Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress
Abstract
:1. Introduction
2. PAs Metabolism
3. Interaction of PAs and Plant Hormones under Abiotic Stress
3.1. PAs-Plant Hormones Crosstalk under Drought Stress
3.2. PAs-Phytohormones Cross Talk under Salt Stress
3.3. PAs-Phytohormones Cross Talk under Heavy Metal Stress
3.4. PAs-Phytohormones Cross Talk under Low Temperature Stress
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banerjee, A.; Roychoudhury, A. The Regulatory Signaling of Gibberellin Metabolism and Its Crosstalk With Phytohormones in Response to Plant Abiotic Stresses. In Plant Signaling Molecules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 333–339. ISBN 978-0-12-816451-8. [Google Scholar]
- Chunthaburee, S.; Sanitchon, J.; Pattanagul, W.; Theerakulpisut, P. Alleviation of Salt Stress in Seedlings of Black Glutinous Rice by Seed Priming with Spermidine and Gibberellic Acid. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhou, G.; Yang, W.; Wang, A.; Hu, Z.; Lin, C.; Chen, X. Drought-Inhibited Ribulose-1,5-Bisphosphate Carboxylase Activity Is Mediated through Increased Release of Ethylene and Changes in the Ratio of Polyamines in Pakchoi. J. Plant Physiol. 2014, 171, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Gémes, K.; Mellidou, Ι.; Karamanoli, K.; Beris, D.; Park, K.Y.; Matsi, T.; Haralampidis, K.; Constantinidou, H.-I.; Roubelakis-Angelakis, K.A. Deregulation of Apoplastic Polyamine Oxidase Affects Development and Salt Response of Tobacco Plants. J. Plant Physiol. 2017, 211, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020, 9, 2373. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, C.; Sun, C.; Wang, J.; Ye, Y.; Zhou, W.; Lu, L.; Lin, X. Inhibition of Ethylene Production by Putrescine Alleviates Aluminium-Induced Root Inhibition in Wheat Plants. Sci. Rep. 2016, 6, 18888. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Ahmed, S.; Ali, A.; Yasin, N.A. 2-Hydroxymelatonin Mitigates Cadmium Stress in Cucumis sativus Seedlings: Modulation of Antioxidant Enzymes and Polyamines. Chemosphere 2020, 243, 125308. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Ashraf, M. Bioregulators: Unlocking Their Potential Role in Regulation of the Plant Oxidative Defense System. Plant Mol. Biol. 2021, 105, 11–41. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Polyamines and Abiotic Stress Tolerance in Plants. Plant Signal. Behav. 2010, 5, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Lenis, Y.Y.; Elmetwally, M.A.; Maldonado-Estrada, J.G.; Bazer, F.W. Physiological Importance of Polyamines. Zygote 2017, 25, 244–255. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Takahashi, T.; Michael, A.J.; Kusano, T. A Protective Role for the Polyamine Spermine against Drought Stress in Arabidopsis. Biochem. Biophys. Res. Commun. 2007, 352, 486–490. [Google Scholar] [CrossRef]
- Cuevas, J.C.; López-Cobollo, R.; Alcázar, R.; Zarza, X.; Koncz, C.; Altabella, T.; Salinas, J.; Tiburcio, A.F.; Ferrando, A. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. Plant Physiol. 2008, 148, 1094–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talaat, N.B.; Shawky, B.T.; Ibrahim, A.S. Alleviation of Drought-Induced Oxidative Stress in Maize (Zea mays L.) Plants by Dual Application of 24-Epibrassinolide and Spermine. Environ. Exp. Bot. 2015, 113, 47–58. [Google Scholar] [CrossRef]
- Liu, J.; Yang, R.; Jian, N.; Wei, L.; Ye, L.; Wang, R.; Gao, H.; Zheng, Q. Putrescine Metabolism Modulates the Biphasic Effects of Brassinosteroids on Canola and Arabidopsis Salt Tolerance. Plant Cell Environ. 2020, 43, 1348–1359. [Google Scholar] [CrossRef]
- Van den Broeck, D.; Van Der Straeten, D.; Van Montagu, M.; Caplan, A. A Group of Chromosomal Proteins Is Specifically Released by Spermine and Loses DNA-Binding Activity upon Phosphorylation. Plant Physiol. 1994, 106, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.C.; Mehta, D.J.; Gerner, E.W. Polyamine-Dependent Gene Expression. Cell. Mol. Life Sci. 2003, 60, 1394–1406. [Google Scholar] [CrossRef]
- Du, H.; Chen, B.; Li, Q.; Liu, H.; Kurtenbach, R. Conjugated Polyamines in Root Plasma Membrane Enhanced the Tolerance of Plum Seedling to Osmotic Stress by Stabilizing Membrane Structure and Therefore Elevating H+-ATPase Activity. Front. Plant Sci. 2022, 12, 812360. [Google Scholar] [CrossRef]
- Kasukabe, Y.; He, L.; Nada, K.; Misawa, S.; Ihara, I.; Tachibana, S. Overexpression of Spermidine Synthase Enhances Tolerance to Multiple Environmental Stresses and Up-Regulates the Expression of Various Stress-Regulated Genes in Transgenic Arabidopsis thaliana. Plant Cell Physiol. 2004, 45, 712–722. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, Y.; Zhang, X.-Q.; Ma, X.; Huang, L.-K.; Yan, Y.-H. Exogenous Spermidine Improves Seed Germination of White Clover under Water Stress via Involvement in Starch Metabolism, Antioxidant Defenses and Relevant Gene Expression. Molecules 2014, 19, 18003–18024. [Google Scholar] [CrossRef] [Green Version]
- Sayed, A.I.; El-Hamahmy, M.A.M.; Rafudeen, M.S.; Ebrahim, M.K.H. Exogenous Spermidine Enhances Expression of Calvin Cycle Genes And Photosynthetic Efficiency in Sweet Sorghum Seedlings under Salt Stress. Biol. Plant. 2019, 63, 511–518. [Google Scholar] [CrossRef]
- Marco, F.; Busó, E.; Lafuente, T.; Carrasco, P. Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants. Front. Plant Sci. 2019, 10, 972. [Google Scholar] [CrossRef] [Green Version]
- Nahar, K.; Hasanuzzaman, M.; Rahman, A.; Alam, M.M.; Mahmud, J.-A.; Suzuki, T.; Fujita, M. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems. Front. Plant Sci. 2016, 7, 1104. [Google Scholar] [CrossRef]
- Bruggemann, L.I.; Pottosin, I.I.; Schonknecht, G. Cytoplasmic Polyamines Block the Fast-Activating Vacuolar Cation Channel. Plant J. 1998, 16, 101–105. [Google Scholar] [CrossRef]
- Shabala, S.; Cuin, T.A.; Pottosin, I. Polyamines Prevent NaCl-Induced K+ Efflux from Pea Mesophyll by Blocking Non-Selective Cation Channels. FEBS Lett. 2007, 581, 1993–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifikalhor, M.; Aliniaeifard, S.; Shomali, A.; Azad, N.; Hassani, B.; Lastochkina, O.; Li, T. Calcium Signaling and Salt Tolerance Are Diversely Entwined in Plants. Plant Signal. Behav. 2019, 14, 1665455. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Jazo, I.; Velarde-Buendía, A.M.; Enríquez-Figueroa, R.; Bose, J.; Shabala, S.; Muñiz-Murguía, J.; Pottosin, I.I. Polyamines Interact with Hydroxyl Radicals in Activating Ca2+ and K+ Transport across the Root Epidermal Plasma Membranes. Plant Physiol. 2011, 157, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Pottosin, I.; Velarde-Buendía, A.M.; Bose, J.; Fuglsang, A.T.; Shabala, S. Polyamines Cause Plasma Membrane Depolarization, Activate Ca2+-, and Modulate H+-ATPase Pump Activity in Pea Roots. J. Exp. Bot. 2014, 65, 2463–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, S.P.; Kanwar, M.; Bhardwaj, R.; Yu, J.-Q.; Tran, L.-S.P. Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L. PLoS ONE 2012, 7, e33210. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Hao, J.; Fan, S.; Liu, C.; Han, Y. Role of Spermidine in Photosynthesis and Polyamine Metabolism in Lettuce Seedlings under High-Temperature Stress. Plants 2022, 11, 1385. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Hassan, M.J.; Peng, Y.; Feng, G.; Huang, L.; Liu, L.; Liu, W.; Han, L.; Li, Z. Polyamines Metabolism Interacts with γ-Aminobutyric Acid, Proline and Nitrogen Metabolisms to Affect Drought Tolerance of Creeping Bentgrass. Int. J. Mol. Sci. 2022, 23, 2779. [Google Scholar] [CrossRef]
- Li, C.; Wang, G. Interactions between Reactive Oxygen Species, Ethylene and Polyamines in Leaves of Glycyrrhiza inflata Seedlings under Root Osmotic Stress. Plant Growth Regul. 2004, 42, 55–60. [Google Scholar] [CrossRef]
- Lee, T.-M.; Lur, H.-S.; Lin, Y.-H.; Chu, C. Physiological and Biochemical Changes Related to Methyl Jasmonate-Induced Chilling Tolerance of Rice (Oryza sativa L.) Seedlings. Plant Cell Environ. 1996, 19, 65–74. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, X.; Liu, W.; Kong, L.; Si, X.; Guo, S.; Sun, J. Gibberellin Mediates Spermidine-Induced Salt Tolerance and the Expression of GT-3b in Cucumber. Plant Physiol. Biochem. 2020, 152, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Pál, M.; Szalai, G.; Janda, T. Speculation: Polyamines Are Important in Abiotic Stress Signaling. Plant Sci. 2015, 237, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, Q.; Song, Y.; Shi, D.; Qi, H. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings. Front. Plant Sci. 2017, 8, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschou, P.N.; Paschalidis, K.A.; Delis, I.D.; Andriopoulou, A.H.; Lagiotis, G.D.; Yakoumakis, D.I.; Roubelakis-Angelakis, K.A. Spermidine Exodus and Oxidation in the Apoplast Induced by Abiotic Stress Is Responsible for H2O2 Signatures That Direct Tolerance Responses in Tobacco. Plant Cell 2008, 20, 1708–1724. [Google Scholar] [CrossRef] [Green Version]
- Moschou, P.N.; Delis, I.D.; Paschalidis, K.A.; Roubelakis-Angelakis, K.A. Transgenic Tobacco Plants Overexpressing Polyamine Oxidase Are Not Able to Cope with Oxidative Burst Generated by Abiotic Factors. Physiol. Plant. 2008, 133, 140–156. [Google Scholar] [CrossRef]
- Rea, G.; de Pinto, M.C.; Tavazza, R.; Biondi, S.; Gobbi, V.; Ferrante, P.; De Gara, L.; Federico, R.; Angelini, R.; Tavladoraki, P. Ectopic Expression of Maize Polyamine Oxidase and Pea Copper Amine Oxidase in the Cell Wall of Tobacco Plants. Plant Physiol. 2004, 134, 1414–1426. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gu, W.; Li, J.; Li, C.; Xie, T.; Qu, D.; Meng, Y.; Li, C.; Wei, S. Exogenously Applied Spermidine Alleviates Photosynthetic Inhibition under Drought Stress in Maize (Zea mays L.) Seedlings Associated with Changes in Endogenous Polyamines and Phytohormones. Plant Physiol. Biochem. 2018, 129, 35–55. [Google Scholar] [CrossRef]
- Ryu, H.; Cho, Y.-G. Plant Hormones in Salt Stress Tolerance. J. Plant Biol. 2015, 58, 147–155. [Google Scholar] [CrossRef]
- Bücker-Neto, L.; Paiva, A.L.S.; Machado, R.D.; Arenhart, R.A.; Margis-Pinheiro, M. Interactions between Plant Hormones and Heavy Metals Responses. Genet. Mol. Biol. 2017, 40, 373–386. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Sesin, V.; Kisiala, A.; Emery, R.J.N. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environ. Toxicol. Chem. 2021, 40, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Huang, B.; Jia, D.; Mann, T.; Jiang, X.; Qiu, Y.; Niitsu, M.; Berberich, T.; Kusano, T.; Liu, T. Identification of Seven Polyamine Oxidase Genes in Tomato (Solanum lycopersicum L.) and Their Expression Profiles under Physiological and Various Stress Conditions. J. Plant Physiol. 2018, 228, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yariuchi, Y.; Okamoto, T.; Noutoshi, Y.; Takahashi, T. Responses of Polyamine-Metabolic Genes to Polyamines and Plant Stress Hormones in Arabidopsis Seedlings. Cells 2021, 10, 3283. [Google Scholar] [CrossRef]
- Takács, Z.; Czékus, Z.; Tari, I.; Poór, P. The Role of Ethylene Signalling in the Regulation of Salt Stress Response in Mature Tomato Fruits: Metabolism of Antioxidants and Polyamines. J. Plant Physiol. 2022, 277, 153793. [Google Scholar] [CrossRef]
- Alcázar, R.; García-Martínez, J.L.; Cuevas, J.C.; Tiburcio, A.F.; Altabella, T. Overexpression of ADC2 in Arabidopsis Induces Dwarfism and Late-Flowering through GA Deficiency: Overexpression of ADC2 in Arabidopsis. Plant J. 2005, 43, 425–436. [Google Scholar] [CrossRef]
- Ziosi, V.; Bregoli, A.M.; Bonghi, C.; Fossati, T.; Biondi, S.; Costa, G.; Torrigiani, P. Transcription of Ethylene Perception and Biosynthesis Genes Is Altered by Putrescine, Spermidine and Aminoethoxyvinylglycine (AVG) during Ripening in Peach Fruit (Prunus persica). New Phytol. 2006, 172, 229–238. [Google Scholar] [CrossRef]
- Tong, W.; Yoshimoto, K.; Kakehi, J.-I.; Motose, H.; Niitsu, M.; Takahashi, T. Thermospermine Modulates Expression of Auxin-Related Genes in Arabidopsis. Front. Plant Sci. 2014, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Aldesuquy, H.; Baka, Z.; Mickky, B. Kinetin and Spermine Mediated Induction of Salt Tolerance in Wheat Plants: Leaf Area, Photosynthesis and Chloroplast Ultrastructure of Flag Leaf at Ear Emergence. Egypt. J. Basic Appl. Sci. 2014, 1, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.T.; Hasanuzzaman, M. Exogenous Kinetin and Putrescine Synergistically Mitigate Salt Stress in Luffa acutangula by Modulating Physiology and Antioxidant Defense. Physiol. Mol. Biol. Plants 2020, 26, 2125–2137. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, A.; Jiang, M. Involvement of Polyamine Oxidase in Abscisic Acid-Induced Cytosolic Antioxidant Defense in Leaves of Maize. J. Integr. Plant Biol. 2009, 51, 225–234. [Google Scholar] [CrossRef] [PubMed]
- He, M.-W.; Wang, Y.; Wu, J.-Q.; Shu, S.; Sun, J.; Guo, S.-R. Isolation and Characterization of S-Adenosylmethionine Synthase Gene from Cucumber and Responsive to Abiotic Stress. Plant Physiol. Biochem. 2019, 141, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Sagor, G.H.M.; Inoue, M.; Kusano, T.; Berberich, T. Expression Profile of Seven Polyamine Oxidase Genes in Rice (Oryza sativa) in Response to Abiotic Stresses, Phytohormones and Polyamines. Physiol. Mol. Biol. Plants 2021, 27, 1353–1359. [Google Scholar] [CrossRef]
- Tajti, J.; Hamow, K.Á.; Majláth, I.; Gierczik, K.; Németh, E.; Janda, T.; Pál, M. Polyamine-Induced Hormonal Changes in Eds5 and Sid2 Mutant Arabidopsis Plants. Int. J. Mol. Sci. 2019, 20, 5746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Q.; Liu, J.; Liu, R.; Wu, H.; Jiang, C.; Wang, C.; Guan, Y. Temporal and Spatial Distributions of Sodium and Polyamines Regulated by Brassinosteroids in Enhancing Tomato Salt Resistance. Plant Soil 2016, 400, 147–164. [Google Scholar] [CrossRef]
- Sobieszczuk-Nowicka, E.; Rorat, T.; Legocka, J. Polyamine Metabolism and S-Adenosylmethionine Decarboxylase Gene Expression during the Cytokinin-Stimulated Greening Process. Acta Physiol. Plant. 2007, 29, 495–502. [Google Scholar] [CrossRef]
- Cui, X.; Ge, C.; Wang, R.; Wang, H.; Chen, W.; Fu, Z.; Jiang, X.; Li, J.; Wang, Y. The BUD2 Mutation Affects Plant Architecture through Altering Cytokinin and Auxin Responses in Arabidopsis. Cell Res. 2010, 20, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Parra-Lobato, M.C.; Gomez-Jimenez, M.C. Polyamine-Induced Modulation of Genes Involved in Ethylene Biosynthesis and Signalling Pathways and Nitric Oxide Production during Olive Mature Fruit Abscission. J. Exp. Bot. 2011, 62, 4447–4465. [Google Scholar] [CrossRef] [Green Version]
- Agudelo-Romero, P.; Ali, K.; Choi, Y.H.; Sousa, L.; Verpoorte, R.; Tiburcio, A.F.; Fortes, A.M. Perturbation of Polyamine Catabolism Affects Grape Ripening of Vitis vinifera Cv. Trincadeira. Plant Physiol. Biochem. 2014, 74, 141–155. [Google Scholar] [CrossRef]
- Dai, Y.-R.; Kaur-Sawhney, R.; Galston, A.W. Promotion by Gibberellic Acid of Polyamine Biosynthesis in Internodes of Light-Grown Dwarf Peas. Plant Physiol. 1982, 69, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Shiozaki, S.; Ogata, T.; Horiuchi, S.; Zhuo, X. Involvement of Polyamines in Gibberellin-Induced Development of Seedless Grape Berries. Plant Growth Regul. 1998, 25, 187–193. [Google Scholar] [CrossRef]
- Kolotilin, I.; Koltai, H.; Bar-Or, C.; Chen, L.; Nahon, S.; Shlomo, H.; Levin, I.; Reuveni, M. Expressing Yeast SAMdc Gene Confers Broad Changes in Gene Expression and Alters Fatty Acid Composition in Tomato Fruit. Physiol. Plant. 2011, 142, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Zarza, X.; Atanasov, K.E.; Marco, F.; Arbona, V.; Carrasco, P.; Kopka, J.; Fotopoulos, V.; Munnik, T.; Gómez-Cadenas, A.; Tiburcio, A.F.; et al. Polyamine Oxidase 5 Loss-of-function Mutations in Arabidopsis thaliana Trigger Metabolic and Transcriptional Reprogramming and Promote Salt Stress Tolerance. Plant Cell Environ. 2017, 40, 527–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, F.R.; Gárriz, A.; Marina, M.; Pieckenstain, F.L. Modulation of Polyamine Metabolism in Arabidopsis thaliana by Salicylic Acid. Physiol. Plant. 2021, 173, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef]
- Quinet, M.; Ndayiragije, A.; Lefevre, I.; Lambillotte, B.; Dupont-Gillain, C.C.; Lutts, S. Putrescine Differently Influences the Effect of Salt Stress on Polyamine Metabolism and Ethylene Synthesis in Rice Cultivars Differing in Salt Resistance. J. Exp. Bot. 2010, 61, 2719–2733. [Google Scholar] [CrossRef]
- Alcázar, R.; Bitrián, M.; Bartels, D.; Koncz, C.; Altabella, T.; Tiburcio, A.F. Polyamine Metabolic Canalization in Response to Drought Stress in Arabidopsis and the Resurrection Plant Craterostigma Plantagineum. Plant Signal. Behav. 2011, 6, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Liu, G.; Hou, L.; Wang, L.; Liu, X. Regulatory Function of Polyamine Oxidase-Generated Hydrogen Peroxide in Ethylene-Induced Stomatal Closure in Arabidopsis thaliana. J. Integr. Agric. 2013, 12, 251–262. [Google Scholar] [CrossRef]
- Freitas, V.S.; de Souza Miranda, R.; Costa, J.H.; de Oliveira, D.F.; de Oliveira Paula, S.; de Castro Miguel, E.; Freire, R.S.; Prisco, J.T.; Gomes-Filho, E. Ethylene Triggers Salt Tolerance in Maize Genotypes by Modulating Polyamine Catabolism Enzymes Associated with H2O2 Production. Environ. Exp. Bot. 2018, 145, 75–86. [Google Scholar] [CrossRef]
- Moschou, P.N.; Sanmartin, M.; Andriopoulou, A.H.; Rojo, E.; Sanchez-Serrano, J.J.; Roubelakis-Angelakis, K.A. Bridging the Gap between Plant and Mammalian Polyamine Catabolism: A Novel Peroxisomal Polyamine Oxidase Responsible for a Full Back-Conversion Pathway in Arabidopsis. Plant Physiol. 2008, 147, 1845–1857. [Google Scholar] [CrossRef] [Green Version]
- EL Sabagh, A.; Islam, M.S.; Hossain, A.; Iqbal, M.A.; Mubeen, M.; Waleed, M.; Reginato, M.; Battaglia, M.; Ahmed, S.; Rehman, A.; et al. Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Front. Agron. 2022, 4, 765068. [Google Scholar] [CrossRef]
- An, Z.; Jing, W.; Liu, Y.; Zhang, W. Hydrogen Peroxide Generated by Copper Amine Oxidase Is Involved in Abscisic Acid-Induced Stomatal Closure in Vicia faba. J. Exp. Bot. 2008, 59, 815–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fincato, P.; Moschou, P.N.; Ahou, A.; Angelini, R.; Roubelakis-Angelakis, K.A.; Federico, R.; Tavladoraki, P. The Members of Arabidopsis thaliana PAO Gene Family Exhibit Distinct Tissue- and Organ-Specific Expression Pattern during Seedling Growth and Flower Development. Amino Acids 2012, 42, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Agurla, S.; Gayatri, G.; Raghavendra, A.S. Polyamines Increase Nitric Oxide and Reactive Oxygen Species in Guard Cells of Arabidopsis thaliana during Stomatal Closure. Protoplasma 2018, 255, 153–162. [Google Scholar] [CrossRef]
- Alcázar, R.; Cuevas, J.C.; Patron, M.; Altabella, T.; Tiburcio, A.F. Abscisic Acid Modulates Polyamine Metabolism under Water Stress in Arabidopsis thaliana. Physiol. Plant. 2006, 128, 448–455. [Google Scholar] [CrossRef]
- Alcázar, R.; Marco, F.; Cuevas, J.C.; Patron, M.; Ferrando, A.; Carrasco, P.; Tiburcio, A.F.; Altabella, T. Involvement of Polyamines in Plant Response to Abiotic Stress. Biotechnol. Lett. 2006, 28, 1867–1876. [Google Scholar] [CrossRef]
- Basu, S.; Roychoudhury, A.; Sengupta, D.N. Identification of Trans-Acting Factors Regulating SamDC Expression in Oryza sativa. Biochem. Biophys. Res. Commun. 2014, 445, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.-D.; Zhang, M.; Gao, D.-J.; Zhou, K.; Tang, S.-J.; Zhou, B.; Lv, Y.-M. Rice OsHSFA3 Gene Improves Drought Tolerance by Modulating Polyamine Biosynthesis Depending on Abscisic Acid and ROS Levels. Int. J. Mol. Sci. 2020, 21, 1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espasandin, F.D.; Maiale, S.J.; Calzadilla, P.; Ruiz, O.A.; Sansberro, P.A. Transcriptional Regulation of 9-Cis-Epoxycarotenoid Dioxygenase (NCED) Gene by Putrescine Accumulation Positively Modulates ABA Synthesis and Drought Tolerance in Lotus tenuis Plants. Plant Physiol. Biochem. 2014, 76, 29–35. [Google Scholar] [CrossRef]
- Pál, M.; Tajti, J.; Szalai, G.; Peeva, V.; Végh, B.; Janda, T. Interaction of Polyamines, Abscisic Acid and Proline under Osmotic Stress in the Leaves of Wheat Plants. Sci. Rep. 2018, 8, 12839. [Google Scholar] [CrossRef] [Green Version]
- Marcińska, I.; Dziurka, K.; Waligórski, P.; Janowiak, F.; Skrzypek, E.; Warchoł, M.; Juzoń, K.; Kapłoniak, K.; Czyczyło-Mysza, I.M. Exogenous Polyamines Only Indirectly Induce Stress Tolerance in Wheat Growing in Hydroponic Culture under Polyethylene Glycol-Induced Osmotic Stress. Life 2020, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liang, H.; Lv, X.; Liu, D.; Wen, X.; Liao, Y. Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol. Biochem. 2016, 100, 113–129. [Google Scholar] [CrossRef]
- Peremarti, A.; Bassie, L.; Yuan, D.; Pelacho, A.; Christou, P.; Capell, T. Transcriptional Regulation of the Rice Arginine Decarboxylase (Adc1) and S-Adenosylmethionine Decarboxylase (Samdc) Genes by Methyl Jasmonate. Plant Physiol. Biochem. 2010, 48, 553–559. [Google Scholar] [CrossRef]
- Krishnan, S.; Merewitz, E.B. Polyamine Application Effects on Gibberellic Acid Content in Creeping Bentgrass during Drought Stress. J. Am. Soc. Hortic. Sci. 2017, 142, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Serna, M.; Coll, Y.; Zapata, P.J.; Botella, M.Á.; Pretel, M.T.; Amorós, A. A Brassinosteroid Analogue Prevented the Effect of Salt Stress on Ethylene Synthesis and Polyamines in Lettuce Plants. Sci. Hortic. 2015, 185, 105–112. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Lee, I.-J. Regulation of Salicylic Acid, Jasmonic Acid and Fatty Acids in Cucumber (Cucumis sativus L.) by Spermidine Promotes Plant Growth against Salt Stress. Acta Physiol. Plant. 2013, 35, 3315–3322. [Google Scholar] [CrossRef]
- Alsokari, S.S. Synergistic Effect of Kinetin and Spermine on Some Physiological Aspects of Seawater Stressed Vigna sinensis Plants. Saudi J. Biol. Sci. 2011, 18, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Bhardwaj, R.; Thukral, A.K. Modulation of Jasmonic Acid and Polyamines by 24- Epibrassinolide in Brassica juncea L. under Copper Stress. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 1–12. [Google Scholar] [CrossRef]
- Kohli, S.K.; Bali, S.; Tejpal, R.; Bhalla, V.; Verma, V.; Bhardwaj, R.; Alqarawi, A.A.; Abd Allah, E.F.; Ahmad, P. In-Situ Localization and Biochemical Analysis of Bio-Molecules Reveals Pb-Stress Amelioration in Brassica juncea L. by Co-Application of 24-Epibrassinolide and Salicylic Acid. Sci. Rep. 2019, 9, 3524. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, J.C.; López-Cobollo, R.; Alcázar, R.; Zarza, X.; Koncz, C.; Altabella, T.; Salinas, J.; Tiburcio, A.F.; Ferrando, A. Putrescine as a Signal to Modulate the Indispensable ABA Increase under Cold Stress. Plant Signal. Behav. 2009, 4, 219–220. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Buta, J.G. Methyl Jasmonate Reduces Chilling Injury in Cucurbita pepo through Its Regulation of Abscisic Acid and Polyamine Levels. Environ. Exp. Bot. 1994, 34, 427–432. [Google Scholar] [CrossRef]
- Zeng, Y.; Zahng, Y.; Xiang, J.; Wu, H.; Chen, H.; Zhang, Y.; Zhu, D. Effects of Chilling Tolerance Induced by Spermidine Pretreatment on Antioxidative Activity, Endogenous Hormones and Ultrastructure of Indica-Japonica Hybrid Rice Seedlings. J. Integr. Agric. 2016, 15, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Cadenas, A.; Vives, V.; Zandalinas, S.; Manzi, M.; Sanchez-Perez, A.; Perez-Clemente, R.; Arbona, V. Abscisic Acid: A Versatile Phytohormone in Plant Signaling and Beyond. Curr. Protein Pept. Sci. 2015, 16, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Hama, J.R.; Hooshmand, K.; Laursen, B.B.; Vestergård, M.; Fomsgaard, I.S. Clover Root Uptake of Cereal Benzoxazinoids (BXs) Caused Accumulation of BXs and BX Transformation Products Concurrently with Substantial Increments in Clover Flavonoids and Abscisic Acid. J. Agric. Food Chem. 2022, 70, 14633–14640. [Google Scholar] [CrossRef] [PubMed]
- Murcia, G.; Fontana, A.; Pontin, M.; Baraldi, R.; Bertazza, G.; Piccoli, P.N. ABA and GA3 Regulate the Synthesis of Primary and Secondary Metabolites Related to Alleviation from Biotic and Abiotic Stresses in Grapevine. Phytochemistry 2017, 135, 34–52. [Google Scholar] [CrossRef]
- Song, Y.; Miao, Y.; Song, C. Behind the Scenes: The Roles of Reactive Oxygen Species in Guard Cells. New Phytol. 2014, 201, 1121–1140. [Google Scholar] [CrossRef]
- Fraudentali, I.; Ghuge, S.A.; Carucci, A.; Tavladoraki, P.; Angelini, R.; Rodrigues-Pousada, R.A.; Cona, A. Developmental, Hormone- and Stress-Modulated Expression Profiles of Four Members of the Arabidopsis Copper-Amine Oxidase Gene Family. Plant Physiol. Biochem. 2020, 147, 141–160. [Google Scholar] [CrossRef]
- Marin, E.; Nussaume, L.; Quesada, A.; Gonneau, M.; Sotta, B.; Hugueney, P.; Frey, A.; Marion-Poll, A. Molecular Identification of Zeaxanthin Epoxidase of Nicotiana plumbaginifolia, a Gene Involved in Abscisic Acid Biosynthesis and Corresponding to the ABA Locus of Arabidopsis thaliana. EMBO J. 1996, 15, 2331–2342. [Google Scholar] [CrossRef]
- Schwartz, S.H.; Tan, B.C.; Gage, D.A.; Zeevaart, J.A.D.; McCarty, D.R. Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science 1997, 276, 1872–1874. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.; Koiwai, H.; Akaba, S.; Komano, T.; Oritani, T.; Kamiya, Y.; Koshiba, T. Abscisic Aldehyde Oxidase in Leaves of Arabidopsis thaliana. Plant J. 2000, 23, 481–488. [Google Scholar] [CrossRef]
- Konstantinos, P.A.; Imene, T.; Panagiotis, M.N.; Roubelakis-Angelakis, K.A. ABA-Dependent Amine Oxidases-Derived H2O2 Affects Stomata Conductance. Plant Signal. Behav. 2010, 5, 1153–1156. [Google Scholar] [CrossRef] [Green Version]
- Toumi, I.; Moschou, P.N.; Paschalidis, K.A.; Bouamama, B.; Ben Salem-fnayou, A.; Ghorbel, A.W.; Mliki, A.; Roubelakis-Angelakis, K.A. Abscisic Acid Signals Reorientation of Polyamine Metabolism to Orchestrate Stress Responses via the Polyamine Exodus Pathway in Grapevine. J. Plant Physiol. 2010, 167, 519–525. [Google Scholar] [CrossRef]
- Skowron, E.; Trojak, M. Effect of Exogenously-Applied Abscisic Acid, Putrescine and Hydrogen Peroxide on Drought Tolerance of Barley. Biologia 2021, 76, 453–468. [Google Scholar] [CrossRef]
- Hasan, M.M.; Skalicky, M.; Jahan, M.S.; Hossain, M.N.; Anwar, Z.; Nie, Z.-F.; Alabdallah, N.M.; Brestic, M.; Hejnak, V.; Fang, X.-W. Spermine: Its Emerging Role in Regulating Drought Stress Responses in Plants. Cells 2021, 10, 261. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Slathia, S.; Choudhary, S.P.; Sharma, Y.P.; Langer, A. Role of 24-Epibrassinolide, Putrescine and Spermine in Salinity Stressed Adiantum Capillus-Veneris Leaves. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 183–192. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. Jasmonates: Mechanisms and Functions in Abiotic Stress Tolerance of Plants. Biocatal. Agric. Biotechnol. 2019, 20, 101210. [Google Scholar] [CrossRef]
- Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Hussain, S.J.; Khan, N.A. Jasmonates in Plants under Abiotic Stresses: Crosstalk with Other Phytohormones Matters. Environ. Exp. Bot. 2018, 145, 104–120. [Google Scholar] [CrossRef]
- Noir, S.; Bömer, M.; Takahashi, N.; Ishida, T.; Tsui, T.-L.; Balbi, V.; Shanahan, H.; Sugimoto, K.; Devoto, A. Jasmonate Controls Leaf Growth by Repressing Cell Proliferation and the Onset of Endoreduplication While Maintaining a Potential Stand-By Mode. Plant Physiol. 2013, 161, 1930–1951. [Google Scholar] [CrossRef] [Green Version]
- Attaran, E.; Major, I.T.; Cruz, J.A.; Rosa, B.A.; Koo, A.J.K.; Chen, J.; Kramer, D.M.; He, S.Y.; Howe, G.A. Temporal Dynamics of Growth and Photosynthesis Suppression in Response to Jasmonate Signaling. Plant Physiol. 2014, 165, 1302–1314. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kumar, V.; Sidhu, G.P.S.; Kumar, R.; Kohli, S.K.; Yadav, P.; Kapoor, D.; Bali, A.S.; Shahzad, B.; Khanna, K.; et al. Abiotic Stress Management in Plants: Role of Ethylene. In Molecular Plant Abiotic Stress; Roychoudhury, A., Tripathi, D., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 185–208. ISBN 978-1-119-46366-5. [Google Scholar]
- Grzesiak, M.; Filek, M.; Barbasz, A.; Kreczmer, B.; Hartikainen, H. Relationships between Polyamines, Ethylene, Osmoprotectants and Antioxidant Enzymes Activities in Wheat Seedlings after Short-Term PEG- and NaCl-Induced Stresses. Plant Growth Regul. 2013, 69, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Rasool, S.; Hameed, A.; Azooz, M.M.; Muneeb-u-Rehman; Siddiqi, T.O.; Ahmad, P. Salt Stress: Causes Types and Responses of Plants. In Ecophysiology and Responses of Plants under Salt Stress; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2013; pp. 1–24. ISBN 978-1-4614-4746-7. [Google Scholar]
- Ahmad, P.; Abass Ahanger, M.; Nasser Alyemeni, M.; Wijaya, L.; Alam, P.; Ashraf, M. Mitigation of Sodium Chloride Toxicity in Solanum lycopersicum L. by Supplementation of Jasmonic Acid and Nitric Oxide. J. Plant Interact. 2018, 13, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Zapata, P.J.; Serrano, M.; García-Legaz, M.F.; Pretel, M.T.; Botella, M.A. Short Term Effect of Salt Shock on Ethylene and Polyamines Depends on Plant Salt Sensitivity. Front. Plant Sci. 2017, 8, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.F.; Hoffman, N.E. Ethylene Biosynthesis and Its Regulation in Higher Plants. Annu. Rev. Plant. Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Zhong, S.; Lin, Z.; Grierson, D. Tomato Ethylene Receptor–CTR Interactions: Visualization of NEVER-RIPE Interactions with Multiple CTRs at the Endoplasmic Reticulum. J. Exp. Bot. 2008, 59, 965–972. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Mir, B.A.; Yusuf, M.; Ahmad, A. 24-Epibrassinolide and/or Putrescine Trigger Physiological and Biochemical Responses for the Salt Stress Mitigation in Cucumis sativus L. Photosynthetica 2014, 52, 464–474. [Google Scholar] [CrossRef]
- Pál, M.; Ivanovska, B.; Oláh, T.; Tajti, J.; Hamow, K.Á.; Szalai, G.; Khalil, R.; Vanková, R.; Dobrev, P.; Misheva, S.P.; et al. Role of Polyamines in Plant Growth Regulation of Rht Wheat Mutants. Plant Physiol. Biochem. 2019, 137, 189–202. [Google Scholar] [CrossRef]
- Pavlů, J.; Novák, J.; Koukalová, V.; Luklová, M.; Brzobohatý, B.; Černý, M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int. J. Mol. Sci. 2018, 19, 2450. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Nazir, F.; Fariduddin, Q. 24-Epibrassinolide and Spermidine Alleviate Mn Stress via the Modulation of Root Morphology, Stomatal Behavior, Photosynthetic Attributes and Antioxidant Defense in Brassica juncea. Physiol. Mol. Biol. Plants 2019, 25, 905–919. [Google Scholar] [CrossRef]
- Choudhary, S.P.; Oral, H.V.; Bhardwaj, R.; Yu, J.-Q.; Tran, L.-S.P. Interaction of Brassinosteroids and Polyamines Enhances Copper Stress Tolerance in Raphanus sativus. J. Exp. Bot. 2012, 63, 5659–5675. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Duan, X.; Gao, G.; Liu, T.; Qi, H. CmABF1 and CmCBF4 Cooperatively Regulate Putrescine Synthesis to Improve Cold Tolerance of Melon Seedlings. Hortic. Res. 2022, 9, uhac002. [Google Scholar] [CrossRef]
- Lang, V.; Mantyla, E.; Welin, B.; Sundberg, B.; Palva, E.T. Alterations in Water Status, Endogenous Abscisic Acid Content, and Expression of Rab18 Gene during the Development of Freezing Tolerance in Arabidopsis thaliana. Plant Physiol. 1994, 104, 1341–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Aguilar, G.A.; Fortiz, J.; Cruz, R.; Baez, R.; Wang, C.Y. Methyl Jasmonate Reduces Chilling Injury and Maintains Postharvest Quality of Mango Fruit. J. Agric. Food Chem. 2000, 48, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Honda, C.; Kondo, S. Effect of Low-Temperature Stress on Abscisic Acid, Jasmonates, and Polyamines in Apples. Plant Growth Regul. 2007, 52, 199–206. [Google Scholar] [CrossRef]
- Peng, J.; Li, Z.; Wen, X.; Li, W.; Shi, H.; Yang, L.; Zhu, H.; Guo, H. Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis. PLoS Genet. 2014, 10, e1004664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, E.; Martínez, J.-P.; Benahmed, H.; Lepoint, G.; Vanpee, B.; Quinet, M.; Lutts, S. Inhibition of Ethylene Synthesis Reduces Salt-Tolerance in Tomato Wild Relative Species Solanum Chilense. J. Plant Physiol. 2017, 210, 24–37. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Verma, R.; Singh, K.; Nisha, N.; Keisham, M.; Bhati, K.K.; Kim, S.T.; Gupta, R. Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules 2020, 10, 959. [Google Scholar] [CrossRef]
- Nawaz, F.; Shabbir, R.N.; Shahbaz, M.; Majeed, S.; Raheel, M.; Hassan, W.; Sohail, M.A. Cross Talk between Nitric Oxide and Phytohormones Regulate Plant Development during Abiotic Stresses. In Phytohormones—Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses; El-Esawi, M., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3411-4. [Google Scholar]
PAs-Plant Hormone Crosstalk | Plant Species | Exogenous Treatment, Gene Mutation or Over-Expression | Effect (or Outcome) | References |
---|---|---|---|---|
ABA | Maize | Exogenous ABA | Increased PAO activity, enhanced PAO expression | [52] |
Tomato | Exogenous ABA | Induced expression of SlPAO2-4 genes, reduced expression SlPAO1 gene and SlPAO6-7 genes | [44] | |
Cucumber | Exogenous ABA | Up-regulated expression of CsSAMS1 and CsSAMS2 in leaves, increased expression of CsSAMS1 and inhibited expression of CsSAMS2 in roots | [53] | |
Rice | Exogenous ABA | Enhanced expression of OsPAO1 | [54] | |
Arabidopsis | Exogenous ABA | Up-regulated expression of ADC2, ARGAH1, ARGAH2, AIH, CPA, SPDS2, SPMS, SAMDC1-2, PAO1-4, CuAOγ1/CuAO1, CuAOδ | [45] | |
Arabidopsis | Exogenous Spd and exogenous Spm | Increased ABA content, up-regulated NCED3 expression | [55] | |
Auxin | Tomato | Exogenous IAA | Stimulated expression of SlPAO2, SlPAO4 and SlPAO7 genes, reduced expression of SlPAO6 | [44] |
Arabidopsis | Exogenous IAA | Up-regulated expression of ADC2, ACL5, SAMDC4/BUD2, PAO1, PAO2, PAO5, reduced expression of CuAOα2 and CuAOα3/CuAO2 | [45] | |
Arabidopsis | acl5-1 | Up-regulation of genes related to auxin biosynthesis (YUCCA2), methylation (IAMT1), transport (PIN-FORMED1 and PIN6) and signal transduction (MP/ARF5) | [49] | |
BRs | Tomato | Exogenous EBL | Modulated PAs content in plant organs | [56] |
CKs | Cucumber | Exogenous KN | Increased Put content, decreased Spd content, reduced SAMDC activity and stimulated PAO activity | [57] |
Tomato | Exogenous 6-BA | Stimulated expression of SlPAO2-5 genes and reduced expression of SlPAO6-7 genes | [44] | |
Rice | Exogenous iP | Up-regulated expression of OsPAO1, OsPAO3, OsPAO5 and OsPAO7 | [54] | |
Arabidopsis | bud2 | Enhanced CKs production, hypersensitivity to exogenous CKs | [58] | |
ETH | Tomato | Exogenous ethephon | Stimulated expression of SlPAO1-2 genes and SlPAO4 gene, decreased expression of SlPAO5-7 genes | [44] |
Arabidopsis | Exogenous ACC | Enhanced expression of ADC2 and reduced expression of CuAOα2 | [45] | |
Peach | Exogenous Spd | Decreased ETH content, enhanced expression of ETR1 and ERS1 in fruits | [48] | |
Olive (ARB cv.) | Exogenous Put | Negatively regulated expression of OeACO2 and OeCTR1, and positively regulated OeERS1 expression in fruits | [59] | |
Olive (ARB cv.) | Exogenous Spd | Up-regulated expression of OeERS1, down-regulated expression of OeCTR1 and OeEIL2 in fruits | [59] | |
Grapes | Exogenous guazatine | Put accumulation, stimulated expression of EIN3 and EBF2 genes | [60] | |
tomato | Nr | Enzymes of Put production responded to exogenous SA in a light- and ET-dependent manner | [46] | |
GAs | Pea | Exogenous GA3 | Increased ADC expression, decreased ODC expression | [61] |
Grape | Exogenous GA3 | Enhanced free Put content | [62] | |
Tomato | Exogenous GA3 | Up-regulated expression of SlPAO2-3 genes and SlPAO5 gene | [44] | |
Rice | Exogenous GA | Up-regulated expression of OsPAO5 and OsPAO7 | [54] | |
Arabidopsis | ADC2 | Lower GA1, GA4 and GA9 content, reduced expression of genes related to GA biosynthesis (AtGA20ox1, AtGA3ox1 and AtGA3ox3) | [47] | |
Tomato | ySAMdc | Enhanced expression of genes encoding GA 2-oxidase and GA 20-oxidase during fruit ripening | [63] | |
Arabidopsis | Exogenous Put | Up-regulation GA3ox1 expression | [55] | |
Arabidopsis | Exogenous Spm | Reduced GA1 content, down-regulation GA3ox1 expression | [55] | |
JAs | Tomato | Exogenous MeJA | Enhanced expression of SlPAO1-2 genes and decreased expression of SlPAO4 and SlPAO6-7 genes | [44] |
Cucumber | Exogenous MeJA | Modulated expression of CsSAMS1 and CsSAMS2 genes in roots and leaves during treatment | [53] | |
Rice | Exogenous JA | Up-regulated expression of OsPAO1-3 and OsPAO6-7 | [54] | |
Arabidopsis | Exogenous MeJA | Enhanced expression of ARGAH1, ARGAH2, PAO3 and CuAOα3/CuAO2 | [45] | |
Arabidopsis | Exogenous Spm | Up-regulation of JA biosynthesis genes (LOX1-4, AOS, AOC1, AOC2, OPR3, OPCL1, CYP94B3) and JA signaling genes (JAZ1, JAZ5, JAZ6, JAZ7 and JAZ10) | [64] | |
Arabidopsis | Exogenous tSpm | Up-regulation of JA biosynthesis genes (LOX1-4, AOS, AOC1, AOC2, OPR3, OPCL1, CYP94B3), JA signaling genes (JAZ1, JAZ5, JAZ6, JAZ7, JAZ10 and MYC4) and JA response marker genes (VSP2 and PDF1.2) | [64] | |
Arabidopsis | Exogenous Spd | Lower JA content, reduced AOS expression | [55] | |
Arabidopsis | Exogenous Spm | Lower JA content, enhanced AOS expression | [55] | |
SA | Tomato | Exogenous SA | Stimulated expression of SlPAO2-4 genes and reduced expression of SlPAO6-7 genes | [44] |
Cucumber | Exogenous SA | Enhanced expression of CsSAMS1 and CsSAMS2 in leaves | [53] | |
Arabidopsis | Exogenous SA | SA modulated PAs content and PA metabolism gene expression | [65] | |
Arabidopsis | mpk6-2 | Decreased Put content | [65] | |
Arabidopsis | Exogenous NaSA | Up-regulated expression of ADC2, AIH, SPMS and PAO1, down-regulated expression of CuAOα2, CuAOα3/CuAO2 and CuAOγ2 | [45] | |
Arabidopsis | Exogenous PAs | Modulation of PAs biosynthesis and catabolism gene expression in eds5 and sid2 mutants | [55] |
Abiotic Stress | PAs-Plant Hormone Crosstalk | Plant Species | Exogenous Treatment, Gene Mutation or Over-Expression | Effect (or Outcome) | References |
---|---|---|---|---|---|
Drought, osmotic stress | ABA ↔ PAs | Vicia faba | Exogenous PAs | Induced stomatal closure | [72] |
ABA ↔ PAs | Vicia faba | Exogenous ABA | Higher CuAO and NADPH oxidase activity leading to enhanced H2O2 production | [73] | |
ABA ↔ PAs | Arabidopsis | Exogenous ABA | Higher expression of AtPAO2 in guard cells | [74] | |
ABA ↔ PAs | Arabidopsis | Exogenous PAs | Induced stomatal closure, enhanced NO and ROS levels in guard cells due to NADPH oxidase and AO activity | [75] | |
ABA ↔ PAs | Arabidopsis | aba2, abi1 | No observed dehydration-inducible expression of ADC2, SPDS1 and SPMS | [76] | |
ABA ↔ PAs | Arabidopsis | - | Presence of ABREs in promoter regions of ADC2, SPDS1 and SPMS genes | [77] | |
ABA ↔ PAs | Arabidopsis | - | Enhanced expression of ABA-inducible and drought-responsive genes (RD29A and RD22) and PAs biosynthesis genes (ADC1, ADC2, SPDS1, SPDS2, SPMS and SAMDC1) | [68] | |
ABA ↔ PAs | Rice | - | Presence of putative cis-acting elements, such as ABRE, LTRE, MYB and W-box, in the promoter region of SAMDC gene | [78] | |
ABA ↔ PAs | Rice | OsHSFA3 | Higher ABA level, increased PAs content, up-regulation of ADC1, ADC2, SPDS1 and SPMS expression | [79] | |
ABA ↔ PAs | Lotus tenuis | ADC | Increased Put content, expression of NCED gene and ABA accumulation | [80] | |
ABA ↔ PAs | Wheat | Exogenous Put | Enhanced expression of NCED | [81] | |
ABA ↔ PAs | Wheat (drought-susceptible cv.) | Exogenous Spm | Further escalation in ABA level | [82] | |
ABA ↔ PAs | Wheat (drought-resistant cv.) | Exogenous Spd | Reduced ABA level | [82] | |
ABA ↔ PAs | Wheat | Exogenous ABA | Enhanced expression of ADC, decreased expression of SPDS and PAO | [81] | |
ETH ↔ PAs | Wheat | Exogenous Spd and exogenous Spm | Reduction of ETH evolution rate, increased CKs and ABA level | [83] | |
ETH ↔ PAs | Wheat | Exogenous Put | Increased ETH evolution rate, excessive ABA accumulation | [83] | |
JAs ↔ PAs | Rice | Exogenous MeJa | Negatively regulation of OsAdc, OsSamdc and OsSpds genes | [84] | |
JAs ↔ PAs | Maize | Exogenous Spd | Decreased MeJA content | [39] | |
CKs ↔ PAs | Maize | Exogenous Spd | Increased ZR content | [39] | |
GAs ↔ PAs | Wheat | Exogenous Spd and exogenous Spm | Higher GA (GA1 + GA4) content during seed germination | [83] | |
GAs ↔ PAs | Bentgrass | Exogenous Spm | Increased GA1 content | [85] | |
GAs ↔ PAs | Bentgrass | Exogenous Spd | Increased GA4 and GA20 content | [3,85] | |
Salt stress | ABA ↔ PAs | Arabidopsis | SAMDC1 | Improved expression of ABA-induced genes (NCED and RD29A) | [21] |
ABA ↔ PAs | Arabidopsis | spms, acl5/spms | Decreased NCED3 expression | [21] | |
ABA ↔ PAs | Arabidopsis | atpao5-3 | Higher ABA content, up-regulated expression of NCED and RD29B | [64] | |
BRs ↔ PAs | Tomato | Exogenous EBL | Increased PAs level in the middle leaf and fruits, higher Spm level in the stem higher (Spd + Spm)/Put ratio in the fruits | [56] | |
BRs ↔ PAs | Lettuce | Exogenous DI-31 | Enhanced PAs accumulation in shoots, reduced Spd and Spm content in roots | [86] | |
BRs ↔ PAs | Canola | Exogenous EBL | Increased accumulation of Put in cotyledons and reduced in hypocotyls and radicles, reduced H2O2 content, decreased DAO activity and increased PAO activity | [14] | |
ETH ↔ PAs | Rice | Exogenous Put | Enhanced ETH production | [67] | |
ETH ↔ PAs | Tobacco | AS-ZmPAO | Up-regulation of ACCSyn and ACCOx gene expression | [4] | |
ETH ↔ PAs | Tomato | Nr | Lower Spm content, enhanced DAO, and PAO activity | [46] | |
JAs ↔ PAs | Cucumber | Exogenous Spd | Decreased JA content | [87] | |
JAs ↔ PAs | Arabidopsis | atpao5-3 | Increased JA accumulation | [64] | |
CKs ↔ PAs | Vigna sinensis | Exogenous KN | Increased PAs content | [88] | |
GAs ↔ PAs | Cucumber | Exogenous Spd | Enhanced GT-3b expression, increased GA3 level | [33] | |
Heavy metal stress | BRs ↔ PAs | Radish | Exogenous EBL | Increased Put content, decreased Spd content | [56] |
BRs ↔ PAs | Mustard | Exogenous EBL | Increased PAs level in leaves | [89] | |
BRs ↔ PAs | Mustard | Exogenous EBL and SA | Increased Spd level in roots | [90] | |
ETH ↔ PAs | Wheat | Exogenous Put | Improved root elongation, decreased ACS activity and ETH level | [6] | |
ETH ↔ PAs | Cucumber | Exogenous 2-OHMT | Higher PAs content, reduction of PAO activity, increased CS-ERS expression | [7] | |
Low-temperature stress | ABA ↔ PAs | Tomato | Exogenous Put | Increased ABA level and LeNCED1 expression, role of ABA in Put-induced tolerance | [35] |
ABA ↔ PAs | Arabidopsis | adc | Reduced ABA accumulation, lower NCED expression, down-regulation of ABA-regulated genes | [12] | |
ABA ↔ PAs | Arabidopsis | adc | Reduced ABA level, decreased ABA-dependent gene induction, decreased freezing tolerance | [91] | |
JAs ↔ PAs | Zucchini | Exogenous MeJA | Higher Put content, lower Spd and Spm content | [92] | |
JAs ↔ PAs | Rice | Exogenous MeJA | Shoots: increased Put and Spm content, reduced Spd content, increased ADC activity, reduced ODC and SAMDC activity; roots: increased Put and reduced Spd content, increased ADC and SAMDC activity, reduced ODC activity | [32] | |
CKs ↔ PAs | Indica-japonica hybrid rice | Exogenous Spd | Higher ZR content | [93] | |
GAs ↔ PAs | Indica-japonica hybrid rice | Exogenous Spd | Higher GA3 content | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napieraj, N.; Janicka, M.; Reda, M. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. Plants 2023, 12, 1159. https://doi.org/10.3390/plants12051159
Napieraj N, Janicka M, Reda M. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. Plants. 2023; 12(5):1159. https://doi.org/10.3390/plants12051159
Chicago/Turabian StyleNapieraj, Natalia, Małgorzata Janicka, and Małgorzata Reda. 2023. "Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress" Plants 12, no. 5: 1159. https://doi.org/10.3390/plants12051159
APA StyleNapieraj, N., Janicka, M., & Reda, M. (2023). Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. Plants, 12(5), 1159. https://doi.org/10.3390/plants12051159