From Petri Dish to Field: Plant Tissue Culture and Genetic Engineering of Oats for Improved Agricultural Outcomes
Abstract
:1. Introduction
Plant Cell Culture
2. Oat Tissue Culture
- Genetic Transformation of Oats
3. Protoplast Technology
4. Double Haploid Technology
- Wide Hybridization
5. Genome Editing in Oats
- CRISPR
6. Potential Challenges
7. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamal, N.; Tsardakas Renhuldt, N.; Bentzer, J.; Gundlach, H.; Haberer, G.; Juhász, A.; Lux, T.; Bose, U.; Tye-Din, J.A.; Lang, D.; et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 2022, 606, 113–119. [Google Scholar] [CrossRef]
- Soyfer, V.N. Origin and Geography of Cultivated Plants—Vanilov, NI. Nature 1994, 368, 503–504. [Google Scholar] [CrossRef]
- Malzew, A.I. Wild and Cultivated Oats, Sectio Euavena Griseb; Publishers of the All-Union Institute of Applied Botany and New Cultures under the Council of People’s Commissars of the USSR: Leningrad, Russia, 1930. [Google Scholar]
- Andon, M.B.; Anderson, J.W. State of the Art Reviews: The Oatmeal-Cholesterol Connection: 10 Years Later. Am. J. Lifestyle Med. 2008, 2, 51–57. [Google Scholar] [CrossRef]
- Jenkins, A.L.; Jenkins, D.J.; Zdravkovic, U.; Würsch, P.; Vuksan, V. Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. Eur. J. Clin. Nutr. 2002, 56, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, E.; Abascal, K. Botanical Remedies for Nicotine Addiction. Altern. Complement. Ther. 2001, 7, 337–340. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.M. Oat Antioxidants. J. Cereal Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Daou, C.; Zhang, H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Compr. Rev. Food Sci. Food Saf. 2012, 11, 355–365. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Ziv, M. Simple bioreactors for mass propagation of plants. Plant Cell Tissue Organ. Cult. 2005, 81, 277–285. [Google Scholar] [CrossRef]
- Lakshmanan, P.; Lee, C.L.; Goh, C.J. An efficient in vitro method for mass propagation of a woody ornamentalIxora coccinea L. Plant Cell Rep. 1997, 16, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Lodha, D.; Patel, A.K.; Shekhawat, N.S. A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of Cadaba fruticosa (L.) Druce (Bahuguni): A multipurpose endangered medicinal shrub. Physiol. Mol. Biol. Plants 2015, 21, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Pathi, K.M.; Tuteja, N. High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L. cv Narashima) by using embryo apex. Plant Signal. Behav. 2013, 8, e22763. [Google Scholar] [CrossRef]
- Tegen, H. The Role of Plant Tissue Culture to Supply Disease Free Planting Materials of Major Horticultural Crops in Ethiopia. J. Biol. Agric. Healthc. 2016, 6, 122–129. [Google Scholar]
- Chatenet, M.; Delage, C.; Ripolles, M.; Irey, M.; Lockhart, B.E.L.; Rott, P. Detection of Sugarcane yellow leaf virus in Quarantine and Production of Virus-free Sugarcane by Apical Meristem Culture. Plant Dis. 2001, 85, 1177–1180. [Google Scholar] [CrossRef]
- Pathi, K.M.; Tula, S.; Tuteja, N. High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signal Behav. 2013, 8, e24354. [Google Scholar] [CrossRef] [PubMed]
- Salvagnin, U.; Unkel, K.; Sprink, T.; Bundock, P.; Sevenier, R.; Bogdanović, M.; Todorović, S.; Cankar, K.; Hakkert, J.C.; Schijlen, E.; et al. A comparison of three different delivery methods for achieving CRISPR/Cas9 mediated genome editing in Cichorium intybus L. Front. Plant Sci. 2023, 14, 1111110. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.R.; Vesco, L.L.D.; Nodari, R.O.; Lischka, R.W.; Müller, C.V.; Guerra, M.P. Tissue culture for the conservation and mass propagation of Vriesea reitzii Leme and Costa, a bromeliad threatened of extinction from the Brazilian Atlantic Forest. Biodivers. Conserv. 2005, 14, 1799–1808. [Google Scholar] [CrossRef]
- Tyagi, R.K.; Agrawal, A.; Mahalakshmi, C.; Hussain, Z.; Tyagi, H. Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. Vitr. Cell. Dev. Biol. Plant 2007, 43, 51–58. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Merecz-Sadowska, A.; Picot, L.; Brčić Karačonji, I.; Wieczfinska, J.; Śliwiński, T.; Sitarek, P. Genetic Manipulation and Bioreactor Culture of Plants as a Tool for Industry and Its Applications. Molecules 2022, 27, 795. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, P.B. The Effects of Growth Substances on Intercalary Growth and Cellular Differentiation in Developing Internodes of Avena sativa I. The Effects of Indole-3-acetic Acid. Physiol. Plant. 1965, 18, 424–443. [Google Scholar] [CrossRef]
- Webster, J.M. Production of Oat Callus and its Susceptibility to a Plant Parasitic Nematode. Nature 1966, 212, 1472. [Google Scholar] [CrossRef]
- Carter, O.; Yamada, Y.; Takahashi, E. Tissue Culture of Oats. Nature 1967, 214, 1029–1030. [Google Scholar] [CrossRef]
- Brenneman, F.N.; Galston, A.W. Experiments on the Cultivation of Protoplasts and Calli of Agriculturally Important Plants I. Oat (Avena sativa L.). Biochem. Physiol. Pflanz. 1975, 168, 453–471. [Google Scholar] [CrossRef]
- Cummings, D.P.; Green, C.E.; Stuthman, D.D. Callus Induction and Plant Regeneration in Oats. Crop Sci. 1976, 16, cropsci1976.0011183X001600040006x. [Google Scholar] [CrossRef]
- Rines, H.W.; McCoy, T.J. Tissue Culture Initiation and Plant Regeneration in Hexaploid Species of Oats1. Crop Sci. 1981, 21, 837–842. [Google Scholar] [CrossRef]
- Nabors, M.W.; Kroskey, C.S.; McHugh, D.M. Green Spots are Predictors of High Callus Growth Rates and Shoot Formation in Normal and in Salt Stressed Tissue Cultures of Oat (Avena sativa L.). Z. Pflanzenphysiol. 1981, 105, 341–349. [Google Scholar] [CrossRef]
- Heyser, J.W.; Nabors, M.W. Long Term Plant Regeneration, Somatic Embryogenesis and Green Spot Formation in Secondary Oat (Avena sativa) Callus. Z. Pflanzenphysiol. 1982, 107, 153–160. [Google Scholar] [CrossRef]
- Shekhawat, N.S.; Gordon, P.N.; Galston, A.W. Highly regenerative tissue cultures from axillary tiller buds of sexually mature oat plants (Avena sativa L.). In Vitro 1984, 20, 707–711. [Google Scholar] [CrossRef]
- Rines, H.W.; Luke, H.H. Selection and regeneration of toxin-insensitive plants from tissue cultures of oats (Avena sativa) susceptible to Helminthosporium victoriae. Theor. Appl. Genet. 1985, 71, 16–21. [Google Scholar] [CrossRef]
- Bregitzer, P.; Somers, D.; Rines, H. Development and characterization of friable, embryogenic oat callus. Crop Sci. 1989, 29, 798–803. [Google Scholar] [CrossRef]
- Chen, H.; Xu, G.; Loschke, D.C.; Tomaska, L.; Rolfe, B.G. Efficient callus formation and plant regeneration from leaves of oats (Avena sativa L.). Plant Cell Rep. 1995, 14, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhuge, Q.; Sundqvist, C. Oat leaf base: Tissue with an efficient regeneration capacity. Plant Cell Rep. 1995, 14, 354–358. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Zhang, M.B. Production of Multiple Shoots from Shoot Apical Meristems of Oat (Avena sativa L.). J. Plant Physiol. 1996, 148, 667–671. [Google Scholar] [CrossRef]
- Gless, C.; Lörz, H.; Jähne-Gärtner, A. Establishment of a highly efficient regeneration system from leaf base segments of oat (Avena sativa L.). Plant Cell Rep. 1998, 17, 441–445. [Google Scholar] [CrossRef]
- Birsin, A.B.; Sertaç, Ö.; Murat, Ö. Callus Induction and Plant Regeneration from Mature Embryos of Oat (Avena sativa L.). Turk. J. Biol. 2001, 25, 427–434. [Google Scholar]
- Kelley, R.Y.; Zipf, A.E.; Wesenberg, D.E.; Sharma, G.C. Comparative Evaluation of Three Tissue Culture Methods for the Improvement of Plant Regeneration from Diverse Oat (Avena spp. L.) Genotypes. Cereal Res. Commun. 2004, 32, 113–118. [Google Scholar] [CrossRef]
- Jung-Hun, M. Improvement of regeneration efficiency from mature embryo and leaf base segment in Korean oat genotypes. Korean J. Crop Sci. 2004, 49, 349–353. [Google Scholar]
- Borji, M.; Bouamama, B.; Chibani, F.; Teyssier, C.; Ammar, A.; Mliki, A.; Zekri, S.; Ghorbel, A. Micromorphology, structural and ultrastructural changes during somatic embryogenesis of a Tunisian oat variety (Avena sativa L. var ‘Meliane’). Plant Cell Tissue Organ Cult. (PCTOC) 2018, 132, 329–342. [Google Scholar] [CrossRef]
- Salunke, M.D.; Rathod, B.; Dattagonde, N.R. In Vitro Regeneration of Oat (Avena sativa L.) Using Different Explants. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 434–440. [Google Scholar] [CrossRef]
- Al Mamun, S.M.; Islam, M.; Alam, N.E.K.; Noushin, S. In vitro Callus Induction under NaCl Salt Stress and Subsequent Plant Regeneration in Oats (Avena sativa L.). Plant Tissue Cult. Biotechnol. 2020, 30, 253–266. [Google Scholar] [CrossRef]
- Somers, D.A.; Rines, H.W.; Gu, W.; Kaeppler, H.F.; Bushnell, W.R. Fertile, Transgenic Oat Plants. Bio/Technology 1992, 10, 1589–1594. [Google Scholar] [CrossRef]
- Gless, C.; Lörz, H.; Jähne-Gärtner, A. Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J. Plant Physiol. 1998, 152, 151–157. [Google Scholar] [CrossRef]
- Zhang, S.; Cho, M.J.; Koprek, T.; Yun, R.; Bregitzer, P.; Lemaux, P.G. Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep. 1999, 18, 959–966. [Google Scholar] [CrossRef]
- Gasparis, S.; Bregier, C.; Orczyk, W.; Nadolska-Orczyk, A. Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants. Plant Cell Rep. 2008, 27, 1721–1729. [Google Scholar] [CrossRef]
- Dattgonde, N.; Tiwari, S.; Sapre, S.; Gontia-Mishra, I. Genetic Transformation of Oat Mediated by Agrobacterium is enhanced with Sonication and Vacuum Infiltration. Iran. J. Biotechnol. 2019, 17, e1563. [Google Scholar] [CrossRef]
- Maqbool, B.; Zhong, H.; El-Maghraby, Y.; Ahmad, A.; Chai, B.; Wang, W.; Sabzikar, R.; Sticklen, B. Competence of oat ( Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor. Appl. Genet. 2002, 105, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Choi, H.W.; Okamoto, D.; Zhang, S.; Lemaux, P.G. Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep. 2003, 21, 467–474. [Google Scholar] [CrossRef]
- Reyna-Llorens, I.; Ferro-Costa, M.; Burgess, S.J. Plant protoplasts in the age of synthetic biology. J. Exp. Bot. 2023, 74, 3821–3832. [Google Scholar] [CrossRef]
- Kao, K.N.; Constabel, F.; Michayluk, M.R.; Gamborg, O.L. Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 1974, 120, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Constabel, F. Somatic hybridization in higher plants. In Vitro 1976, 12, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.A. Agricultural Applications of Plant Protoplast Fusion. Bio/Technol. 1983, 1, 253–261. [Google Scholar] [CrossRef]
- Pathi, K.M. Establishment of Maize Resistance to Fungal Diseases by Host-Induced Gene Silencing and Site-Directed Mutagenesis. Ph.D. Thesis, Gottfried Wilhelm Leibniz Universität, Hannover, Germany, 2021. [Google Scholar]
- Nanjareddy, K.; Arthikala, M.K.; Blanco, L.; Arellano, E.S.; Lara, M. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: Tools for rapid gene expression analysis. BMC Biotechnol. 2016, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Bargmann, B.O.R. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front. Genome Ed. 2021, 3, 734951. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, Y.; Galston, A.W. Macromolecular synthesis in oat leaf protoplasts. Plant Cell Physiol. 1976, 17, 475–482. [Google Scholar]
- Kaur-Sawhney, R.; Rancillac, M.; Staskawicz, B.; Adams, W.R.; Galston, A.W. Effect of cycloheximide and kinetin on yield, integrity and metabolic activity of oat leaf protoplasts. Plant Sci. Lett. 1976, 7, 57–67. [Google Scholar] [CrossRef]
- Altman, A.; Kaur-Sawhney, R.; Galston, A.W. Stabilization of Oat Leaf Protoplasts through Polyamine-mediated Inhibition of Senescence. Plant Physiol. 1977, 60, 570–574. [Google Scholar] [CrossRef]
- Eastwood, D. Responses of enzymically isolated aleurone cells of oat to gibberellin a(3). Plant Physiol. 1977, 60, 457–459. [Google Scholar] [CrossRef]
- Kaur-Sawhney, R.; Adams, W.R., Jr.; Tsang, J.; Galston, A.W. Leaf pretreatment with senescence retardants as a basis for oat protoplast improvement. Plant Cell Physiol. 1977, 18, 1309–1317. [Google Scholar] [CrossRef]
- Galston, A.W.; Altman, A.; Kaur-Sawhney, R. Polyamines, ribonuclease and the improvement of oat leaf protoplasts. Plant Sci. Lett. 1978, 11, 69–79. [Google Scholar] [CrossRef]
- Kaur-Sawhney, R.; Altman, A.; Galston, A.W. Dual Mechanisms in Polyamine-mediated Control of Ribonuclease Activity in Oat Leaf Protoplasts. Plant Physiol. 1978, 62, 158–160. [Google Scholar] [CrossRef]
- Hooley, R. Protoplasts isolated from aleurone layers of wild oat (Avena fatua L.) exhibit the classic response to gibberellic acid. Planta 1982, 154, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Hahne, B.; Fleck, J.; Hahne, G. Colony formation from mesophyll protoplasts of a cereal, oat. Proc. Natl. Acad. Sci. USA 1989, 86, 6157–6160. [Google Scholar] [CrossRef]
- Rakotondrafara, A.M.; Jackson, J.R.; Kneller, E.P.; Miller, W.A. Preparation and electroporation of oat protoplasts from cell suspension culture. Curr. Protoc. Microbiol. 2007, 16, Unit 16D.13. [Google Scholar] [CrossRef]
- Pathi, K.M. Generation of instantly homozygous transgenic tobacco plants by gene transfer to haploid cells. In Proceedings of German Society of Plant Biotechnology; KWS Saat AG: Einbeck, Germany, 2015. [Google Scholar]
- Kumlehn, J.; Serazetdinova, L.; Hensel, G.; Becker, D.; Loerz, H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J. 2006, 4, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Hoffie, R.E.; Otto, I.; Hisano, H.; Kumlehn, J. Site-Directed Mutagenesis in Barley Using RNA-Guided Cas Endonucleases During Microspore-Derived Generation of Doubled Haploids. In Doubled Haploid Technology: Volume 1: General Topics, Alliaceae, Cereals; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 199–214. [Google Scholar]
- Budhagatapalli, N.; Halbach, T.; Hiekel, S.; Büchner, H.; Müller, A.E.; Kumlehn, J. Site-directed mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnol. J. 2020, 18, 2376–2378. [Google Scholar] [CrossRef]
- Impens, L.; Lorenzo, C.D.; Vandeputte, W.; Wytynck, P.; Debray, K.; Haeghebaert, J.; Herwegh, D.; Jacobs, T.B.; Ruttink, T.; Nelissen, H.; et al. Combining multiplex gene editing and doubled haploid technology in maize. New Phytol. 2023, 239, 1521–1532. [Google Scholar] [CrossRef]
- Chung, S.-W. Anther Culture in Oats (Avena sativa L.). Ph.D. Thesis, McGill University, Montréal, QC, Canada, 1980. [Google Scholar]
- Rines, H.W.; McCoy, T.J. Effect of Genotype on Initiation of Tissue Cultures from Embryos and Anthers of Oats (Avena spp.). In Proceedings of American Society of Agronomy; USDA-SEA-AR: St. Paul, MN, USA; Reno, NV, USA, 1980; p. 67. [Google Scholar]
- Rines, H.W. Oat Anther Culture: Genotype Effects on Callus Initiation and the Production of a Haploid Plant. Crop Sci. 1983, 23, 268–272. [Google Scholar] [CrossRef]
- Sun, J.; Lu, T.; Sōndahl, M.R. Anther Culture of Naked Oat and the Establishment of Its Haploid Suspension Cell. J. Integr. Plant Biol. 1991, 33, 417–420. [Google Scholar]
- Kiviharju, E.; Puolimatka, M.; Pehu, E. Regeneration of anther-derived plants ofAvena sterilis. Plant Cell Tissue Organ. Cult. 1997, 48, 147–152. [Google Scholar] [CrossRef]
- Kiviharju, E.; Pehu, E. The effect of cold and heat pretreatments on anther culture response of Avena sativa and A. sterilis. Plant Cell Tissue Organ. Cult. 1998, 54, 97–104. [Google Scholar] [CrossRef]
- Kiviharju, E.; Puolimatka, M.; Saastamoinen, M.; Hovinen, S.; Pehu, E. The effect of genotype on anther culture response of cultivated and wild oats. Agric. Food Sci. 1998, 7, 409–422. [Google Scholar] [CrossRef]
- Kiviharju, E.M.; Tauriainen, A.A. 2,4-Dichlorophenoxyacetic acid and kinetin in anther culture of cultivated and wild oats and their interspecific crosses: Plant regeneration from A. sativa L. Plant Cell Rep. 1999, 18, 582–588. [Google Scholar] [CrossRef]
- Kiviharju, E.; Puolimatka, M.; Saastamoinen, M.; Pehu, E. Extension of anther culture to several genotypes of cultivated oats. Plant Cell Rep. 2000, 19, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Kiviharju, E.; Moisander, S.; Laurila, J. Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue Organ. Cult. 2005, 81, 1–9. [Google Scholar] [CrossRef]
- Ślusarkiewicz-Jarzina, A.; Ponitka, A. The effect of physical medium state on anther culture response in Polish cultivated oat (Avena sativa L.). Acta Biol. Cracoviensia Ser. Bot. 2007, 49, 27–31. [Google Scholar]
- Ponitka, A.; Ślusarkiewicz-Jarzina, A. Regeneration of oat androgenic plants in relation to induction media and culture conditions of embryo-like structures. Acta Soc. Bot. Pol. 2009, 78, 209–213. [Google Scholar] [CrossRef]
- Ferrie, A.M.R.; Irmen, K.I.; Beattie, A.D.; Rossnagel, B.G. Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: Effect of pre-culture and post-culture conditions. Plant Cell Tissue Organ Cult. (PCTOC) 2014, 116, 89–96. [Google Scholar] [CrossRef]
- Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Dziurka, K.; Noga, A.; Kapłoniak, K.; Pilipowicz, M.; Skrzypek, E. Factors inducing regeneration response in oat (Avena sativa L.) anther culture. Vitr. Cell. Dev. Biol. Plant 2019, 55, 595–604. [Google Scholar] [CrossRef]
- Warchoł, M.; Juzoń, K.; Dziurka, K.; Czyczyło-Mysza, I.; Kapłoniak, K.; Marcińska, I.; Skrzypek, E. The Effect of Zinc, Copper, and Silver Ions on Oat (Avena sativa L.) Androgenesis. Plants 2021, 10, 248. [Google Scholar] [CrossRef]
- Rines, H.W.; Dahleen, L.S. Haploid Oat Plants Produced by Application of Maize Pollen to Emasculated Oat Florets. Crop Sci. 1990, 30, 1073–1078. [Google Scholar] [CrossRef]
- Machan, F.; Nesvadba, Z.; Ohnoutkova, L. Production of haploid plants of new wheat and oat donors through wheat x maize and oat x maize crosses. Genet. A Slechteni-UZPI 1995, 31, 1–10. [Google Scholar]
- Matzk, F. Hybrids of Crosses between Oat and Andropogoneae or Paniceae Species. Crop Sci. 1996, 36, 17–21. [Google Scholar] [CrossRef]
- Riera-Lizarazu, O.; Rines, H.W.; Phillips, R.L. Cytological and molecular characterization of oat x maize partial hybrids. Theor. Appl. Genet. 1996, 93, 123–135. [Google Scholar] [CrossRef]
- Sidhu, P.K.; Howes, N.K.; Aung, T.; Zwer, P.K.; Davies, P.A. Factors affecting oat haploid production following oat × maize hybridization. Plant Breed. 2006, 125, 243–247. [Google Scholar] [CrossRef]
- Ishii, T.; Ueda, T.; Tanaka, H.; Tsujimoto, H. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: Pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res. 2010, 18, 821–831. [Google Scholar] [CrossRef]
- Marcińska, I.; Nowakowska, A.; Skrzypek, E.; Czyczyło-Mysza, I. Production of double haploids in oat (Avena sativa L.) by pollination with maize (Zea mays L.). Cent. Eur. J. Biol. 2013, 8, 306–313. [Google Scholar] [CrossRef]
- Noga, A.; Skrzypek, E.; Warchoł, M.; Czyczyło-Mysza, I.; Dziurka, K.; Marcińska, I.; Juzoń, K.; Warzecha, T.; Sutkowska, A.; Nita, Z.; et al. Conversion of oat (Avena sativa L.) haploid embryos into plants in relation to embryo developmental stage and regeneration media. Vitr. Cell Dev. Biol. Plant 2016, 52, 590–597. [Google Scholar] [CrossRef]
- Skrzypek, E.; Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Nowakowska, A.; Dziurka, K.; Juzoń, K.; Noga, A. The Effect of Light Intensity on the Production of Oat (Avena sativa L.) Doubled Haploids through Oat × Maize Crosses. Cereal Res. Commun. 2016, 44, 490–500. [Google Scholar] [CrossRef]
- Kapoor, R.; Singh, G. An Attempt to Produce Oat Haploids Using Oat X Maize Hybridization Technique. Int. J. Pure Appl. Biosci. 2017, 5, 234–240. [Google Scholar] [CrossRef]
- Dziurka, K.; Dziurka, M.; Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Noga, A.; Kapłoniak, K.; Skrzypek, E. Endogenous phytohormone profile during oat (Avena sativa L.) haploid embryo development. In Vitro Cell. Dev. Biol. Plant 2019, 55, 221–229. [Google Scholar] [CrossRef]
- Juzoń, K.; Warchoł, M.; Dziurka, K.; Czyczyło-Mysza, I.M.; Marcińska, I.; Skrzypek, E. The effect of 2,4-dichlorophenoxyacetic acid on the production of oat (Avena sativa L.) doubled haploid lines through wide hybridization. PeerJ 2022, 10, e12854. [Google Scholar] [CrossRef]
- Dziurka, K.; Dziurka, M.; Muszyńska, E.; Czyczyło-Mysza, I.; Warchoł, M.; Juzoń, K.; Laskoś, K.; Skrzypek, E. Anatomical and hormonal factors determining the development of haploid and zygotic embryos of oat (Avena sativa L.). Sci. Rep. 2022, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Sprink, T.; Metje, J.; Hartung, F. Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr. Opin. Biotechnol. 2015, 32, 47–53. [Google Scholar] [CrossRef]
- Gurushidze, M.; Hiekel, S.; Otto, I.; Hensel, G.; Kumlehn, J. Site-Directed Mutagenesis in Barley by Expression of TALE Nuclease in Embryogenic Pollen. In Biotechnologies for Plant Mutation Breeding: Protocols; Jankowicz-Cieslak, J., Tai, T.H., Kumlehn, J., Till, B.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 113–128. [Google Scholar]
- Pathi, K.M.; Rink, P.; Budhagatapalli, N.; Betz, R.; Saado, I.; Hiekel, S.; Becker, M.; Djamei, A.; Kumlehn, J. Engineering Smut Resistance in Maize by Site-Directed Mutagenesis of LIPOXYGENASE 3. Front. Plant Sci. 2020, 11, 543895. [Google Scholar] [CrossRef]
- Gerasimova, S.V.; Hertig, C.; Korotkova, A.M.; Kolosovskaya, E.V.; Otto, I.; Hiekel, S.; Kochetov, A.V.; Khlestkina, E.K.; Kumlehn, J. Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC Plant Biol. 2020, 20, 255. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.G.; Zhao, K. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE 2016, 11, e0154027. [Google Scholar] [CrossRef] [PubMed]
- Schedel, S.; Pencs, S.; Hensel, G.; Müller, A.; Rutten, T.; Kumlehn, J. RNA-Guided Cas9-Induced Mutagenesis in Tobacco Followed by Efficient Genetic Fixation in Doubled Haploid Plants. Front. Plant Sci. 2016, 7, 1995. [Google Scholar] [CrossRef]
- Dunemann, F.; Unkel, K.; Sprink, T. Using CRISPR/Cas9 to Produce Haploid Inducers of Carrot through Targeted Mutations of Centromeric Histone H3 (CENH3). In Proceedings of the II International Symposium on Carrot and Other Apiaceae, Krakow, Poland, 19–22 September 2018; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2019; pp. 211–220. [Google Scholar]
- Li, J.-F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G.M.; Sheen, J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013, 31, 688–691. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, H.; Xu, N.; Zhang, B.; Gou, F.; Zhu, J.K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant 2013, 6, 2008–2011. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, B.; Weeks, D.P.; Spalding, M.H.; Yang, B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 2014, 42, 10903–10914. [Google Scholar] [CrossRef]
- Brooks, C.; Nekrasov, V.; Lippman, Z.B.; Van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 2014, 166, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Char, S.N.; Neelakandan, A.K.; Nahampun, H.; Frame, B.; Main, M.; Spalding, M.H.; Becraft, P.W.; Meyers, B.C.; Walbot, V.; Wang, K.; et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 2017, 15, 257–268. [Google Scholar] [CrossRef]
- Kapusi, E.; Corcuera-Gómez, M.; Melnik, S.; Stoger, E. Heritable Genomic Fragment Deletions and Small Indels in the Putative ENGase Gene Induced by CRISPR/Cas9 in Barley. Front. Plant Sci. 2017, 8, 540. [Google Scholar] [CrossRef] [PubMed]
- Pathak, B.; Zhao, S.; Manoharan, M.; Srivastava, V. Dual-targeting by CRISPR/Cas9 leads to efficient point mutagenesis but only rare targeted deletions in the rice genome. 3 Biotech 2019, 9, 158. [Google Scholar] [CrossRef]
- Hahn, F.; Eisenhut, M.; Mantegazza, O.; Weber, A.P.M. Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Front. Plant Sci. 2018, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Z.-B.; Xing, A.; Moon, B.P.; Koellhoffer, J.P.; Huang, L.; Ward, R.T.; Clifton, E.; Falco, S.C.; Cigan, A.M. Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiol. 2015, 169, 960–970. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Wu, C.; He, Y.; Ma, Y.; Hou, H.; Guo, X.; Du, W.; Zhao, Y.; Xia, L. Engineering Herbicide Resistant Rice Plants through CRISPR/Cas9-mediated Homologous Recombination of the Acetolactate Synthase. Mol. Plant 2016, 9, 628–631. [Google Scholar] [CrossRef]
- Metje-Sprink, J.; Menz, J.; Modrzejewski, D.; Sprink, T. DNA-Free Genome Editing: Past, Present and Future. Front. Plant Sci. 2019, 9, 1957. [Google Scholar] [CrossRef]
- Donoso, T. Standardizing the CRISPR-Cas9 System in Oat to Understand Beta-Glucan Regulation. Master’s Thesis, McGill University, Montréal, QC, Canada, 2021. [Google Scholar]
- Lv, J.; Kelliher, T. Recent Advances in Engineering of In Vivo Haploid Induction Systems. Methods Mol. Biol. 2023, 2653, 365–383. [Google Scholar] [CrossRef]
Drink | Land Use (m²/L) | CO2-Emission (CO2-Eq/L) | Water Use (L/L) | Eutrophication (g/L) |
---|---|---|---|---|
Dairy milk | 8.95 | 3.15 | 628.2 | 10.65 |
Soymilk | 0.66 | 0.98 | 27.8 | 1.06 |
Oat milk | 0.76 | 0.9 | 48.24 | 1.62 |
Almond milk | 0.5 | 0.7 | 371.46 | 1.5 |
Rice milk | 0.34 | 1.18 | 269.81 | 4.69 |
Scientific Name | Accessions | Explants | Callus | Regeneration | Literature |
---|---|---|---|---|---|
Avena | not specified | Stem segments | No | No | [23] |
A. sativa | Sun II | Germinating whole seedlings | Only callus formation | No | [24] |
A. sativa | Victory | Root system | Only callus formation | No | [25] |
A. sativa | 7 Accessions (names not specified) | Seedling hypocotyl | Not specified | No | [26] |
A. sativa | 25 Accessions (Allen, Clintford, Clintland 64, Clinton, Dai, Diana, Dodge, Froker, Garland, Goodfield, Goodland, Hulless HA14, Illinois selection, 68–1644, Jaycee, Lodi, Minnesota selections, 73137, 74125, 75249, Otter, Portage, Portal, Putnam 61, Stout, Tippecanoe, and Vicland.) | Immature Embryo, Apical meristem | Not specified | Regeneration from callus | [27] |
A. sativa, A. sterilis, A. fatua | A. sativa Accessions: Lodi, Moore, Lyon, Benson, Marathon, Dal, Stout, Tippecanoe, Lang, Victorgrain, Garry, Hudson, Terra, OA338, Victory, Black Mesdag, Victoria, Selma AJ 109/5, NP3/4, Karin, Rallus, and Coolabah A. sterilis Accessions: PI 292549, PI 295909, PI 296274, PI 296276, PI 320846, CW346, PI 374975, Cl 8295, PI 309478, MBM, G 152, 548, TS 6893, PI 317746, PI 296255, and PI 287211 A. fatua Accessions: Minnesota collection 1, 11, 18, 28, 35, 80, 112, 175, 218, 313, 327, 381, 406, 415, 429, 435, 464, 471, 487, 492, 495, 498, 523, 533, 611, 662, 686, 861, 931, 1141, 1149, and 1223 | Immature embryos | Regenerable-type (compact, yellowish-white, highly lobed callus) | Regeneration from callus | [28] |
A. sativa | Park | Roots of germinating seedlings | Callus with green spots | Regeneration from callus | [29] |
A. sativa | Park | Seeds, mesocotyls, and immature embryos | Embryogenic callus (white and opaque) Non Embryogenic callus (rough and yellow) | Regeneration from both (embryogenic and non-embryogenic) callus | [30] |
A. sativa | Victory and Park | Axillary tiller buds | Embryogenic callus | Regeneration from callus | [31] |
A. sativa | Victorgrain, Victoria and hybrids from the cross GAF × Victoria | Immature embryos | Callus (not specified) | Regeneration from callus | [32] |
Avena spp. | GAF-18, GAF-30, Lodi, Park | Immature embryos, seedling mesocotyls | Embryogenic callus | Regeneration from callus | [33] |
A. sativa | Coolabah, Cooba, Blackbutt, Mortlock, Victorgrain and HVR | Immature embryos, Leaf base explants | Compact callus with somatic mebryogenic-like structutures | Regeneration from callus | [34] |
A. sativa | Sanna, Sang and Vital | Leaf tissues from seedlings | Somatic embryogenesis | Regeneration from callus | [35] |
A. sativa | Prairie, Porter, Ogle and Pacer | shoot apical meristem | No callus | Direct multiple shoot formation from shoot apical meristem | [36] |
A. sativa | Fuchs, Jumbo, Gramena, Bonus and Alfred | Leaf base | Embryogenic callus | Somatic embryo germination | [37] |
A. sativa | Ankara-76, Ankara-84, A-803, A-804, A-805, A-821, A-822, A-823, A-824 and A-825 | Mature embryo | Nodular and white to cream in color callus | Regeneration from callus | [38] |
Avena spp. | Gaf/Park, GP-1, Garland, Park, Corbit, F2 progenis of GP-1 × Corbit and F2 progenis of Corbit × GP-1 | Mature embryo | Callus with somatic embryos | Regeneration from callus | [39] |
Not mentioned | Malgwiri and Samhangwiri | Mature embryos and leaf base segments | Callus (not specified) | Regeneration from callus | [40] |
A. sativa | Meliane | Mature caryopses | Somatic embryogenesis | Somatic embryo germination | [41] |
A. sativa | JO-1 and OS-6 | Mature embryo | Callus (not specified) | Regeneration from callus | [42] |
A. sativa | Kent | Grains | Callus (not specified) | Regeneration from callus | [43] |
Scientific Name | Accessions | Explant Type | Callus | Regeneration Type | Genetic Transformation Method | Age of the Explants | Candidate Genes Used | Selection /Marker Gene | Transgenicity Confirmation | Transgene Inheritance | Agronamic Trait of the Gene | Literature |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A. sativa | Lines derived from GAF30/Park | Immature embryos | Friable embryogenic callus | Not specified | Bombardment | 2-week-old friable and embryogenic callus | GUS | PPT, GUS | Southern blot | yes | None | [44] |
A. sativa | Jumbo and Fuchs | Leaf base explants | Embryogenic callus | Somatic embryo germination | Bombardment | Leaf bases from young seedlings 1mm size | UIDA | PPT | Southern blot | Mendelian inheritance | None | [45] |
A. sativa | Garry | Shoot meristematic cultures | No | No | Bombardment | 6-month-old shoot meristematic cultures | UIDA | BAR | Southern blot | Mendelian and non-Mendelian segregation | None | [46] |
A. sativa | Prairie, Ogle and Pacer | Shoot apical meristem | No | Direct multiple shoot formation from shoot apical meristem | Bombardment | 1-month-old multiple shoot cultures | HVA1 | BAR, GUS | Southern blot | yes | osmotic stress | [49] |
A. sativa | Garry | Shoot meristematic cultures | No | Bombardment | 4-month-old shoot meristematic cultures | GFP | BAR, HPT and NPTII | Southern blot | yes | None | [50] | |
A. sativa | Bajka, Slawko, and Akt | Immature embryos and leaf base segments | Embryogenic callus | Via somatic embryogenesis | Agrobacterium tumefaciens (LBA4404 pTOK233), EHA101 (pGAH), AGL1 (pDM805) and AGL1 (pGreen) | KANAMYCIN, PPT | Southern blot | yes | None | [47] | ||
A. sativa | Jo-1 | Leaf base explants and mature embryos | Embryogenic callus | Not specified | A. tumefaciens (GV3101) | GUS | HPTII | PCR | Not detected | None | [48] |
Scientific Name | Accessions | Explants | Inductive Treatment | Callus | Regeneration | Albinos | Literature |
---|---|---|---|---|---|---|---|
Avena | Ajax, Cartier, Clintland 64, Gemini, Hinoat, Hudson, OT-184, Pendek, Q.O.58.22 (Dorval Xyamaska), Q.O.64.31 (Harmon × Wb 16385), Roxton, Black Mesdag, Cayuse 0, Clintford, Lodi, In 73231, Stout, HED-147, O.A.338, O.A.424-1, Acton, Bento, Cabot, Clinton, Dorval, Harmon, Kelsey, Lasalle M.C, Mabel, Orbit, Stornont, Tarpa, Actor, Leanda Maldwyn, Manod, Marvellous, Milford, Nelson, Palu, Selma, Yielder, Amuri, Arlington, Ausable, Bell, Bingham, Borrus, Bravo, Bruce, Colfax, Cortez, Diana, Elan, Earl haig, Early Miller, Fayette, Florida 500, Forward, Fraser, Holden, James, Legacy, Maris Osprey, Neal, Noire Precoce de Noisy, Oneida, Clintland 64 × Ajax, Clintland 64 × Q.O.58.22, Clintland 64 × Q.O.64.31, Hinoat × Clint land 64,OT-184 × C. l. 3387, OT-184 × Q.O.58.22, OT-184 × Q.O.64.31, P.I.269182 × Q.O.64.31, Q.O.S8.22 × Hinoat, Q.O.64.31 × Q.O.58.22, and Q.O.64.31 × Ajax | Anthers Ovaries | 27 °C Dark 15% sucrose concentration warm 24–30 °C | yes | Regeneration from ovary culture | [73] | |
A. sativa, A. fatua, A. sterilis | Stout and Clintford | Anthers | not specified | yes | no | not specified | [74] |
A. sativa | Clintford Stout Benson Victorgrain Garland Moore Lyon Stout/Clintford F1 Clintford/Benson F1 Clintford/Victorgrain F1 Clintford/Garland F1 Clintford/Moore F1 and Clintford/Lyon F1 | Anthers | Cold pretreatment (4–8 °C) | yes | yes | not specified | [75] |
A. nuda | Naked oat | Anthers | yes | yes | not specified | [76] | |
A. sativa, A. nuda, A. byzantia, A. sterilis | Stout, Puhti, OT 194, Foothill, Pazano, Fulghum and CAV 2648 | Anthers | 4 °C | yes | yes | yes | [77] |
A. sativa | Stout (line WW 18019) and CAV 2648 | Anthers | 32 °C | yes | yes | yes | [78] |
A. sativa, A. sterilis | Stout, Puhti, Sisko, Virma, Ryhti, Nasta, Sv 86432, Kolhu, WW 18019, Cascade, Heikki, Hankkijan Vouti, Yty, Roope, Veli, Aarre, Freja, Pol, Park, Titus, Katri, ME 7539, Aio, Sisu, Pegaz, STH 180, Wiesel, Maldwyn, Myriane, Avesta, Ogle, Ceal, 0T257, Talgai, Semu 4.004,Fuchs, Hja 86008, Hja 85013, Mostyn, Salo, Amby, STH 7518, Ebene, Rollo, CAV 1126, 16, 3a, CW 537, Ciav 2321, 55, CW 533, CW 453, CAV 1095, CD 7983, CAV 1191, CAV 2941, CAV 3175, WAHL 6, CAV 2057, Lisbeth, Jo 1418, Jo 1419, Bor 1335, Bor 1267 Bor 1306, Fuchs × PC 62, 80r70623 × 80r70818, Hja 88612 × Bor 70584, NS 126-93 × 1186-4189, HjaB77l2 × APR 166, Puhti × CAV 2648, and KP 9304 × CAV2648 | Anthers | 4 °C | yes | yes | yes | [79] |
A. sativa, A. sterilis | WW 18019, Kolbu and CAV 2648 | Anthers | 32 °C | yes | yes | yes | [80] |
A. sativa | Lisbeth, Virma, Cascade, Kolbu, WW18019, OT 257, Stout, Sisu, Katri, Yty, and Sisko | Anthers | 32 °C | yes | yes | yes | [81] |
A. sativa | Lisbeth, Aslak | Anthers | 32 °C | yes | yes | yes | [82] |
A. sativa | CHD: 1705/05, 1717/05, 1725/05, 1780/05, 2038/05, 1889/05, 1893/05, 1903/05, 1944/05, 1954/05, 1956/05, 1967/05, 1985/05, 1989/05 and 1997/05 | Anthers | 4 °C | yes | yes | yes | [83] |
Not specified | Lisbeth × Bendicoot, Flämingsprofi × Rajtar, Scorpin × Deresz, Aragon × Deresz, Deresz × POB 7219/03, Bohun × Deresz, Krezus × Flamingsprofi, Krezus × POB 10440/01 and Cwal × Bohun | Anthers | 4 °C | yes | yes | yes | [84] |
A. sativa | 2000QiON43 (LA9326E86) | Microspores | 4 °C | yes | yes | yes | [85] |
A. sativa | Akt, Bingo, Bajka, and Chwat | Anthers | 4 °C (2 and 3 weeks) 32 °C 24 h | yes | yes | no | [86] |
A. sativa | Bingo and Chwat | Anthers | 4 °C (2 weeks) 32 °C 24 h | yes | yes | no | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathi, K.M.; Sprink, T. From Petri Dish to Field: Plant Tissue Culture and Genetic Engineering of Oats for Improved Agricultural Outcomes. Plants 2023, 12, 3782. https://doi.org/10.3390/plants12213782
Pathi KM, Sprink T. From Petri Dish to Field: Plant Tissue Culture and Genetic Engineering of Oats for Improved Agricultural Outcomes. Plants. 2023; 12(21):3782. https://doi.org/10.3390/plants12213782
Chicago/Turabian StylePathi, Krishna Mohan, and Thorben Sprink. 2023. "From Petri Dish to Field: Plant Tissue Culture and Genetic Engineering of Oats for Improved Agricultural Outcomes" Plants 12, no. 21: 3782. https://doi.org/10.3390/plants12213782
APA StylePathi, K. M., & Sprink, T. (2023). From Petri Dish to Field: Plant Tissue Culture and Genetic Engineering of Oats for Improved Agricultural Outcomes. Plants, 12(21), 3782. https://doi.org/10.3390/plants12213782