Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Callus Induction
2.2. Establishment of Suspension Cell Culture and Treatment
2.3. Suspension Cell Growth and the Relative Electrical Conductivity
2.4. Hydrogen Peroxide (H2O2) Determination
2.5. Malondialdehyde (MDA) Determination
2.6. Enzyme Activities Determination
2.6.1. Superoxide Dismutase (SOD)
2.6.2. Catalase (CAT)
2.6.3. Guaiacol Peroxidase (PO)
2.6.4. Phenylalanine Ammonia-Lyase (PAL)
2.6.5. Polyphenol Oxidase (PPO)
2.7. Measurement of Soluble Sugar
2.8. Measurement of Soluble Protein
2.9. Paclitaxel Extraction and HPLC Analysis
2.10. Transcriptome Sample Preparation and Sequencing
2.11. Real-Time qPCR (RT-qPCR) Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Growth Changes
3.2. H2O2 and MDA Content
3.3. Antioxidant Enzyme Activity
3.4. PPO and PAL Activity
3.5. Soluble Sugar and Soluble Protein Content
3.6. Paclitaxel Content
3.7. Transcriptional and Functional Enrichment Analysis
3.8. Differential Expression of Antioxidant Enzyme Genes
3.9. Differential Expression of Enzyme Genes in Paclitaxel Synthesis Pathway
3.10. Differential Expression of Transcription Factors in Paclitaxel Synthesis Pathway
3.11. Real-Time qPCR Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiao, J.; Xu, X.J.; Lu, Y.; Liu, J.; Fu, Y.J.; Fu, J.X.; Gai, Q.Y. Identification of genes associated with biosynthesis of bioactive flavonoids and taxoids in Taxus cuspidata Sieb. et Zucc. plantlets exposed to UV-B radiation. Gene 2022, 823, 146384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Meng, H.; Li, W.; Wang, S. Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field. Molecules 2022, 27, 3010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lu, X.; Zheng, T.; Guo, X.; Chen, Q.; Tang, Z. Investigation of bioactivities of Taxus chinensis, Taxus cuspidata, and Taxus × media by gas chromatography-mass spectrometry. Open Life Sci. 2021, 16, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Cusido, R.M.; Onrubia, M.; Sabater-Jara, A.B.; Moyano, E.; Bonfill, M.; Goossens, A.; Angeles Pedreno, M.; Palazon, J. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol. Adv. 2014, 32, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martinez, R.A.; Canovas-Diaz, M.; de Diego Puente, T. A Compressive Review about Taxol((R)): History and Future Challenges. Molecules 2020, 25, 5986. [Google Scholar] [CrossRef] [PubMed]
- Perez-Matas, E.; Hidalgo-Martinez, D.; Escrich, A.; Alcalde, M.A.; Moyano, E.; Bonfill, M.; Palazon, J. Genetic approaches in improving biotechnological production of taxanes: An update. Front. Plant Sci. 2023, 14, 1100228. [Google Scholar] [CrossRef] [PubMed]
- Sabzehzari, M.; Zeinali, M.; Naghavi, M.R. Alternative sources and metabolic engineering of Taxol: Advances and future perspectives. Biotechnol. Adv. 2020, 43, 107569. [Google Scholar] [CrossRef] [PubMed]
- Ramulifho, E.; Goche, T.; Van As, J.; Tsilo, T.J.; Chivasa, S.; Ngara, R. Establishment and Characterization of Callus and Cell Suspension Cultures of Selected Sorghum bicolor (L.) Moench Varieties: A Resource for Gene Discovery in Plant Stress Biology. Agronomy 2019, 9, 218. [Google Scholar] [CrossRef]
- Babich, O.; Sukhikh, S.; Pungin, A.; Ivanova, S.; Asyakina, L.; Prosekov, A. Modern Trends in the In Vitro Production and Use of Callus, Suspension Cells and Root Cultures of Medicinal Plants. Molecules 2020, 25, 5513. [Google Scholar] [CrossRef]
- Sarmadi, M.; Karimi, N.; Palazon, J.; Ghassempour, A.; Mirjalili, M.H. Improved effects of polyethylene glycol on the growth, antioxidative enzymes activity and taxanes production in a Taxus baccata L. callus culture. Plant Cell Tiss. Org. 2019, 137, 319–328. [Google Scholar] [CrossRef]
- Slazak, B.; Jedrzejska, A.; Badyra, B.; Shariatgorji, R.; Nilsson, A.; Andren, P.E.; Goransson, U. The Influence of Plant Stress Hormones and Biotic Elicitors on Cyclotide Production in Viola uliginosa Cell Suspension Cultures. Plants 2022, 11, 1876. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi-Golezani, K.; Farhadi, N. Responses of in vitro-cultured Allium hirtifolium to exogenous sodium nitroprusside under PEG-imposed drought stress. Plant Cell Tiss. Org. 2018, 133, 237–248. [Google Scholar] [CrossRef]
- Alqurashi, M.; Chiapello, M.; Bianchet, C.; Paolocci, F.; Lilley, K.S.; Gehring, C. Early Responses to Severe Drought Stress in the Arabidopsis thaliana Cell Suspension Culture Proteome. Proteomes 2018, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Goto, Y.; Kawano, T.; Hayashi, S.; Furusaki, S. Enhancement of paclitaxel production by combination of in situ extraction with an organic solvent and an elicitation in a suspension callus culture. Solvent Extr. Res. Dev. 2006, 13, 131–138. [Google Scholar]
- Yamamoto, S.; Koga, H.; Hayashi, S.; Shioya, S. Enhancement of Taxane Production by the Combination of in situ Extraction with Lauryl Alcohol and Elicitation by Methyl Jasmonate in a Suspension Callus Culture. Solvent Extr. Res. Dev. 2014, 21, 217–222. [Google Scholar] [CrossRef]
- Durante, M.; Caretto, S.; Quarta, A.; De Paolis, A.; Nisi, R.; Mita, G. beta-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures. Appl. Microbiol. Biot. 2011, 90, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, S.; Moieni, A.; Safaie, N.; Sabet, M.S.; Salehi, M. Fungal Cell Wall and Methyl-beta-Cyclodextrin Synergistically Enhance Paclitaxel Biosynthesis and Secretion in Corylus avellana Cell Suspension Culture. Sci. Rep. 2020, 10, 5427. [Google Scholar] [CrossRef]
- Yue, W.; Ming, Q.L.; Lin, B.; Rahman, K.; Zheng, C.J.; Han, T.; Qin, L.P. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 2016, 36, 215–232. [Google Scholar] [CrossRef]
- Golkar, P.; Taghizadeh, M.; Yousefian, Z. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tiss. Org. 2019, 137, 575–585. [Google Scholar] [CrossRef]
- Altuzar-Molina, A.R.; Munoz-Sanchez, J.A.; Vazquez-Flota, F.; Monforte-Gonzalez, M.; Racagni-Di Palma, G.; Hernandez-Sotomayor, S.M. Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol. Biochem. 2011, 49, 151–158. [Google Scholar] [CrossRef]
- Salehi, M.; Karimzadeh, G.; Naghavi, M.R. Synergistic effect of coronatine and sorbitol on artemisinin production in cell suspension culture of Artemisia annua L. cv. Anamed. Plant Cell Tiss. Org. 2019, 137, 587–597. [Google Scholar] [CrossRef]
- Vidal-Limon, H.R.; Almagro, L.; Moyano, E.; Palazon, J.; Pedreno, M.A.; Cusido, R.M. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures. Front. Plant Sci. 2018, 9, 335. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, F.; Yang, H.; Yue, L.; Hu, F.; Wang, J.; Luo, Y.; Cao, F. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: Relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiol. Plant. 2014, 36, 3173–3187. [Google Scholar] [CrossRef]
- Cao, M. Proteomics Analysis in Suspension Cells of Helianthus tuberosus in Response to Salt Stress. Master’s Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- Zhang, Z. Effects of polyamine on Salt and Drought Tolerance of Suspension Cells of Lycium ruthenicum Murr. Master’s Thesis, Lanzhou University, Lanzhou, China, 2016. [Google Scholar]
- Zhao, Z.; Zhang, Y.; Li, W.; Tang, Y.; Meng, H.; Wang, S. Improving the extraction yield of taxanes from Taxus cuspidata needles using cold plasma. J. Appl. Res. Med. Aromat. Plant 2023, 34, 100457. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Jiang, X.; Zhang, L.; Qin, Y. Integrated physiological, transcriptomic, and metabolomic analyses reveal that low-nitrogen conditions improve the accumulation of flavonoids in snow chrysanthemum. Ind. Crop. Prod. 2023, 197, 116574. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Wang, J.; Li, G.; Li, S.; Ma, J.; Peng, X.; Yin, J.; Liu, Y.; Zhu, Y. Transcriptomic and physiological analyses reveal changes in secondary metabolite and endogenous hormone in ginger (Zingiber officinale Rosc.) in response to postharvest chilling stress. Plant Physiol. Biochem. 2023, 201, 107799. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Wu, J.C.; Yuan, Y.J. Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biol. Int. 2007, 31, 1179–1183. [Google Scholar] [CrossRef]
- Moradi, A.; Zarinkamar, F.; De Domenico, S.; Mita, G.; Di Sansebastiano, G.P.; Caretto, S. Salycilic Acid Induces Exudation of Crocin and Phenolics in Saffron Suspension-Cultured Cells. Plants 2020, 9, 949. [Google Scholar] [CrossRef]
- Sarmadi, M.; Karimi, N.; Palazon, J.; Ghassempour, A.; Mirjalili, M.H. The effects of salicylic acid and glucose on biochemical traits and taxane production in a Taxus baccata callus culture. Plant Physiol. Biochem. 2018, 132, 271–280. [Google Scholar] [CrossRef]
- Chen, Z.L.; Li, X.M.; Zhang, L.H. Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica). Russ. J. Plant Physiol. 2014, 61, 619–625. [Google Scholar] [CrossRef]
- Belkhadi, A.; Hediji, H.; Abbes, Z.; Nouairi, I.; Barhoumi, Z.; Zarrouk, M.; Chaibi, W.; Djebali, W. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotox. Environ. Saf. 2010, 73, 1004–1011. [Google Scholar] [CrossRef]
- Ledoux, Q.; Van Cutsem, P.; Markomicron, I.E.; Veys, P. Specific localization and measurement of hydrogen peroxide in Arabidopsis thaliana cell suspensions and protoplasts elicited by COS-OGA. Plant Signal. Behav. 2014, 9, e28824. [Google Scholar] [CrossRef] [PubMed]
- Miras-Moreno, B.; Almagro, L.; Pedreno, M.A.; Sabater-Jara, A.B. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota. Plant Sci. 2016, 250, 154–164. [Google Scholar] [CrossRef]
- Chung, I.M.; Rekha, K.; Rajakumar, G.; Thiruvengadam, M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. 3 Biotech 2018, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Ghanati, F.; Safari, M.; Hajnorouzi, A. Partial clarification of signaling pathway of taxanes increase biosynthesis by low intensity ultrasound treatment in hazel (Corylus avellana) cells. S. Afr. J. Bot. 2015, 96, 65–70. [Google Scholar] [CrossRef]
- Valizadeh-Kamran, R.; Toorchi, M.; Mogadam, M.; Mohammadi, H.; Pessarakli, M. Effects of freeze and cold stress on certain physiological and biochemical traits in sensitive and tolerant barley (Hordeum vulgare) genotypes. J. Plant Nutr. 2017, 41, 102–111. [Google Scholar] [CrossRef]
- Sarmadi, M.; Karimi, N.; Palazón, J.; Ghassempour, A.; Mirjalili, M.H. Physiological, biochemical, and metabolic responses of a Taxus baccata L. callus culture under drought stress. Vitr. Cell. Dev. Biol. Plant 2020, 56, 703–717. [Google Scholar] [CrossRef]
- Yu, L.-J.; Lan, W.-Z.; Qin, W.-M.; Xu, H.-B. Effects of salicylic acid on fungal elicitor-induced membrane-lipid peroxidation and taxol production in cell suspension cultures of Taxus chinensis. Process Biochem. 2001, 37, 477–482. [Google Scholar] [CrossRef]
- Katz, V.A.; Thulke, O.U.; Conrath, U. A Benzothiadiazole Primes Parsley Cells for Augmented Elicitation of Defense Responses. Plant Physiol. 1998, 117, 1333–1339. [Google Scholar] [CrossRef]
- Kadioğlu, A.; Sağlam, A.; Demiralay, M. Salicylic acid delays leaf rolling by inducing antioxidant enzymes and modulating osmoprotectant content in Ctenanthe setosa under osmotic stress. Turk. J. Biol. 2013, 37, 49–59. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, R.; Popova, L. Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gener. Appl. Plant Physiol. 2009, 33, 115–170. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z. Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules 2020, 25, 1611. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Xia, J.; Wang, Y.; Wang, J.W. Stimulation of tanshinone production in Salvia miltiorrhiza hairy roots by β -cyclodextrin-coated silver nanoparticles. Sustain. Chem. Pharm. 2020, 18, 100271. [Google Scholar] [CrossRef]
- Chakraborty, U.; Tongden, C. Evaluation of heat acclimation and salicylic acidtreatments as potent inducers. Curr. Sci. India 2005, 89, 384–389. [Google Scholar]
- Ahmad Yari, K.; Naderi-Manesh, H.; Omidi, Y. Effects of Camellia sinensis L. extract and cysteine on browning, growth and paclitaxel production of subcultured Taxus brevifolia L. calli. J. Med. Plants Res. 2011, 5, 6210–6217. [Google Scholar] [CrossRef]
- Shi, L.; Wang, C.; Zhou, X.; Zhang, Y.; Liu, Y.; Ma, C. Production of salidroside and tyrosol in cell suspension cultures of Rhodiola crenulata. Plant Cell Tiss. Org. 2013, 114, 295–303. [Google Scholar] [CrossRef]
- Boudet, A.M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Rodas-Junco, B.A.; González-Mendoza, V.; Muñoz-Sánchez, A.; Poot-Poot, W.; Vázquez-Flota, F.; Hernández-Sotomayor, S.M.T. Phosphoinositide-specific phospholipase C signaling mediates expression of two phenylalanine ammonia lyase genes induced by salicylic acid in Capsicum chinense cells. J. Plant Biochem. Biot. 2019, 29, 352–355. [Google Scholar] [CrossRef]
- Rodas-Junco, B.A.; Cab-Guillen, Y.; Munoz-Sanchez, J.A.; Vazquez-Flota, F.; Monforte-Gonzalez, M.; Hernandez-Sotomayor, S.M. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures. Plant Signal. Behav. 2013, 8, e26752. [Google Scholar] [CrossRef]
- Wang, B. The Ellects of Drought, H2O2 and Na2S2O4 stress On Cell Metabolism in Scutellaria baicalensis georgi Suspension Cells. Ph.D. Thesis, Heilongjiang University of Traditional Chinese Medicine, Harbin, China, 2020. [Google Scholar]
- Jones, A.M.; Saxena, P.K. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: A novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE 2013, 8, e76802. [Google Scholar] [CrossRef] [PubMed]
- Shaki, F.; Maboud, H.E.; Niknam, V. Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Curr. Plant Biol. 2018, 13, 16–22. [Google Scholar] [CrossRef]
- Paeizi, M.; Karimi, F.; Razavi, K. Changes in medicinal alkaloids production and expression of related regulatory and biosynthetic genes in response to silver nitrate combined with methyl jasmonate in Catharanthus roseus in vitro propagated shoots. Plant Physiol. Biochem. 2018, 132, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Jara, A.B.; Onrubia, M.; Moyano, E.; Bonfill, M.; Palazon, J.; Pedreno, M.A.; Cusido, R.M. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures. Plant Biotechnol. J. 2014, 12, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, A.; Ghanati, F.; Behmanesh, M.; Mokhtari-Dizaji, M. Ultrasound-potentiated salicylic acid-induced physiological effects and production of taxol in hazelnut (Corylus avellana L.) cell culture. Ultrasound Med. Biol. 2011, 37, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, Z.; Zhou, Q.; Shen, C.; Huang, Y.; Mubeen, S.; Yang, J.; Yuan, J.; Yang, Z. Transcriptome profiling reveals specific patterns of paclitaxel synthesis in a new taxus yunnanensis cultivar. Plant Physiol. Biochem. 2018, 122, 10–18. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, N.; Gholami, A.; Goormachtig, S.; Goossens, A. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 2012, 17, 349–359. [Google Scholar] [CrossRef]
- Xu, X. Transcriptome Sequencing and Differently Expressed Triterpenoid Synthesis Gene Analysis and Cloning of Cyclocarya paliurus Suspension Cells Induced by Aspergillus Niger Elicitor. Master’s Thesis, Jiangxi Agriculture University, Nanchang, China, 2020. [Google Scholar]
- Kou, P. The Response Law of Taxoids in Taxus cuspidata to UV-B Radiation and Analysis of Molecular Mechanism of Metabolic Regulation. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
Group | PEG (%) | CD (mmol/L) | SA (mg/L) |
---|---|---|---|
C | 0 | 0 | 0 |
PEG | 3.6 | 0 | 0 |
CD | 0 | 47.5 | 0 |
SA | 0 | 0 | 14 |
P + C | 3.6 | 47.5 | 0 |
P + S | 3.6 | 0 | 14 |
C + S | 0 | 47.5 | 14 |
P + C + S(T) | 3.6 | 47.5 | 14 |
UniGene ID | Nr Description | Fold Change | Trends |
---|---|---|---|
TRINITY_DN10687_c0_g1 | Class III secretory peroxidase (Ginkgo biloba) | 2.1824 | Up |
TRINITY_DN2234_c0_g1 | Putative ascorbate peroxidase (Cryptomeria japonica) | 1.4879 | Up |
TRINITY_DN20043_c1_g1 | Peroxidase 10-like (Nicotiana attenuate) | 6.2079 | Up |
TRINITY_DN16051_c2_g1 | Class III secretory peroxidase (Ginkgo biloba) | 6.3471 | Up |
TRINITY_DN776_c0_g1 | Peroxidase (Picea abies) | 2.7717 | Up |
TRINITY_DN6282_c0_g1 | Peroxidase 12 precursor, putative (Ricinus communis) | 2.9376 | Up |
TRINITY_DN7673_c0_g1 | Class III plant secreteperoxidase (Chamaecyparis obtuse) | 9.2501 | Up |
TRINITY_DN7673_c0_g2 | Peroxidase (Picea abies) | 2.3967 | Up |
TRINITY_DN10591_c0_g1 | Superoxide dismutase activity | 1.1457 | Up |
TRINITY_DN631_c0_g2 | Removal of superoxide radicals | 1.1099 | Up |
TRINITY_DN275_c0_g1 | Catalase activity | 2.1807 | Up |
EC | UniGene ID | Fold Change | Trends |
---|---|---|---|
HMGR | TRINITY_DN2873_c1_g1 | −2.6733 | down |
MVD | TRINITY_DN3862_c0_g2 | 1.304 | up |
DXS | TRINITY_DN2395_c0_g1 | 3.000 | up |
TRINITY_DN11223_c0_g1 | −1.1069 | down | |
DXR | TRINITY_DN2533_c0_g1 | 1.7704 | up |
IspE | TRINITY_DN22846_c1_g1 | 3.1831 | up |
IspF | TRINITY_DN497_c0_g1 | 2.7632 | up |
IspG | TRINITY_DN2343_c0_g1 | 2.1063 | up |
IspH | TRINITY_DN1245_c0_g1 | 1.8094 | up |
GGPS | TRINITY_DN7266_c0_g1 | 1.1176 | up |
GGPPS | TRINITY_DN33697_c0_g4 | 1.8992 | up |
TRINITY_DN5982_c0_g1 | 1.4502 | up | |
TASY | TRINITY_DN9815_c0_g1 | 10.7548 | up |
TRINITY_DN40292_c0_g1 | 9.3180 | up | |
DBAT | TRINITY_DN887_c0_g2 | 1.2216 | up |
TRINITY_DN1144_c1_g3 | 3.1702 | up | |
TRINITY_DN6595_c0_g1 | 2.6967 | up | |
BAPT | TRINITY_DN1024_c0_g1 | 1.1482 | up |
DBTNBT | TRINITY_DN109516_c0_g1 | 9.0914 | up |
TRINITY_DN102188_c0_g1 | 7.8285 | up | |
TRINITY_DN23180_c0_g1 | −1.0779 | down | |
TRINITY_DN5209_c0_g1 | 7.0817 | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhang, Y.; Li, W.; Tang, Y.; Wang, S. Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors. Plants 2023, 12, 3817. https://doi.org/10.3390/plants12223817
Zhao Z, Zhang Y, Li W, Tang Y, Wang S. Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors. Plants. 2023; 12(22):3817. https://doi.org/10.3390/plants12223817
Chicago/Turabian StyleZhao, Zirui, Yajing Zhang, Wenlong Li, Yuanhu Tang, and Shujie Wang. 2023. "Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors" Plants 12, no. 22: 3817. https://doi.org/10.3390/plants12223817
APA StyleZhao, Z., Zhang, Y., Li, W., Tang, Y., & Wang, S. (2023). Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors. Plants, 12(22), 3817. https://doi.org/10.3390/plants12223817