Brassicaceae Fungi and Chromista Diseases: Molecular Detection and Host–Plant Interaction
Abstract
:1. Introduction
2. Most Impactful Fungal Brassica Diseases and Their Molecular Detection
2.1. Alternaria Leaf Spot
Molecular Technique | Detected Pathogen | Primer Name | Target Gene | Starting Material | Reference |
---|---|---|---|---|---|
Multiplex PCR | Alternaria brassicae Alternaria brassicicola | AbeABC1F and AbeABC1R Aba28sF and Aba28sR | ABC transporter (Atr1) gene ABS 28 based SSR marker | Pure DNA extracted from mycelium QIAamp® DNA Mini Kit (Qiagen) | [15] |
Conventional PCR | Alternaria brassicicola | Acola-sens and Acola-reverse primers | ITS region | Pure DNA extracted from fungal isolates and seed samples (CTAB Protocol) | [39] |
Conventional PCR Real-Time PCR | Alternaria brassicae | ABCsens and ABCrev 115sens and 115rev | ABC transporter gene NRPS Gene (non-ribosomal peptide synthase) | DNA extracted from pure fungal cultures and seed macerates | [28] |
Multiplex PCR | Fusarium oxysporum f. sp. conglutinans Fusarium oxysporum | Focs-1/Focs-2 W106R/F106S | Foc-specific fragments, whose length is 7 382 bp (Foc7382) | Pure DNA from plant (NuClean Plant Gen DNA Kit, Transgen Biotech Co., Ltd., Beijing, China) Pure DNA from fungal isolates following Lin et al. [40] | [17] |
Real-time PCR Conventional PCR | Fusarium oxysporum f. sp. conglutinans | Cong_PG1_F., Cong_PG1_R., Cong_PG1_Probe PG1congF PG1congR | pg1 gene (endopolygalacturonase) | Pure DNA from from soil using FastDNA SPIN Kit (Q-BioGene, Montreal, QC, Canada) and from fungal isolates following Saitoh et al. [41] | [42] |
Multiplex PCR | Peronospora parasitica | ITS4 and ITS5 (PpITS2F), (PpITS2R) | ITS region | Pure DNA extracted from fungal mycelium (CTAB Protocol) | [43] |
Conventional PCR | Leptosphaeria maculans (anamorphe: Phoma lingam) | LmacF and LmacR | ITS region along with the 5.8S rRNA gene | Pure DNA extracted from imported canola seeds and pure cultures DNeasy Plant Mini Kit (Qiagen) | [44,45] |
Conventional PCR | Plasmodiophora brassicae | TC1F and TC1R TC2F and TC2R | partial 18S ribosomal RNA (rRNA) gene 18S and ITS region | Pure DNA from mycelium, root, and soil (Roger and bendish [46] and Fast DNA spin Kit, Qbiogene Inc., Irvine, CA, USA) | [47] |
Conventional PCR | Albugo candida | ACAN-1and ACAN-2 DC6 and LR-0 | ITS1 region ITS region | Pure DNA extracted from symptomatic and asymptomatic plant tissue and surface-sterilized seed (CTAB protocol) Pure DNA extracted from leaf tissue; method described by Cenis et al. [48] and a modified protocol by Choi et al. [49] | [50] [51,52] |
Real-Time PCR | Pyrenopeziza brassicae | OrSU677 and OrSU678 primers Probe: OrSU681 | Cutinase gene Pbc1 | Pure DNA extracted from symptomatic plant DNeasy Plant Minikit (Qiagen) | [53] |
Conventional PCR | Leptosphaeria maculans | ITS1 and ITS4 | ITS region | Pure DNA extracted from fungal cells DNeasy Plant Mini Kit (Qiagen) | [45] |
Loop-mediated isothermal amplification (LAMP) | Pythium ultimum | SW-1 primer set (F3, B3, FIP, BIP, F-Loop) | target gene encoding a spore wall protein W-1 | Pure DNA from pure cultures and infected plant tissues (CTAB method) | [54] |
Quantitative PCR | Rhizoctonia solani | Specific primers: GMRS3-R GRSM4M Probe: GRMP | ITS region | Pure DNA from mycelium, plant, and soil (Fast DNA Spin Kit, MP Biomedicals, Solon, OH, USA) | [55] |
Conventional PCR | Neopseudocercosporella capsellae | ITS1 and ITS4 | ITS region | Pure DNA extracted from mycelium (protocol adopted with some modification by Cenis [48]) | [56] |
Nested PCR Quantitative PCR | Sclerotinia sclerotiorum | ITS4/ITS5 and XJJ21/XJJ222 SSBZF and SSBZR Hydrolysis Probe: SSBZP | ITS region SS1G_00263 | Pure DNA extracted from mycelium and petals (CTAB and microwave-based method) | [57,58] |
Simplex and Multiplex PCR | Sclerotinia minor Sclerotinia sclerotiorum | SMLcc2 F SMLcc2 R SSaspr F SSaspr R | laccase 2 (Lcc2) aspartyl protease (Aspr) | Pure DNA from plants and fungal isolates following Sambrook and Russell [59] | [16] |
Conventional PCR | Erysiphe cruciferarum | EryF and EryR | ITS region | Pure DNA from mycelium and infected plant tissue | [60] |
Loop-mediated isothermal amplification (LAMP) | Pyrenopeziza brassicae | Pb_ITS_F3, Pb_ITS_B3, Pb_ITS_FIP, Pb_ITS_BIP, Pb_ITS_LoopF, Pb_ITS_LoopB, Pb_BTUB_F3, Pb_BTUB_B3, Pb_BTUB_FIP, Pb_BTUB_BIP, Pb_BTUB_LoopF, Pb_BTUB_LoopB | ITS region B-tubulin region | Pure DNA from Mycelium and Master Pure Yeast DNA Purification kit | [61] |
2.2. Blackleg Disease
2.3. Downy Mildew
2.4. Clubroot Disease
2.5. Fusarium Yellows
2.6. Sclerotinia Disease
2.7. Powdery Mildew
2.8. Damping-Off and Wirestem
2.9. White Rust
2.10. White Leaf Spot
3. Plant–Fungus Interaction in Brassicaceae
3.1. Beneficial Plant–Fungus Interaction in Brassicaceae
3.2. Host–Pathogen Interactions and Omics Technologies
3.2.1. Examples of the Application of Transcriptomics, Pangenomics, and Metabolomics in Brassica crops
3.2.2. Omics Technologies, Genome Editing, and Bioinformatics Methods
3.2.3. Responses of Brassica spp. to Fungal Infection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jabeen, N. Agricultural, Economic and Societal Importance of Brassicaceae Plants. In The Plant Family Brassicaceae; Hassanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 45–128. [Google Scholar]
- Raza, A.; Hafeez, M.B.; Zahra, N.; Shaukat, K.; Umbreen, S.; Tabassum, J.; Charagh, S.; Khan, R.S.A.; Hasanuzzaman, M. The Plant Family Brassicaceae: Introduction, Biology, and Importance. In The Plant Family Brassicaceae; Springer: Berlin/Hiedelberg, Germany, 2020; pp. 1–43. [Google Scholar]
- Koornneef, M.; Meinke, D. The Development of Arabidopsis as a Model Plant. Plant J. 2010, 61, 909–921. [Google Scholar] [CrossRef]
- Poveda, J.; Díaz-González, S.; Díaz-Urbano, M.; Velasco, P.; Sacristán, S. Fungal Endophytes of Brassicaceae: Molecular Interactions and Crop Benefits. Front. Plant Sci. 2022, 13, 932288. [Google Scholar] [CrossRef]
- Aires, A. Chapter 3-Brassica Composition and Food Processing. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 17–25. ISBN 978-0-12-404699-3. [Google Scholar]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The Value of Bioactive Compounds of Cruciferous Vegetables (Brassica) as Antimicrobials and Antioxidants: A Review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- Carmody, S.M. Light Leaf Spot and White Leaf Spot of Brassicaceae in Washington State. PhD Thesis, Washington State University, Pullman, WA, USA, 2017. [Google Scholar]
- Lv, H.; Fang, Z.; Yang, L.; Zhang, Y.; Wang, Y. An Update on the Arsenal: Mining Resistance Genes for Disease Management of Brassica Crops in the Genomic Era. Hortic. Res. 2020, 7, 34. [Google Scholar] [CrossRef]
- Rimmer, J.H.; Rowland, J.L.; Yamaki, K. Obesity and Secondary Conditions in Adolescents with Disabilities: Addressing the Needs of an Underserved Population. J. Adolesc. Health 2007, 41, 224–229. [Google Scholar] [CrossRef]
- Misawa, T.; Kubota, M.; Sasaki, J.; Kuninaga, S. First Report of Broccoli Foot Rot Caused by Rhizoctonia Solani AG-2-2 IV and Pathogenicity Comparison of the Pathogen with Related Pathogens. J. Gen. Plant Pathol. 2015, 81, 15–23. [Google Scholar] [CrossRef]
- Shaw, R.K.; Shen, Y.; Zhao, Z.; Sheng, X.; Wang, J.; Yu, H.; Gu, H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower (Brassica Oleracea Var. Botrytis L.). Front. Plant Sci. 2021, 12, 667757. [Google Scholar] [CrossRef]
- Kumar, D.; Yusuf, M.A.; Singh, P.; Sardar, M.; Sarin, N.B. Histochemical Detection of Superoxide and H2O2 Accumulation in Brassica Juncea Seedlings. Bio-Protocol 2014, 4, e1108. [Google Scholar] [CrossRef]
- Abdel-Farid, I.B.; Jahangir, M.; van den Hondel, C.A.M.J.J.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Fungal Infection-Induced Metabolites in Brassica Rapa. Plant Sci. 2009, 176, 608–615. [Google Scholar] [CrossRef]
- McCartney, H.A.; Foster, S.J.; Fraaije, B.A.; Ward, E. Molecular Diagnostics for Fungal Plant Pathogens. Pest. Manag. Sci. 2003, 59, 129–142. [Google Scholar] [CrossRef]
- Kiran, R.; Kumar, P.; Akhtar, J.; Nair, K.; Dubey, S.C. Development of Multiplex PCR Assay for Detection of Alternaria Brassicae, A. Brassicicola and Xanthomonas Campestris Pv. Campestris in Crucifers. Arch. Microbiol. 2022, 204, 224. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elmagid, A.; Garrido, P.A.; Hunger, R.; Lyles, J.L.; Mansfield, M.A.; Gugino, B.K.; Smith, D.L.; Melouk, H.A.; Garzon, C.D. Discriminatory Simplex and Multiplex PCR for Four Species of the Genus Sclerotinia. J. Microbiol. Methods 2013, 92, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Zhang, J.; Zeng, F.; Cao, Y.; Xie, B.; Yang, Y. Comparative Genomics Provide a Rapid Detection of Fusarium Oxysporum f. Sp. Conglutinans. J. Integr. Agric. 2016, 15, 822–831. [Google Scholar] [CrossRef]
- Doyle, J. DNA Protocols for Plants. In Molecular Techniques in Taxonomy; Springer: Berlin/Heidelberg, Germany, 1991; pp. 283–293. [Google Scholar]
- Zhang, D.; Huarng, M.C.; Alocilja, E.C. A Multiplex Nanoparticle-Based Bio-Barcoded DNA Sensor for the Simultaneous Detection of Multiple Pathogens. Biosens. Bioelectron. 2010, 26, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zuzak, K.; Feng, J. An Improved Simple Method for DNA Extraction from Fungal Mycelia. Can. J. Plant Pathol. 2016, 38, 476–482. [Google Scholar] [CrossRef]
- Inturrisi, F.C.; Barbetti, M.J.; Tirnaz, S.; Patel, D.A.; Edwards, D.; Batley, J. Molecular Characterization of Disease Resistance in Brassica Juncea—The Current Status and the Way Forward. Plant Pathol. 2021, 70, 13–34. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R. Advanced Methods of Plant Disease Detection. A Review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Thoms, D.; Liang, Y.; Haney, C.H. Maintaining Symbiotic Homeostasis: How Do Plants Engage with Beneficial Microorganisms While at the Same Time Restricting Pathogens? Mol. Plant-Microbe Interact. 2021, 34, 462–469. [Google Scholar] [CrossRef]
- Neik, T.X.; Amas, J.; Barbetti, M.; Edwards, D.; Batley, J. Understanding Host–Pathogen Interactions in Brassica napus in the Omics Era. Plants 2020, 9, 1336. [Google Scholar] [CrossRef]
- Delourme, R.; Barbetti, M.J.; Snowdon, R.; Zhao, J.; Manzanares-Dauleux, M.J. Genetics and Genomics of Disease Resistance. In Genetics, Genomics and Breeding of Oilseed Brassicas; Science Publishers: Boca Raton, FL, USA, 2011; pp. 276–318. [Google Scholar]
- Degenhardt, K.J.; Skoropad, W.P.; Kondra, Z.P. Effects of Alternaria Blackspot on Yield, Oil Content and Protein Content of Rapeseed. Can. J. Plant Sci. 1974, 54, 795–799. [Google Scholar] [CrossRef]
- Köhl, J.; Van Tongeren, C.A.M.; Groenenboom-de Haas, B.H.; Van Hoof, R.A.; Driessen, R.; Van Der Heijden, L. Epidemiology of Dark Leaf Spot Caused by Alternaria Brassicicola and A. Brassicae in Organic Seed Production of Cauliflower. Plant Pathol. 2010, 59, 358–367. [Google Scholar] [CrossRef]
- Guillemette, T.; Iacomi-Vasilescu, B.; Simoneau, P. Conventional and Real-Time PCR-Based Assay for Detecting Pathogenic Alternaria Brassicae in Cruciferous Seed. Plant Dis. 2004, 88, 490–496. [Google Scholar] [CrossRef]
- Rude, S.V.; Duczek, L.J.; Seidle, E. The Effect of Alternaria Brassicae, Alternaria Raphani and Alternaria Alternata on Seed Germination of Brassica Rapa Canola. Seed Sci. Technol. 1999, 27, 795–798. [Google Scholar]
- Shrestha, S.K.; Mathur, S.B.; Munk, L. Alternaria Brassicae in Seeds of Rapeseed and Mustard, Its Location in Seeds, Transmission from Seeds to Seedlings and Control. Seed Sci. Technol. (Switz.) 2000, 28, 75–84. [Google Scholar]
- Akhtar, J.; Singh, B.; Kandan, A.; Chand, D.; Chaudhury, R.; Dubey, S.C. Survival of Alternaria Brassicicola in Cryo-Preserved Brassica Spp. Seeds. Indian Phytopathol. 2017, 70, 256–257. [Google Scholar] [CrossRef]
- Konstantinova, P.; Bonants, P.J.; Van Gent-Pelzer, M.P.; Van Der Zouwen, P. Development of Specific Primers for Detection and Identification of Alternaria Spp. in Carrot Material by PCR and Comparison with Blotter and Plating Assays. Mycol. Res. 2002, 106, 23–33. [Google Scholar] [CrossRef]
- McKay, G.J.; Brown, A.E.; Bjourson, A.J.; Mercer, P.C. Molecular Characterisation of Alternaria Linicola and Its Detection in Linseed. Eur. J. Plant Pathol. 1999, 105, 157–166. [Google Scholar] [CrossRef]
- Iacomi-Vasilescu, B.; Blanchard, D.; Guenard, M.; Molinero-Demilly, V.; Laurent, E.; Simoneau, P. Development of a PCR Based Diagnostic Assay for Detecting Pathogenic Alternaria Species in Cruciferous Seeds. Seed Sci. Technol. 2002, 30, 87–96. [Google Scholar]
- Zur, G.; Hallerman, E.M.; Sharf, R.; Kashi, Y. Development of a Polymerase Chain Reaction-Based Assay for the Detection of Alternaria Fungal Contamination in Food Products. J. Food Prot. 1999, 62, 1191–1197. [Google Scholar] [CrossRef]
- Inoue, H.; Akimoto, K.; Ikeda, H.; Sato, H.; Uno, T.; Uchida, Y.; Kawahara, T.; Fukuda, Y.; Hirai, K.; Miyata, Y.; et al. Comprehensive Gene Expression Signature Using RNA-Seq in Airways of Mouse Model of Severe Asthma with Fungal Sensitization. IAA 2022, 183, 142–152. [Google Scholar] [CrossRef]
- Chakdar, H.; Goswami, S.K.; Singh, E.; Choudhary, P.; Yadav, J.; Kashyap, P.L.; Srivastava, A.K.; Saxena, A.K. NoxB-Based Marker for Alternaria Spp.: A New Diagnostic Marker for Specific and Early Detection in Crop Plants. 3 Biotech 2019, 9, 249. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, S.; Kashyap, P.L.; Srivastava, A.K.; Mishra, S.; Sharma, A.K. Identification and Characterization of Microsatellite from Alternaria Brassicicola to Assess Cross-Species Transferability and Utility as a Diagnostic Marker. Mol. Biotechnol. 2014, 56, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Deep, S.; Sharma, M.; Bhati, D.S.; Chowdappa, P. PCR Based Assay for the Detection of Alternaria Brassicicola in Crucifers. Indian Phytopathol. 2013, 66, 263–268. [Google Scholar]
- Lin, Z.; Zhang, Y.; Zhang, H.; Zhou, Y.; Cao, J.; Zhou, J. Comparison of Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR Method Targeting a 529-Bp Repeat Element for Diagnosis of Toxoplasmosis. Vet. Parasitol. 2012, 185, 296–300. [Google Scholar] [CrossRef]
- Saitoh, K.; Togashi, K.; Arie, T.; Teraoka, T. A Simple Method for a Mini-Preparation of Fungal DNA. J. Gen. Plant Pathol. 2006, 72, 348–350. [Google Scholar] [CrossRef]
- Kashiwa, T.; Inami, K.; Teraoka, T.; Komatsu, K.; Arie, T. Detection of Cabbage Yellows Fungus Fusarium Oxysporum f. Sp. Conglutinans in Soil by PCR and Real-Time PCR. J. Gen. Plant Pathol. 2016, 82, 240–247. [Google Scholar] [CrossRef]
- Casimiro, S.; Moura, M.; Ze-Ze, L.; Tenreiro, R.; Monteiro, A.A. Internal Transcribed Spacer 2 Amplicon as a Molecular Marker for Identification of Peronospora Parasitica (Crucifer Downy Mildew). J. Appl. Microbiol. 2004, 96, 579–587. [Google Scholar] [CrossRef]
- Liu, S.Y.; Liu, Z.; Fitt, B.D.; Evans, N.; Foster, S.J.; Huang, Y.J.; Latunde-Dada, A.O.; Lucas, J.A. Resistance to Leptosphaeria Maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) Induced by L. biglobosa and Chemical Defence Activators in Field and Controlled Environments. Plant Pathol. 2006, 55, 401–412. [Google Scholar] [CrossRef]
- Chen, G.Y.; Wu, C.P.; Li, B.; Su, H.; Zhen, S.Z.; An, Y.L. Detection of Leptosphaeria Maculans from Imported Canola Seeds. J. Plant Dis. Prot. 2010, 117, 173–176. [Google Scholar] [CrossRef]
- Rogers, S.O.; Bendich, A.J. Extraction of Total Cellular DNA from Plants, Algae and Fungi. In Plant Molecular Biology Manual; Springer: Dordrecht, The Netherlands, 1994; pp. 183–190. [Google Scholar]
- Cao, T.; Tewari, J.; Strelkov, S.E. Molecular Detection of Plasmodiophora Brassicae, Causal Agent of Clubroot of Crucifers, in Plant and Soil. Plant Dis. 2007, 91, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Cenis, J.L. Rapid Extraction of Fungal DNA for PCR Amplification. Nucleic Acids Res. 1992, 20, 2380. [Google Scholar] [PubMed]
- Lee, J.-G.; Cheong, K.H.; Huh, N.; Kim, S.; Choi, J.-W.; Ko, C. Microchip-Based One Step DNA Extraction and Real-Time PCR in One Chamber for Rapid Pathogen Identification. Lab Chip 2006, 6, 886–895. [Google Scholar] [CrossRef]
- Armstrong, T. Molecular Detection and Pathology of the Oomycete Albugo Candida (White Rust) in Threatened Coastal Cresses; Science & Technical Publishing, Department of Conservation: Wellington, New Zealand, 2007. [Google Scholar]
- Kaur, P.; Sivasithamparam, K.; Barbetti, M.J. Host Range and Phylogenetic Relationships of Albugo Candida from Cruciferous Hosts in Western Australia, with Special Reference to Brassica Juncea. Plant Dis. 2011, 95, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Dev, D.; Tewari, A.K.; Upadhyay, P.; Daniel, G.R. Identification and Nomenclature of Albugo Candida Pathotypes of Indian Origin Causing White Rust Disease of Rapeseed-Mustard. Eur. J. Plant Pathol. 2020, 158, 987–1004. [Google Scholar] [CrossRef]
- Thomas, W.J.; Serdani, M.; Claassen, B.; Schneider, M.; Hinds-Cook, A.M.; Mallory-Smith, C.; Ocamb, C.M. A Real-Time PCR Assay for Detection of Light Leaf Spot on Brassica Crops in the Pacific Northwest of the USA. Can. J. Plant Pathol. 2019, 41, 566–575. [Google Scholar] [CrossRef]
- Shen, D.; Li, Q.; Yu, J.; Zhao, Y.; Zhu, Y.; Xu, H.; Dou, D. Development of a Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Pythium Ultimum. Australas. Plant Pathol. 2017, 46, 571–576. [Google Scholar] [CrossRef]
- Wallon, T.; Sauvageau, A.; Van der Heyden, H. Detection and Quantification of Rhizoctonia Solani and Rhizoctonia Solani AG1-IB Causing the Bottom Rot of Lettuce in Tissues and Soils by Multiplex QPCR. Plants 2020, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Gunasinghe, N.; You, M.P.; Barbetti, M.J. Phenotypic and Phylogenetic Studies Associated with the Crucifer White Leaf Spot Pathogen, Pseudocercosporella Capsellae, in Western Australia. Plant Pathol. 2016, 65, 205–217. [Google Scholar] [CrossRef]
- Qin, L.; Fu, Y.; Xie, J.; Cheng, J.; Jiang, D.; Li, G.; Huang, J. A Nested-PCR Method for Rapid Detection of Sclerotinia Sclerotiorum on Petals of Oilseed Rape (Brassica napus). Plant Pathol. 2011, 60, 271–277. [Google Scholar] [CrossRef]
- Ziesman, B.R.; Turkington, T.K.; Basu, U.; Strelkov, S.E. A Quantitative PCR System for Measuring Sclerotinia Sclerotiorum in Canola (Brassica napus). Plant Dis. 2016, 100, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.W.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2001; Volume 1. [Google Scholar]
- Pane, C.; Manganiello, G.; Nicastro, N.; Cardi, T.; Carotenuto, F. Powdery Mildew Caused by Erysiphe Cruciferarum on Wild Rocket (Diplotaxis Tenuifolia): Hyperspectral Imaging and Machine Learning Modeling for Non-Destructive Disease Detection. Agriculture 2021, 11, 337. [Google Scholar] [CrossRef]
- King, K.M.; Krivova, V.; Canning, G.G.M.; Hawkins, N.J.; Kaczmarek, A.M.; Perryman, S.A.M.; Dyer, P.S.; Fraaije, B.A.; West, J.S. Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid Detection of Pyrenopeziza Brassicae (Light Leaf Spot of Brassicas). Plant Pathol. 2018, 67, 167–174. [Google Scholar] [CrossRef]
- Fitt, B.D.; Brun, H.; Barbetti, M.J.; Rimmer, S.R. World-Wide Importance of Phoma Stem Canker (Leptosphaeria maculans and L. biglobosa) on Oilseed Rape (Brassica napus). In Sustainable Strategies for Managing Brassica napus (Oilseed Rape) Resistance to Leptosphaeria maculans (Phoma Stem Canker); Springer: Dordrecht, The Netherlands, 2006; pp. 3–15. [Google Scholar]
- Fitt, B.D.; Hu, B.C.; Li, Z.Q.; Liu, S.Y.; Lange, R.M.; Kharbanda, P.D.; Butterworth, M.H.; White, R.P. Strategies to Prevent Spread of Leptosphaeria Maculans (Phoma Stem Canker) onto Oilseed Rape Crops in China; Costs and Benefits. Plant Pathol. 2008, 57, 652–664. [Google Scholar] [CrossRef]
- Li, H.; Sivasithamparam, K.; Barbetti, M.J. Soilborne Ascospores and Pycnidiospores of Leptosphaeria Maculans Can Contribute Significantly to Blackleg Disease Epidemiology in Oilseed Rape (Brassica napus) in Western Australia. Australas. Plant Pathol. 2007, 36, 439–444. [Google Scholar] [CrossRef]
- Li, H.; Kuo, J.; Barbetti, M.J.; Sivasithamparam, K. Differences in the Responses of Stem Tissues of Spring-Type Brassica napus Cultivars with Polygenic Resistance and Single Dominant Gene-Based Resistance to Inoculation with Leptosphaeria Maculans. Botany 2007, 85, 191–203. [Google Scholar] [CrossRef]
- Zhang, X.; Fernando, W.G.D. Insights into Fighting against Blackleg Disease of Brassica napus in Canada. Crop Pasture Sci. 2018, 69, 40. [Google Scholar] [CrossRef]
- Lee, S.B. Isolation of DNA from Fungal Mycelia and Single Spores. In PCR Protocols, a Guide to Methods and Applications; Academic Press: New York, NY, USA, 1990; pp. 282–287. [Google Scholar]
- Du, R.; Huang, Y.; Zhang, J.; Yang, L.; Wu, M.; Li, G. LAMP Detection and Identification of the Blackleg Pathogen Leptosphaeria Biglobosa ‘Brassicae’. Plant Dis. 2021, 105, 3192–3200. [Google Scholar] [CrossRef]
- Fernando, W.; Zhang, X.; Amarasinghe, C. Detection of Leptosphaeria Maculans and Leptosphaeria Biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage. Plants 2016, 5, 12. [Google Scholar] [CrossRef]
- Carlier, J.D.; Alabaça, C.A.; Coelho, P.S.; Monteiro, A.A.; Leitão, J.M. The Downy Mildew Resistance Locus Pp523 Is Located on Chromosome C8 of Brassica Oleracea L. Plant Breed. 2012, 131, 170–175. [Google Scholar] [CrossRef]
- Saha, P.; Ghoshal, C.; Ray, S.; Saha, N.D.; Srivastava, M.; Kalia, P.; Tomar, B.S. Genetic Analysis of Downy Mildew Resistance and Identification of Molecular Markers Linked to Resistance Gene Ppa207 on Chromosome 2 in Cauliflower. Euphytica 2020, 216, 183. [Google Scholar] [CrossRef]
- Van de Wouw, A.P.; Idnurm, A.; Davidson, J.A.; Sprague, S.J.; Khangura, R.K.; Ware, A.H.; Lindbeck, K.D.; Marcroft, S.J. Fungal Diseases of Canola in Australia: Identification of Trends, Threats and Potential Therapies. Australas. Plant Pathol. 2016, 45, 415–423. [Google Scholar] [CrossRef]
- Dixon, G.R. The Occurrence and Economic Impact of Plasmodiophora Brassicae and Clubroot Disease. J. Plant Growth Regul. 2009, 28, 194–202. [Google Scholar] [CrossRef]
- Buhariwalla, H.; Greaves, S.; Magrath, R.; Mithen, R. Development of Specific PCR Primers for the Amplification of Polymorphic DNA from the Obligate Root Pathogen Plasmodiophora Brassicae. Physiol. Mol. Plant Pathol. 1995, 47, 83–94. [Google Scholar] [CrossRef]
- Ito, S.; Maehara, T.; Maruno, E.; Tanaka, S.; Kameya-Iwaki, M.; Kishi, F. Development of a PCR-Based Assay for the Detection of Plasmodiophora Brassicae in Soil. J. Phytopathol. 1999, 147, 83–88. [Google Scholar] [CrossRef]
- Ito, S.; Maehara, T.; Tanaka, S.; Kameya-Iwaki, M.; Yano, S.; Kishi, F. Cloning of a Single-Copy DNA Sequence Unique ToPlasmodiophora Brassicae. Physiol. Mol. Plant Pathol. 1997, 50, 289–300. [Google Scholar] [CrossRef]
- Chee, H.Y.; Kim, W.G.; Cho, W.D.; Jee, H.J.; Choi, Y.C. Detection of Plasmodiophora Brassicae by Using Polymerase Chain Reaction. Plant Pathol. J. 1998, 14, 589–593. [Google Scholar]
- Faggian, R.; Strelkov, S.E. Detection and Measurement of Plasmodiophora Brassicae. J. Plant Growth Regul. 2009, 28, 282–288. [Google Scholar] [CrossRef]
- Wallenhammar, A.-C.; Arwidsson, O. Detection of Plasmodiophora Brassicae by PCR in Naturally Infested Soils. Eur. J. Plant Pathol. 2001, 107, 313–321. [Google Scholar] [CrossRef]
- Pu, Z.; Shimizu, M.; Zhang, Y.; Nagaoka, T.; Hayashi, T.; Hori, H.; Matsumoto, S.; Fujimoto, R.; Okazaki, K. Genetic Mapping of a Fusarium Wilt Resistance Gene in Brassica Oleracea. Mol. Breed. 2012, 30, 809–818. [Google Scholar] [CrossRef]
- Diener, A.C. Routine Mapping of Fusarium Wilt Resistance in BC1 Populations of Arabidopsis Thaliana. BMC Plant Biol. 2013, 13, 171. [Google Scholar] [CrossRef]
- Diener, A.C.; Ausubel, F.M. RESISTANCE TO FUSARIUM OXYSPORUM 1, a Dominant Arabidopsis Disease-Resistance Gene, Is Not Race Specific. Genetics 2005, 171, 305–321. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chang, J.-Y.; Liu, E.-T.; Chao, C.-P.; Huang, J.-W.; Chang, P.-F.L. Development of a Molecular Marker for Specific Detection of Fusarium Oxysporum f. Sp. Cubense Race 4. Eur. J. Plant Pathol. 2009, 123, 353–365. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, K.-S.; Chang, J.-Y.; Wan, Y.-L.; Hsu, C.-C.; Huang, J.-W.; Chang, P.-F.L. Development of the Molecular Methods for Rapid Detection and Differentiation of Fusarium Oxysporum and F. Oxysporum f. Sp. Niveum in Taiwan. New Biotechnol. 2010, 27, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.M.; Raoof, M.A.; Ulaganathan, K. Development of Specific Markers for Identification of Indian Isolates of Fusarium Oxysporum f. Sp. Ricini. Eur. J. Plant Pathol. 2012, 134, 713–719. [Google Scholar] [CrossRef]
- van der Does, H.C.; Rep, M. Virulence Genes and the Evolution of Host Specificity in Plant-Pathogenic Fungi. Mol. Plant-Microbe Interact. 2007, 20, 1175–1182. [Google Scholar] [CrossRef]
- Ghosh, R.; Nagavardhini, A.; Sengupta, A.; Sharma, M. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Fusarium oxysporum f. sp. ciceris-Wilt Pathogen of Chickpea. BMC Res. Notes 2015, 8, 40. [Google Scholar] [CrossRef]
- Saikia, R.; Kadoo, N. Molecular Detection and Identification of Fusarium Oxysporum. In Molecular Identification of Fungi; Gherbawy, Y., Voigt, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 131–157. ISBN 978-3-642-05041-1. [Google Scholar]
- Peng, J.; Zhang, H.; Chen, F.; Zhang, X.; Xie, Y.; Hou, X.; Li, G.; Pu, J. Rapid and Quantitative Detection of F Usarium Oxysporum f. Sp. Cubense Race 4 in Soil by Real-Time Fluorescence Loop-Mediated Isothermal Amplification. J. Appl. Microbiol. 2014, 117, 1740–1749. [Google Scholar] [CrossRef]
- Umesha, S.; Jyothi, N.; Roohie, R.K. Detection of Bacterial and Fusarium Wilt Pathogens in Cabbage by Multiplex PCR. Plant Sci. 2015, 3, 185–190. [Google Scholar]
- Karlsson, I.; Edel-Hermann, V.; Gautheron, N.; Durling, M.B.; Kolseth, A.-K.; Steinberg, C.; Persson, P.; Friberg, H. Genus-Specific Primers for Study of Fusarium Communities in Field Samples. Appl. Environ. Microbiol. 2016, 82, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Edel-Hermann, V.; Gautheron, N.; Mounier, A.; Steinberg, C. Fusarium Diversity in Soil Using a Specific Molecular Approach and a Cultural Approach. J. Microbiol. Methods 2015, 111, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Hind, T.L.; Ash, G.J.; Murray, G.M. Prevalence of Sclerotinia Stem Rot of Canola in New South Wales. Aust. J. Exp. Agric. 2003, 43, 163–168. [Google Scholar] [CrossRef]
- Chittem, K.; Yajima, W.R.; Goswami, R.S.; del Río Mendoza, L.E. Transcriptome Analysis of the Plant Pathogen Sclerotinia Sclerotiorum Interaction with Resistant and Susceptible Canola (Brassica napus) Lines. PLoS ONE 2020, 15, e0229844. [Google Scholar] [CrossRef] [PubMed]
- Andrew, M.; Kohn, L.M. Single Nucleotide Polymorphism-Based Diagnostic System for Crop-Associated Sclerotinia Species. Appl. Environ. Microbiol. 2009, 75, 5600–5606. [Google Scholar] [CrossRef]
- Njambere, E.N.; Vandemark, G.; Chen, W. Development and Characterization of Microsatellite Markers of the Fungal Plant Pathogen Sclerotinia Trifoliorum. Genome 2010, 53, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Ward, E.; Calderon, C.; McCartney, A. A Polymerase Chain Reaction (PCR) Assay for the Detection of Inoculum of Sclerotinia Sclerotiorum. Eur. J. Plant Pathol. 2002, 108, 877–886. [Google Scholar] [CrossRef]
- Yin, Y.; Ding, L.; Liu, X.; Yang, J.; Ma, Z. Detection of Sclerotinia Sclerotiorum in Planta by a Real-Time PCR Assay. J. Phytopathol. 2009, 157, 465–469. [Google Scholar] [CrossRef]
- Rogers, S.L.; Atkins, S.D.; West, J.S. Detection and Quantification of Airborne Inoculum of Sclerotinia Sclerotiorum Using Quantitative PCR. Plant Pathol. 2009, 58, 324–331. [Google Scholar] [CrossRef]
- Uloth, M.B.; You, M.P.; Barbetti, M.J. Cultivar Resistance Offers the First Opportunity for Effective Management of the Emerging Powdery Mildew (Erysiphe Cruciferarum) Threat to Oilseed Brassicas in Australia. Crop Pasture Sci. 2016, 67, 1179–1187. [Google Scholar] [CrossRef]
- Kaur, P.; Li, C.X.; Barbetti, M.J.; You, M.P.; Li, H.; Sivasithamparam, K. First Report of Powdery Mildew Caused by Erysiphe Cruciferarum on Brassica Juncea in Australia. Plant Dis. 2008, 92, 650. [Google Scholar] [CrossRef]
- Tam, L.T.T.; Dung, P.N.; Liem, N.V. First Report of Powdery Mildew Caused by Erysiphe Cruciferarum on Brassica Juncea in Vietnam. Plant Dis. 2016, 100, 856. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, R.; Singh, D.; Yadav, S.P.; Kumar, V. Screening of Brassica Germplasm and Breeding Material against Erysiphe Cruciferarum Causing Powdery Mildew of Rapeseed Mustard under Artificial Condition. Environ. Ecol. 2017, 35, 112–115. [Google Scholar]
- Attanayake, R.N.; Glawe, D.A.; Dugan, F.M.; Chen, W. Erysiphe Trifolii Causing Powdery Mildew of Lentil (Lens Culinaris). Plant Dis. 2009, 93, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Gunasinghe, N.; Barbetti, M.J.; You, M.P.; Burrell, D.; Neate, S. White Leaf Spot Caused by Neopseudocercosporella Capsellae: A Re-Emerging Disease of Brassicaceae. Front. Cell. Infect. Microbiol. 2020, 10, 588090. [Google Scholar] [CrossRef] [PubMed]
- Al-Lami, H.F.D.; You, M.P.; Barbetti, M.J. Incidence, Pathogenicity and Diversity of Alternaria Spp. Associated with Alternaria Leaf Spot of Canola (Brassica napus) in Australia. Plant Pathol. 2019, 68, 492–503. [Google Scholar] [CrossRef]
- Gahatraj, S.; Shrestha, S.M.; Devkota, T.R.; Rai, H.H. A Review on Clubroot of Crucifers: Symptoms, Life-Cycle of Pathogen, Factors Affecting Severity, and Management Strategies. Arch. Agric. Environ. Sci. 2019, 4, 342–349. [Google Scholar] [CrossRef]
- Singh, K.P.; Kumari, P.; Rai, P.K. Current Status of the Disease-Resistant Gene(s)/QTLs, and Strategies for Improvement in Brassica Juncea. Front. Plant Sci. 2021, 12, 617405. [Google Scholar] [CrossRef]
- Shimizu, M.; Fujimoto, R.; Ying, H.; Pu, Z.; Ebe, Y.; Kawanabe, T.; Saeki, N.; Taylor, J.M.; Kaji, M.; Dennis, E.S.; et al. Identification of Candidate Genes for Fusarium Yellows Resistance in Chinese Cabbage by Differential Expression Analysis. Plant Mol. Biol. 2014, 85, 247–257. [Google Scholar] [CrossRef]
- Ireland, K.B.; Weir, B.S.; Phantavong, S.; Phitsanoukane, P.; Vongvichid, K.; Vilavong, S.; Tesoriero, L.A.; Burgess, L.W. First Report of Rhizoctonia Solani Anastomosis Group AG-4 HG-I in the Lao PDR. Australas. Plant Dis. Notes 2015, 10, 1. [Google Scholar] [CrossRef]
- Schroeder, K.L.; Martin, F.N.; de Cock, A.W.A.M.; Lévesque, C.A.; Spies, C.F.J.; Okubara, P.A.; Paulitz, T.C. Molecular Detection and Quantification of Pythium Species: Evolving Taxonomy, New Tools, and Challenges. Plant Dis. 2013, 97, 4–20. [Google Scholar] [CrossRef]
- Cullen, D.W.; Toth, I.K.; Boonham, N.; Walsh, K.; Barker, I.; Lees, A.K. Development and Validation of Conventional and Quantitative Polymerase Chain Reaction Assays for the Detection of Storage Rot Potato Pathogens, Phytophthora Erythroseptica, Pythium Ultimum and Phoma Foveata. J. Phytopathol. 2007, 155, 309–315. [Google Scholar] [CrossRef]
- Kageyama, K.; Ohyama, A.; Hyakumachi, M. Detection of Pythium Ultimum Using Polymerase Chain Reaction with Species-Specific Primers. Plant Dis. 1997, 81, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Postma, J.; Schilder, M.T. Bodemweerbaarheid Tegen Rhizoctonia Solani AG 2-1 in Bloemkool. Gewasbescherming 2005, 36, 208–211. [Google Scholar]
- Boine, B.; Renner, A.-C.; Zellner, M.; Nechwatal, J. Quantitative Methods for Assessment of the Impact of Different Crops on the Inoculum Density of Rhizoctonia Solani AG2-2IIIB in Soil. Eur. J. Plant Pathol. 2014, 140, 745–756. [Google Scholar] [CrossRef]
- Budge, G.E.; Shaw, M.W.; Colyer, A.; Pietravalle, S.; Boonham, N. Molecular Tools to Investigate Rhizoctonia Solani Distribution in Soil. Plant Pathol. 2009, 58, 1071–1080. [Google Scholar] [CrossRef]
- Rector, B.G.; Wang, S.; Choi, Y.-J.; Thines, M. First Report of Albugo Lepidii Causing White Rust on Broadleaved Pepperweed (Lepidium Latifolium) in Nevada and California. Plant Dis. 2016, 100, 229. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Thines, M. Morphological and Molecular Confirmation of Albugo Resedae (Albuginales; Oomycota) as a Distinct Species from A. Candida. Mycol. Prog. 2011, 10, 143–148. [Google Scholar] [CrossRef]
- Petkowski, J.E.; Cunnington, J.H.; Minchinton, E.J.; Cahill, D.M. Molecular Phylogenetic Relationships between Albugo Candida Collections on the Brassicaceae in Australia. Plant Pathol. 2010, 59, 282–288. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Hong, S.-B.; Shin, H.-D. Genetic Diversity within the Albugo Candida Complex (Peronosporales, Oomycota) Inferred from Phylogenetic Analysis of ITS RDNA and COX2 MtDNA Sequences. Mol. Phylogenetics Evol. 2006, 40, 400–409. [Google Scholar] [CrossRef]
- Murtza, T.; You, M.P.; Barbetti, M.J. Canola Growth Stage at Time of Infection Determines Magnitude of White Leaf Spot (Neopseudocercosporella Capsellae) Impact. Plant Dis. 2021, 105, 1515–1521. [Google Scholar] [CrossRef]
- Martin, F.M.; Uroz, S.; Barker, D.G. Ancestral Alliances: Plant Mutualistic Symbioses with Fungi and Bacteria. Science 2017, 356, eaad4501. [Google Scholar] [CrossRef]
- Strobel, G. The Emergence of Endophytic Microbes and Their Biological Promise. J. Fungi 2018, 4, 57. [Google Scholar] [CrossRef] [PubMed]
- Gunasinghe, N.; Barbetti, M.J.; You, M.P.; Dehigaspitiya, P.; Neate, S. Dimorphism in Neopseudocercosporella Capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas. Front. Cell. Infect. Microbiol. 2021, 11, 678231. [Google Scholar] [CrossRef] [PubMed]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and Common Traits in Mycorrhizal Symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Cosme, M.; Fernández, I.; Van der Heijden, M.G.; Pieterse, C.M. Non-Mycorrhizal Plants: The Exceptions That Prove the Rule. Trends Plant Sci. 2018, 23, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; York, T.; Pumplin, N.; Mueller, L.A.; Harrison, M.J. Genes Conserved for Arbuscular Mycorrhizal Symbiosis Identified through Phylogenomics. Nat. Plants 2016, 2, 15208. [Google Scholar] [CrossRef]
- Hiruma, K.; Kobae, Y.; Toju, H. Beneficial Associations between Brassicaceae Plants and Fungal Endophytes under Nutrient-Limiting Conditions: Evolutionary Origins and Host–Symbiont Molecular Mechanisms. Curr. Opin. Plant Biol. 2018, 44, 145–154. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial Effects of Endophytic Fungi Colonization on Plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Yang, L.; Zhang, L.; Jiang, D.; Chen, W.; Li, G. Diversity and Biocontrol Potential of Endophytic Fungi in Brassica napus. Biol. Control 2014, 72, 98–108. [Google Scholar] [CrossRef]
- Rozpądek, P.; Nosek, M.; Domka, A.; Ważny, R.; Jędrzejczyk, R.; Tokarz, K.; Pilarska, M.; Niewiadomska, E.; Turnau, K. Acclimation of the Photosynthetic Apparatus and Alterations in Sugar Metabolism in Response to Inoculation with Endophytic Fungi. Plant Cell Environ. 2019, 42, 1408–1423. [Google Scholar] [CrossRef]
- Viterbo, A.; Landau, U.; Kim, S.; Chernin, L.; Chet, I. Characterization of ACC Deaminase from the Biocontrol and Plant Growth-Promoting Agent Trichoderma Asperellum T203. FEMS Microbiol. Lett. 2010, 305, 42–48. [Google Scholar] [CrossRef]
- Gao, S.; Chu, C. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. Plant Cell Physiol. 2020, 61, 1902–1911. [Google Scholar] [CrossRef]
- Hamayun, M.; Khan, S.A.; Khan, A.L.; Ahmad, N.; Nawaz, Y.; Sher, H.; Lee, I.-J. Gibberellin Producing Neosartorya Sp. CC8 Reprograms Chinese Cabbage to Higher Growth. Sci. Hortic. 2011, 129, 347–352. [Google Scholar] [CrossRef]
- del Carmen Orozco-Mosqueda, M.; Santoyo, G. Plant-Microbial Endophytes Interactions: Scrutinizing Their Beneficial Mechanisms from Genomic Explorations. Curr. Plant Biol. 2021, 25, 100189. [Google Scholar] [CrossRef]
- Sarkar, S.; Dey, A.; Kumar, V.; Batiha, G.E.-S.; El-Esawi, M.A.; Tomczyk, M.; Ray, P. Fungal Endophyte: An Interactive Endosymbiont with the Capability of Modulating Host Physiology in Myriad Ways. Front. Plant Sci. 2021, 12, 701800. [Google Scholar] [CrossRef]
- Lata, R.; Chowdhury, S.; Gond, S.K.; White Jr, J.F. Induction of Abiotic Stress Tolerance in Plants by Endophytic Microbes. Lett. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Hui, N.; Rahman, S.-; Hayat, K.; Huang, D. Suppression of Clubroot (Plasmodiophora Brassicae) Development in Brassica Campestris Sp. Chinensis L. via Exogenous Inoculation of Piriformospora Indica. J. Radiat. Res. Appl. Sci. 2020, 13, 180–190. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Gomez-Casati, D.F.; Pagani, M.A.; Busi, M.V.; Bhadauria, V. Omics Approaches for the Engineering of Pathogen Resistant Plants. Curr. Issues Mol. Biol. 2016, 19, 89–98. [Google Scholar] [PubMed]
- Haddadi, P.; Ma, L.; Wang, H.; Borhan, M.H. Genome-Wide Transcriptomic Analyses Provide Insights into the Lifestyle Transition and Effector Repertoire of Leptosphaeria Maculans during the Colonization of Brassica napus Seedlings. Mol. Plant Pathol. 2016, 17, 1196–1210. [Google Scholar] [CrossRef]
- Dewage, C.S.K.; Klöppel, C.A.; Stotz, H.U.; Fitt, B.D.L. Host–Pathogen Interactions in Relation to Management of Light Leaf Spot Disease (Caused by Pyrenopeziza Brassicae) on Brassica Species. Crop Pasture Sci. 2018, 69, 9. [Google Scholar] [CrossRef]
- Amsbury, S. Sensing Attack: The Role of Wall-Associated Kinases in Plant Pathogen Responses. Plant Physiol. 2020, 183, 1420–1421. [Google Scholar] [CrossRef] [PubMed]
- Tirnaz, S.; Bayer, P.E.; Inturrisi, F.; Zhang, F.; Yang, H.; Dolatabadian, A.; Neik, T.X.; Severn-Ellis, A.; Patel, D.A.; Ibrahim, M.I.; et al. Resistance Gene Analogs in the Brassicaceae: Identification, Characterization, Distribution, and Evolution. Plant Physiol. 2020, 184, 909–922. [Google Scholar] [CrossRef]
- Liu, F.; Selin, C.; Zou, Z.; Fernando, W.D. LmCBP1, a Secreted Chitin-Binding Protein, Is Required for the Pathogenicity of Leptosphaeria Maculans on Brassica napus. Fungal Genet. Biol. 2020, 136, 103320. [Google Scholar] [CrossRef] [PubMed]
- Howlett, B.J.; Idnurm, A.; Pedras, M.S.C. Leptosphaeria Maculans, the Causal Agent of Blackleg Disease of Brassicas. Fungal Genet. Biol. 2001, 33, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, M.J.; Hossain, M.R.; Park, J.-I.; Robin, A.H.K.; Natarajan, S.; Jesse, D.M.I.; Jung, H.-J.; Kim, H.-T.; Nou, I.-S. In-Silico Identification and Differential Expressions of LepR4-Syntenic Disease Resistance Related Domain Containing Genes against Blackleg Causal Fungus Leptosphaeria Maculans in Brassica Oleracea. Gene Rep. 2020, 19, 100598. [Google Scholar] [CrossRef]
- Alamery, S.; Tirnaz, S.; Bayer, P.; Tollenaere, R.; Chaloub, B.; Edwards, D.; Batley, J. Genome-Wide Identification and Comparative Analysis of NBS-LRR Resistance Genes in Brassica napus. Crop Pasture Sci. 2017, 69, 72–93. [Google Scholar] [CrossRef]
- Ma, C.; Zhu, C.; Zheng, M.; Liu, M.; Zhang, D.; Liu, B.; Li, Q.; Si, J.; Ren, X.; Song, H. CRISPR/Cas9-Mediated Multiple Gene Editing in Brassica Oleracea Var. Capitata Using the Endogenous TRNA-Processing System. Hortic. Res. 2019, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, T.; Shorinola, O.; Stacey, N.; Li, C.; Østergaard, L.; Patron, N.; Uauy, C.; Harwood, W. Induction of Targeted, Heritable Mutations in Barley and Brassica Oleracea Using RNA-Guided Cas9 Nuclease. Genome Biol. 2015, 16, 258. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Ahn, H.; Ryu, J.; Oh, Y.; Sivanandhan, G.; Won, K.-H.; Park, Y.D.; Kim, J.-S.; Kim, H.; Lim, Y.P. Generation of Early-Flowering Chinese Cabbage (Brassica Rapa Spp. Pekinensis) through CRISPR/Cas9-Mediated Genome Editing. Plant Biotechnol. Rep. 2019, 13, 491–499. [Google Scholar] [CrossRef]
- Salisbury, P.A.; Ballinger, D.J.; Wratten, N.; Plummer, K.M.; Howlett, B.J. Blackleg Disease on Oilseed Brassica in Australia: A Review. Aust. J. Exp. Agric. 1995, 35, 665–672. [Google Scholar] [CrossRef]
- Pilet, M.-L.; Delourme, R.; Foisset, N.; Renard, M. Identification of Loci Contributing to Quantitative Field Resistance to Blackleg Disease, Causal Agent Leptosphaeria Maculans (Desm.) Ces. et de Not., in Winter Rapeseed (Brassica napus L.). Theor. Appl. Genet. 1998, 96, 23–30. [Google Scholar] [CrossRef]
- Robin, A.H.K.; Yi, G.-E.; Laila, R.; Hossain, M.R.; Park, J.-I.; Kim, H.R.; Nou, I.-S. Leptosphaeria Maculans Alters Glucosinolate Profiles in Blackleg Disease–Resistant and -Susceptible Cabbage Lines. Front. Plant Sci. 2017, 8, 1769. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vallet, A.; Ramos, B.; Bednarek, P.; López, G.; Piślewska-Bednarek, M.; Schulze-Lefert, P.; Molina, A. Tryptophan-Derived Secondary Metabolites in Arabidopsis Thaliana Confer Non-Host Resistance to Necrotrophic Plectosphaerella Cucumerina Fungi. Plant J. 2010, 63, 115–127. [Google Scholar] [CrossRef]
- Buxdorf, K.; Yaffe, H.; Barda, O.; Levy, M. The Effects of Glucosinolates and Their Breakdown Products on Necrotrophic Fungi. PLoS ONE 2013, 8, e70771. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.H.; Wang, Y.T.; White, J.G. Species-Specific PCR Primers for Pythium Developed from Ribosomal ITS1 Region. Lett. Appl. Microbiol. 2003, 37, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Weiland, J.J.; Sundsbak, J.L. Differentiation and Detection of Sugar Beet Fungal Pathogens Using PCR Amplification of Actin Coding Sequences and the ITS Region of the RRNA Gene. Plant Dis. 2000, 84, 475–482. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourou, M.; Raimondo, M.L.; Lops, F.; Carlucci, A. Brassicaceae Fungi and Chromista Diseases: Molecular Detection and Host–Plant Interaction. Plants 2023, 12, 1033. https://doi.org/10.3390/plants12051033
Mourou M, Raimondo ML, Lops F, Carlucci A. Brassicaceae Fungi and Chromista Diseases: Molecular Detection and Host–Plant Interaction. Plants. 2023; 12(5):1033. https://doi.org/10.3390/plants12051033
Chicago/Turabian StyleMourou, Marwa, Maria Luisa Raimondo, Francesco Lops, and Antonia Carlucci. 2023. "Brassicaceae Fungi and Chromista Diseases: Molecular Detection and Host–Plant Interaction" Plants 12, no. 5: 1033. https://doi.org/10.3390/plants12051033
APA StyleMourou, M., Raimondo, M. L., Lops, F., & Carlucci, A. (2023). Brassicaceae Fungi and Chromista Diseases: Molecular Detection and Host–Plant Interaction. Plants, 12(5), 1033. https://doi.org/10.3390/plants12051033