, residence times [26] | Essential: discovered with plots, largely invisible from space | |
Attributing drivers of dynamic changes | Attributing climate, CO2 and residence time controls of continental changes in biomass, growth and mortality [27] | Essential: discovered with plots, largely invisible from space | |
Changing forest diversity and composition | Thermophilization of Andean forests [28] | Essential: discovered with plots, unknowable without them | |
Xerophilization of Amazon forest composition [29] | Essential: discovered with plots, unknowable without them | ||
Impacts of extreme drought events | Drought and thermal sensitivity of forest growth, mortality, biomass [30,31] | Essential: discovered with plots, unknowable without them | |
Predicting climate-change induced future forest change | Long-term climate sensitivity of tropical forests [32] | Essential: predicted with plots, provides ground constraints for dynamic climate-vegetation models | |
Defaunation impacts on forest demography and composition | Massive changes in tree species regeneration in “empty forests” [33] | Essential: measured with plots, invisible from space | |
Making Models of Nature | Initiating and Calibrating Models | Predicting future defaunation-induced carbon losses when large vertebrate fruit-dispersers are removed [34] | Essential: plots predict and constrain models of past and future changes which are invisible from space |
Establishing robust individual- and trait-based models of forest function [35] | Essential: provides in situ traits and long-term, species- and stand-level state, dynamics and change | ||
Establishing hydraulic-models of forest function [36] | Complements: provides ecosystem state, dynamics and change | ||
Validating models | Validating DGVM estimate of CO2-induced biomass gains in forests [37] | Complements: provide actual long-term stand-level state, dynamics and change | |
Showing how variation in species’ hydraulic traits affects the long-term carbon balance of forests [38] | Essential: provides in situ trait measurements and long-term biomass growth, mortality, dynamics records | ||
Managing Forests | Characterizing key species | Determining the diversity, abundance, frequency, distribution and vulnerability of timber tree species [39] | Essential: provides long-term, species abundance, frequency, distribution, reproduction across forest domain |
Improving sustainability | Establishing sustainable logging limits and size-class thresholds for forests [40] | Essential: direct validation of which management strategies work, which don’t | |
Biodiversity Recovery | Revealing how species richness recovers fast but species composition very slowly in secondary forests [41] | Essential: long-term, ground-measured biodiversity and composition only possible via ground ID | |
Carbon Sequestration | Establishing IPCC Tier I defaults for nation states to estimate their carbon uptake in secondary forests and intact forest growth [42] | Essential: long-term, ground-measured biomass changes and forest management |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, O.L. Sensing Forests Directly: The Power of Permanent Plots. Plants 2023, 12, 3710. https://doi.org/10.3390/plants12213710
Phillips OL. Sensing Forests Directly: The Power of Permanent Plots. Plants. 2023; 12(21):3710. https://doi.org/10.3390/plants12213710
Chicago/Turabian StylePhillips, Oliver L. 2023. "Sensing Forests Directly: The Power of Permanent Plots" Plants 12, no. 21: 3710. https://doi.org/10.3390/plants12213710
APA StylePhillips, O. L. (2023). Sensing Forests Directly: The Power of Permanent Plots. Plants, 12(21), 3710. https://doi.org/10.3390/plants12213710