The Influence of Selected Plant Growth Regulators and Carbohydrates on In Vitro Shoot Multiplication and Bulbing of the Tulip (Tulipa L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experiment 1
2.2. Experiment 2
2.3. Experiment 3
3. Materials and Methods
3.1. Plant Material
3.2. Terms and Conditions for Conducting Cultures
3.2.1. Experiment 1
3.2.2. Experiment 2
3.2.3. Experiment 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, A.R. Ornamental Bulbs: Corms and Tubers; CAB International: Wallingford, UK, 1992; p. 68. [Google Scholar]
- Van Raamsdonk, L.W.D.; Eikelboom, W.; De Vries, T.; Straathof, T.P. The systematics of the genus Tulipa L. Acta Hortic. 1997, 430, 821–827. [Google Scholar] [CrossRef]
- Botschantzeva, Z.P. Tulips. Taxonomy, Morphology, Cytology, Phytogeography and Physiology; Balkema: Rotterdam, The Netherlands, 1962. [Google Scholar]
- Van Tuy, J.M.; van Creij, M.G.M. Tulip. In Flower Breeding and Genetics; Anderson, N.O., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 623–641. [Google Scholar]
- Christenchusz, M.J.M.; Govaerts, R.; David, J.C.; Hall, T.; Borland, K.; Roberts, P.S.; Tuomisto, A.; Buerki, S.; Chase, M.W.; Fay, M.F. Tiptoe through the tulips—Cultural history, molecular phylogenetics and classification of Tulipa (Liliaceae). Bot. J. Linn. Soc. 2013, 172, 280–328. [Google Scholar] [CrossRef] [Green Version]
- WCSP. World Checklist of Selected Plant Families 2021. Facilitated by the Royal Botanic Gardens. Kew. Available online: http://wcsp.science.kew.org/ (accessed on 12 July 2022).
- Van Scheepen, J. Classified List and International Register of Tulip Names; Royal General Bulbgrowers’ Association KAVB: Hillegom, The Netherlands, 1996. [Google Scholar]
- Van Scheepen, J.; Bodegom, S. New group for tulips: Coronet Group. Fauna & Flora International, 2019. Available online: https://aiph.org/floraculture/news/bulbs-new-group-for-tulips-coronet-group/ (accessed on 29 June 2021).
- Royal Flora Holland. Facts and Figures 2021. Available online: https://www.royalfloraholland.com/media/15219125/royal-floraholland-facts-and-figures-2020.pdf (accessed on 27 December 2022).
- Okubo, H.; Sochacki, D. Botanical and horticultural aspects of major ornamental geophytes. In Ornamental Geophytes: From Basic Science to Sustainable Production; Kamenetsky, R., Okubo, H., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 79–121. [Google Scholar]
- Rivière, S.; Muller, J.F. Etude du bourgeonnement in vitro de l’écaille du bulbe de Tulipe. Can. J. Bot. 1979, 57, 1986–1993. [Google Scholar] [CrossRef]
- Nischiuchi, Y. Studies on vegetative propagation of tulip. II. Formation and development of adventitious buds in the excised bulb scale cultivated in vitro. J. Jpn. Soc. Hortic. Sci. 1979, 48, 99–105, (In Japanese with English Summary). [Google Scholar]
- Famelaer, I.; Ennik, E.; Eikelboom, W.; van Tuyl, J.M.; Creemers-Molenaar, J. The initiation of callus and regeneration from callus culture of Tulipa gesneriana. Plant Cell Tiss. Org. Cult. 1996, 47, 51–58. [Google Scholar] [CrossRef]
- Kuijpers, A.M.; Langens-Gerrits, M. Propagation of tulip in vitro. Acta Hortic. 1997, 430, 321–324. [Google Scholar] [CrossRef]
- Kritskaya, T.A.; Kashin, A.S.; Kasatkin, M.Y. Micropropagation and somaclonal variation of Tulipa suaveolens (Liliaceaae) in vitro. Russ. J. Dev. Biol. 2019, 50, 209–215. [Google Scholar] [CrossRef]
- Ptak, A.; Bach, A. Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures. Vitr. Cell Dev. Biol. Plant. 2007, 43, 35–39. [Google Scholar] [CrossRef]
- Maślanka, M.; Bach, A. Effect of abscisic acid, ethylene and inhibitors of their biosynthesis (fluridone and salicylic acid) on somatic embryos conversion in tulips. Ecol. Chem. Eng. 2010, 17, 1135–1140. [Google Scholar]
- Podwyszyńska, M.; Marasek-Ciolakowska, A. Micropropagation of tulip via somatic embryogenesis. Agronomy 2020, 10, 1857. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid assays with tobacco tissue cultures. Physiol Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Sochacki, D. Micropropagation of tulip: Production of virus-free stock plants. In Protocols for In Vitro Propagation of Ornamental Plants; Jain, S.M., Ochatt, S.J., Eds.; Series: Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2010; Volume 589, pp. 243–256. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Sochacki, D. Wykorzystanie technik in vitro do rozmnażania tulipanów, uwalniania od wirusów i wytwarzania tetraploidów [Use of in vitro techniques for tulip propagation, virus release and tetraploid production]. In Współczesne Kierunki Badań nad Roślinami Ozdobnymi w Polsce [Current Trends in Ornamental Plant Research in Poland], 1st ed.; Bach, A., Kapczyńska, A., Malik, M., Maślanka, M., Eds.; Polska Akademia Nauk—Komitet Nauk Agronomicznych, Uniwersytet Rolniczy w Krakowie: Kraków, Poland, 2016; pp. 209–238. (In Polish). [Google Scholar]
- Podwyszyńska, M. In vitro tetraploid induction in tulip. Acta Hortic. 2011, 961, 391–396. [Google Scholar]
- Sochacki, D.; Podwyszyńska, M. Virus eradication in narcissus and tulip by chemotherapy. Floric. Ornam. Biotechnol. 2012, 6, 114–121. [Google Scholar]
- Podwyszyńska, M. Wykorzystanie kultur in vitro do generowania zmienności tulipanów i liliowców [Using in vitro cultures to generate variability in tulips and daylilies]. In Ozdobne Rośliny Cebulowe—Produkcja i Zastosowanie [Ornamental Bulbous Plants—Production and Use]; Sochacki, D., Rabiza-Świder, J., Skutnik, E., Eds.; Katedra Roślin Ozdobnych. Szkoła Główna Gospodarstwa Wiejskiego: Warszawa, Poland, 2018; pp. 95–104. (In Polish). [Google Scholar]
- Podwyszyńska, M.; Niedoba, K.; Korbin, M.; Marasek-Ciołakowska, A. Somaclonal variation in micropropagated tulips determined by phenotype and DNA markers. Acta Hortic. 2006, 714, 211–220. [Google Scholar] [CrossRef]
- Rademacher, W. Plant Growth Regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Malkawi, A.; Jensen, B.L.; Langille, A.R. Plant hormones isolated from ‘‘Katahdin’’ potato plant tissues and the influence of photoperiod and temperature on their levels in relation to tuber induction. J. Plant Growth Regul. 2007, 26, 308–317. [Google Scholar] [CrossRef]
- Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef]
- Podwyszyńska, M. Effects of carbohydrates on shoot multiplication and bulb formation of tulip in vitro. Roczniki Akademii Rolniczej w Poznaniu. Ogrodnictwo 2001, 33, 119–126. [Google Scholar]
- Sumaryono; Muslihatin, W.; Ratnadewi, D. Effect of carbohydrate source on growth and performance of in vitro sago palm (Metroxylon sagu Rottb.) plantlets. HAYATI J. Biosci. 2012, 19, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Custers, J.B.M.; Eikelboom, W.; Bergervoet, J.H.W.; Eijk, J.V. Embryo-rescue in the genus Tulipa L.; successful direct transfer of T. kaufmanniana Regel germplasm into T. gesneriana L. Euphytica 1995, 82, 253–261. [Google Scholar] [CrossRef]
- Van de Wiel, C.; Schaart, J.; Niks, R.; Visser, R. Traditional Plant Breeding Methods; Report 338; Wageningen UR Plant Breeding: Wageningen, The Netherlands, 2010. [Google Scholar]
- Bogunia, H.; Przywara, L. Rola cukrowców w roślinnych kulturach in vitro [The role of sugars in plant in vitro cultures]. Wiadomości Bot. 1999, 43, 25–36. (In Polish). [Google Scholar]
- Podwyszyńska, M.; Novák, O.; Doležal, K.; Strnad, M. Endogenous cytokinin dynamics in micropropagated tulips during bulb formation process influenced by TDZ and iP pre-treatment. Plant. Cell. Tissue Organ. Cult. 2014, 119, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.D.; Kanwar, S.B. Studies on micropropagation of tulips and daffodils. Acta Hortic. 2003, 624, 533–540. [Google Scholar] [CrossRef]
- Hulscher, M.; Krijgsheld, H.T.; Van der Linde, P.C.G. Propagation of shoots and bulb growth of tulip in vitro. Acta Hortic. 1992, 325, 441–446. [Google Scholar] [CrossRef]
- Le Nard, M.; Chanteloube, F. In vitro culture of explants from growing stems of tulip (Tulipa gesneriana L.): Problems related to bud and bulblet formation. Acta Hortic. 1992, 325, 435–440. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Marasek, A. Effects of thidiazuron and paclobutrazol on regeneration potential of tulip flower stalk explants in vitro and subsequent shoot multiplication. Acta Soc. Bot. Pol. 2003, 72, 181–190. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Nurmansyah; Naidoo, Y.; Teixeira da Silva, J.A. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018, 37, 1451–1470. [Google Scholar] [CrossRef]
- Msogoya, T.J.; Maerere, A.P.; Nzogela, Y.; Kusolwa, P.M. Changes in acidity of plant growth media during heat sterilisation. J. Appl. Biosci. 2008, 10, 448–490. [Google Scholar]
- Owen, H.R.; Wengerd, D.; Miller, A.R. Culture medium pH is influenced by basal medium, carbohydrate source, gelling agent, activated charcoal, and medium storage method. Plant Cell Rep. 1991, 10, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Podwyszyńska, M. The mechanism of in vitro storage organ formation in ornamental geophytes. Floric. Ornam. Biotechnol. 2012, 6, 9–23. [Google Scholar]
- Ziv, M. Simple bioreactor for mass propagation of plants. Plant Cell Tissue Organ Cult. 2005, 81, 277–285. [Google Scholar] [CrossRef]
- Kumar, S.; Kashyap, M.; Sharma, D.R. In vitro regeneration and bulblet growth from lily bulbscale explants as affected by retardants, sucrose and irradiance. Biol. Plant. 2005, 49, 629–632. [Google Scholar] [CrossRef]
- Youssef, N.M.; Shaaban, S.A.; Ghareeb, Z.F.; Taha, L.S. In vitro bulb formation of direct and indirect regeneration of Lilium orientalis cv. “Starfighter” plants. Bull. Natl. Res. Cent. 2019, 43, 211. [Google Scholar] [CrossRef]
- Azeri, F.A.; Öztürk, G. Microbulb and plantlet formation of a native bulbous flower, Lilium monodelphum M. Bieb. var. armenum, through tissue culture propagation. Biotechnol. Rep. 2021, 32, e00665. [Google Scholar] [CrossRef]
- Sultana, J.; Sultana, N.; Siddique, M.N.A.; Islam, A.K.M.A.; Hossain, M.M.; Hossain, T. In vitro bulb production in hippeastrum (Hippeastrum hybridum). J. Cent. Eur. Agric. 2010, 11, 469–474. [Google Scholar]
- Kozak, D. The effect of growth retardants on induction and developments of Gloriosa rothschildiana O’Brien tubers in vitro. Acta Hortic. 2002, 570, 345–349. [Google Scholar] [CrossRef]
- Ptak, A. Leucojum aestivum L. in vitro bulbs induction and acclimatization. Cent. Eur. J. Biol. 2014, 9, 1011–1021. [Google Scholar] [CrossRef]
- Podwyszyńska, M. Improvement of bulb formation in micropropagated tulips by treatment with NAA and paclobutrazol or ancymidol. Acta Hortic. 2006, 725, 679–684. [Google Scholar] [CrossRef]
- Bodegom, S.; Bouman, R.; van Oers, S. KAVB Registraties 2021. In Bijlage Greenity; Koninklijke Algemeene Vereeniging voor Bloembollencultuur: Hillegom, The Netherlands, 2022; p. 20. [Google Scholar]
PGRs Added to MS Medium | Number of Shoots per Clump ± SD |
---|---|
TDZ 0.1 mg·L−1 + NAA 0.1 mg·L−1 + 2iP 5 mg·L−1 | 4.53 ± 1.39 ab * |
TDZ 0.1 mg·L−1 + IBA 0.1 mg·L−1 + 2iP 5 mg·L−1 | 6.25 ± 2.36 bc |
mT 0.1 mg·L−1 + NAA 0.1 mg·L−1 + 2iP 5 mg·L−1 | 8.54 ± 3.05 cd |
mT 0.1 mg·L−1 + IBA 0.1 mg·L−1 + 2iP 5 mg·L−1 | 6.82 ± 2.82 bcd |
2iP 0.1 mg·L−1 + NAA 0.1 mg·L−1 + mT 5 mg·L−1 | 9.14 ± 4.60 d |
2iP 0.1 mg·L−1 + IBA 0.1 mg·L−1 + mT 5 mg·L−1 | 3.32 ± 0.96 a |
PGRs Added to MS Medium (mg·L−1) | Multiplication Rate after 1 Passage ± SD | Multiplication Rate after 2 Passages ± SD | Multiplication Rate after 3 Passages ± SD | Total Multiplication Rate ± SD |
---|---|---|---|---|
TDZ 0.1 + NAA 0.1 + 2iP 5 | 1.22 ± 0.30 a * | 1.10 ± 0.20 a | 1.19 ± 0.22 a | 1.64 ± 0.85 a |
mT 0.1 + NAA 0.1 + 2iP 5 | 1.37 ± 0.41 a | 1.20 ± 0.27 a | 1.08 ± 0.25 a | 1.86 ± 0.95 a |
2iP 0.1 + NAA 0.1 + mT 5 | 1.42 ± 0.37 a | 1.17 ± 0.32 a | 1.10 ± 0.31 a | 1.94 ± 1.08 a |
Carbohydrate | Multiplication Rate after 1 Passage ± SD | Multiplication Rate after 2 Passage ± SD | Multiplication Rate after 3 Passage ± SD | Multiplication Rate after 4 Passage ± SD | Total Multiplication Rate ± SD | No. of Shoots after 4th Passage per One Starting Clump ± SD |
---|---|---|---|---|---|---|
Sucrose | 1.33 ± 0.39 b * | 1.70 ± 0.55 a | 1.20 ± 0.16 a | 1.64 ± 0.54 b | 3.01 ± 1.48 ab | 34.33 ± 13.06 b |
Glucose | 1.36 ± 0.35 b | 1.34 ± 0.39 a | 1.30 ± 0.37 a | 1.40 ± 0.28 ab | 3.25 ± 1.03 b | 35.88 ± 12.78 b |
Fructose | 1.19 ± 0.23 ab | 1.31 ± 0.33 a | 1.18 ± 0.18 a | 1.26 ± 0.27 ab | 2.37 ± 1.07 ab | 18.95 ± 8.50 a |
Glucose + Fructose | 0.92 ± 0.18 a | 1.28 ± 0.42 a | 1.36 ± 0.32 a | 1.11 ± 0.16 a | 1.84 ± 0.73 a | 19.80 ± 8.21 a |
Type of Medium, PGRs Added to the Medium | Carbohydrate | Mean for Type of Medium | |||
---|---|---|---|---|---|
Sucrose | Glucose | Fructose | Glucose + Fructose | ||
1st control, single-phase medium (without liquid medium) | 6.25 ± 5.74 ab * | 10.33 ± 6.81 ab | 9.00 ± 4.24 ab | 7.00 ± 2.65 ab | 8.07 ± 4.76 a |
2nd control, two-phase medium (liquid medium without PGRs) | 8.80 ± 4.44 ab | 8.25 ± 6.18 ab | 3.50 ± 0.50 a | 11.50 ± 3.87 ab | 8.34 ± 4.83 a |
Two-phase medium (liquid medium with 2 mg·L−1 NAA) | 10.00 ± 2.00 ab | 11.50 ± 5.20 ab | 5.67 ± 4.73 ab | 15.00 ± 5.96 b | 11.20 ± 5.63 ab |
Two-phase medium (liquid medium with 1 mg·L−1 PBZ) | 12.67 ± 2.89 ab | 28.00 ± 12.99 c | 12.00 ± 7.16 ab | 9.60 ± 4.10 ab | 15.38 ± 10.38 b |
Mean for carbohydrates | 9.13 ± 4.44 a | 14.80 ± 11.23 b | 7.96 ± 5.53 a | 11.18 ± 5.04 ab | x |
Type of Medium, PGRs Added to the Medium | Carbohydrate | Mean for Type of Medium | |||
---|---|---|---|---|---|
Sucrose | Glucose | Fructose | Glucose + Fructose | ||
1st control, single-phase medium (without liquid medium) | 0 ± 0.00 a * | 1.67 ± 0.58 a | 1.50 ± 1.29 a | 2.00 ± 2.00 a | 1.21 ± 1.31 a |
2nd control, two-phase medium (liquid medium without PGRs) | 1.20 ± 1.30 a | 1.25 ± 1.50 a | 0.67 ± 1.15 a | 4.25 ± 1.71 a | 1.88 ± 1.93 a |
Two-phase medium (liquid medium with 2 mg·L−1 NAA) | 1.33 ± 1.15 a | 1.50 ± 3.00 a | 1.33 ± 0.58 a | 2.80 ± 1.30 a | 1.87 ± 1.77 a |
Two-phase medium (liquid medium with 1 mg·L−1 PBZ) | 4.33 ± 3.06 a | 14.50 ± 15.72 b | 3.00 ± 1.41 a | 3.40 ± 2.07 a | 6.85 ± 8.75 b |
Mean for carbohydrates | 1.53 ± 2.10 a | 4.93 ± 9.54 a | 1.71 ± 1.38 a | 3.17 ± 1.78 a | x |
Type of Medium, PGRs Added to the Medium | Carbohydrate | Mean for Type of Medium | |||
---|---|---|---|---|---|
Sucrose | Glucose | Fructose | Glucose + Fructose | ||
1st control, single-phase medium (without liquid medium) | - | 0.575 ± 0.34 a * | 0.329 ± 0.14 a | 0.293 ± 0.06 a | 0.412 ± 0.24 a |
2nd control, two-phase medium (liquid medium without PGRs) | 0.424 ± 0.06 a | 0.912 ± 0.43 a | 0.748 ± 0.03 a | 0.261 ± 0.16 a | 0.512 ± 0.31 a |
Two-phase medium (liquid medium with 2 mg·L−1 NAA) | 0.483 ± 0.25 a | 0.509 ± 0.02 a | 0.732 ± 0.83 a | 0.510 ± 0.31 a | 0.571 ± 0.44 a |
Two-phase medium (liquid medium with 1 mg·L−1 PBZ) | 0.371 ± 0.30 a | 0.265 ± 0.18 a | 0.376 ± 0.25 a | 0.728 ± 0.27 a | 0.470 ± 0.30 a |
Mean for carbohydrates | 0.419 ± 0.20 a | 0.536 ± 0.33 a | 0.515 ± 0.43 a | 0.486 ± 0.30 a | x |
Treatment | PGRs Added |
---|---|
1 | TDZ 0.1 mg·L−1 + NAA 0.1 mg·L−1 + 2iP 5 mg·L−1 |
2 | TDZ 0.1 mg·L−1 + IBA 0.1 mg·L−1 + 2iP 5 mg·L−1 |
3 | mT 0.1 mg·L−1 + NAA 0.1 mg·L−1 + 2iP 5 mg·L−1 |
4 | mT 0.1 mg·L−1 + IBA 0.1 mg·L−1 + 2iP 5 mg·L−1 |
5 | 2iP 0.1 mg·L−1 + NAA 0.1 mg·L−1 + mT 5 mg·L−1 |
6 | 2iP 0.1 mg·L−1 + IBA 0.1 mg·L−1 + mT 5 mg·L−1 |
Treatment | Carbohydrate |
---|---|
1 | sucrose 30 g·L−1 |
2 | glucose 30 g·L−1 |
3 | fructose 30 g·L−1 |
4 | glucose 15 g·L−1 + fructose 15 g·L−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sochacki, D.; Marciniak, P.; Ciesielska, M.; Zaród, J.; Sutrisno. The Influence of Selected Plant Growth Regulators and Carbohydrates on In Vitro Shoot Multiplication and Bulbing of the Tulip (Tulipa L.). Plants 2023, 12, 1134. https://doi.org/10.3390/plants12051134
Sochacki D, Marciniak P, Ciesielska M, Zaród J, Sutrisno. The Influence of Selected Plant Growth Regulators and Carbohydrates on In Vitro Shoot Multiplication and Bulbing of the Tulip (Tulipa L.). Plants. 2023; 12(5):1134. https://doi.org/10.3390/plants12051134
Chicago/Turabian StyleSochacki, Dariusz, Przemysław Marciniak, Maria Ciesielska, Janina Zaród, and Sutrisno. 2023. "The Influence of Selected Plant Growth Regulators and Carbohydrates on In Vitro Shoot Multiplication and Bulbing of the Tulip (Tulipa L.)" Plants 12, no. 5: 1134. https://doi.org/10.3390/plants12051134
APA StyleSochacki, D., Marciniak, P., Ciesielska, M., Zaród, J., & Sutrisno. (2023). The Influence of Selected Plant Growth Regulators and Carbohydrates on In Vitro Shoot Multiplication and Bulbing of the Tulip (Tulipa L.). Plants, 12(5), 1134. https://doi.org/10.3390/plants12051134