Evaluation of Propiophenone, 4-Methylacetophenone and 2′,4′-Dimethylacetophenone as Phytotoxic Compounds of Labdanum Oil from Cistus ladanifer L.
Abstract
:1. Introduction
2. Results
2.1. Effect of Propiophenone, 4′-Methylacetophenone and 2′,4′-Dimethylacetophenone on the Germination of Lactuca sativa L.
2.2. Effect of Propiophenone, 4′-Methylacetophenone and 2′,4′-Dimethylacetophenone on the Seedling Growth of Lactuca sativa L.
2.3. Effect of Propiophenone, 4′-Methylacetophenone and 2′,4′-Dimethylacetophenone on the Germination of Allium cepa L.
2.4. Effect of Propiophenone, 4′-Methylacetophenone and 2′,4′-Dimethylacetophenone on the Seedling Growth of Allium cepa L.
3. Discussion
4. Materials and Methods
4.1. Plant and Substrate Sources
4.2. Phytotoxic Activity Test
4.3. Measured Indices to Quantify the Phytotoxic Effect
4.4. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Allelopathic Interactions and Allelochemicals: New Possibilities for Sustainable Weed Management. Crit. Rev. Plant Sci. 2003, 22, 239–311. [Google Scholar] [CrossRef]
- Benyus, J.M. Biomímesis: Innovaciones Inspiradas Por La Naturaleza; García, L.A., Ed.; Tusquets Editores: Barcelona, Spain, 2012. [Google Scholar]
- Rice, E.L. Allelopathy; Academic Press: Orlando, FL, USA, 1984; p. 422. [Google Scholar]
- Jouini, A.; Verdeguer, M.; Pinton, S.; Araniti, F.; Palazzolo, E.; Badalucco, L.; Laudicina, V.A. Potential effects of essential oils extracted from mediterranean aromatic plants on target weeds and soil microorganisms. Plants 2020, 9, 1289. [Google Scholar] [CrossRef] [PubMed]
- Mahdavikia, F.; Saharkhiz, M.J. Phytotoxic activity of essential oil and water extract of peppermint (Mentha × piperita L. CV. Mitcham). J. Appl. Res. Med. Aromat. Plants 2015, 2, 146–153. [Google Scholar] [CrossRef]
- Uremis, I.; Arslan, M.; Sangun, M.K. Herbicidal activity of essential oils on the germination of some problem weeds. Asian J. Chem. 2009, 21, 3199–3210. [Google Scholar]
- Blanco, Y. La utilización de la alelopatía y sus efectos en diferentes cultivos agrícolas. Cultiv. Trop. 2006, 27, 5–16. [Google Scholar]
- Kuiters, A.T. Effects of phenolic acids on germination and early growth of herbaceous woodland plants. J. Chem. Ecol. 1989, 15, 467–479. [Google Scholar] [CrossRef]
- Einhellig, F.A. Mode of Allelochemical Action of Phenolic Compounds. In Allelopathy: Chemistry and Mode of Action of Allelochemicals; Macías, F.A., Galindo, J.C.G., Molinillo, J.M.G.V., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 217–238. [Google Scholar] [CrossRef]
- Inderjit. Plant Phenolics in Allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Zubkov, F.I.; Kouznetsov, V.V. Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions. Molecules 2023, 28, 370. [Google Scholar] [CrossRef]
- Charoenying, P.; Teerarak, M.; Laosinwattana, C. An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Sci. Hortic. 2010, 125, 411–416. [Google Scholar] [CrossRef]
- Chotsaeng, N.; Laosinwattana, C.; Charoenying, P. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L. Molecules 2017, 22, 1841. [Google Scholar] [CrossRef] [Green Version]
- Zaman, F.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Allelopathic potential and identification of two allelopathic substances in Eleocharis atropurpurea. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2020, 155, 510–516. [Google Scholar] [CrossRef]
- Márquez-García, F.; García-Alonso, D.; Vázquez, F.M. Notes of Changes in Biodiversity in the Exploited Populations of Cistus Ladanifer, L., (Cistaceae) from SW Iberian Peninsula. J. Fungi. 2022, 2, 1–7. [Google Scholar]
- Agra-Coelho, C.; Rosa, M.L.; Moreira, I. Allelopathic effects of Cistus ladanifer L. III Natl. Symp. Herbol. 1980, 1, 165–178. [Google Scholar]
- Pereira, I.P. Allelopathic potential of Cistus ladanifer L. and Cistus salvifolius L. Master’s Thesis, Instituto Superior de Agronomia, Lisboa, Portugal, 1992. [Google Scholar]
- Dias, A.S.; Costa, C.T.; Dias, L.S. Allelopathic Plants. XVII. Cistus ladanifer L. Allelopathy. J. 2005, 16, 1–30. [Google Scholar]
- Chaves, N.; Alías, J.C.; Sosa, T. Phytotoxicity of Cistus ladanifer L.: Role of allelopathy. Allelopathy. J. 2016, 38, 113–132. [Google Scholar]
- Pérez-Izquierdo, C.; Serrano-Pérez, P.; Rodríguez-Molina, M.C. Chemical composition, antifungal and phytotoxic activities of Cistus ladanifer L. essential oil and hydrolate. Biocatal. Agric. Biotechnol. 2022, 45, 102527. [Google Scholar] [CrossRef]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Chemical composition and herbicidal activity of the essential oil from a Cistus ladanifer L. population from Spain. Nat. Prod. Res. Former. Nat. Prod. Lett. 2012, 26, 1602–1609. [Google Scholar] [CrossRef]
- Frazão, D.F.; Martins-Gomes, C.; Steck, J.L.; Keller, J.; Delgado, F.; Gonçalves, J.C.; Bunzel, M.; Pintado, C.M.B.S.; Díaz, T.S.; Silva, A.M. Labdanum Resin from Cistus ladanifer L.: A Natural and Sustainable Ingredient for Skin Care Cosmetics with Relevant Cosmeceutical Bioactivities. Plants 2022, 11, 1477. [Google Scholar] [CrossRef]
- Chaves, N.; Sosa, T.; Alías, J.C.; Escudero, J.C. Identification and effects of interaction phytotoxic compounds from exudate of Cistus ladanifer leaves. J. Chem. Ecol. 2001, 27, 611–621. [Google Scholar] [CrossRef]
- Chaves, N.; Sosa, T.; Escudero, J.C. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J. Chem. Ecol. 2001, 27, 623–631. [Google Scholar] [CrossRef]
- Chaves, N.; Sosa, T.; Alías, J.C.; Escudero, J.C. Germination inhibition of herbs in Cistus ladanifer L. soil: Possible involvement of allelochemicals. Allelopathy. J. 2003, 11, 31–42. [Google Scholar]
- Días, A.S.; Dias, L.S.; Pereira, I.P. Activity of water extracts of Cistus ladanifer and Lavandula stoechas in soil on germination and early growth of wheat and Phalaris minor. Allelopathy. J. 2004, 14, 59–64. [Google Scholar]
- Herranz, J.M.; Farrandis, P.; Copete, M.A.; Duro, E.M.; Zalacaín, A. Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecol. 2006, 184, 259–272. [Google Scholar] [CrossRef]
- Sosa, T.; Valares, C.; Alías, J.C.; Chaves, N. Persistence of flavonoids in Cistus ladanifer soils. Plant Soil. 2010, 377, 51–63. [Google Scholar] [CrossRef]
- Ramalho, P.S.; de Freitas, V.A.P.; Macedo, A.; Silva, G.; Silva, A.M.S. Volatile components of Cistus ladanifer leaves. Flavour Fragr. J. 1999, 14, 300–302. [Google Scholar] [CrossRef]
- Morales-Soto, A.; Oruna-Concha, M.J.; Stephen Elmore, J.; Barrajón-Catalán, E.; Micol, V.; Roldán, C.; Segura-Carretero, A. Volatile profile of Spanish Cistus plants as sources of antimicrobials for industrial applications. Ind. Crops Prod. 2015, 74, 425–433. [Google Scholar] [CrossRef]
- Weyerstahl, P.; Marschall, H.; Weirauch, M.; Thefeld, K.; Surburg, H. Constituents of comercial labdanum oil. Flavour Fragance J. 1998, 13, 295–318. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Seki, T.; Shigemori, H. Allelopathy and allelopathic substance in the moss Rhynchostegium pallidifolium. J. Plant Phys. 2010, 167, 468–471. [Google Scholar] [CrossRef]
- Einhellig, F.A.; Schon, M.K.; Rasmussen, J.A. Synergistic effects of four cinnamic acid compounds on grain sorghom. Plant Growth Regul. 1983, 1, 251–258. [Google Scholar]
- Batish, D.R.; Singh, H.P.; Kaur, S.; Kohli, R.K.; Yadav, S.S. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Phys. 2008, 165, 297–305. [Google Scholar] [CrossRef]
- Requesón, E.; Osuna, D.; del Rosario Santiago, A.; Sosa, T. Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic Compounds Present in Cistus ladanifer. Agronomy 2022, 12, 1139. [Google Scholar] [CrossRef]
- Cheng, H.H. Characterization of the mechanisms of allelopathy: Modeling and experimental approaches. In Allelopathy: Organisms, Processes, and Applications; Inderjit, Dakshini, K.M.M., Einhellig, F.A., Eds.; American Chemical Society: Washington, WA, USA, 1995; pp. 132–141. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 8500, 4′-Methylacetophenone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/8500 (accessed on 8 January 2023).
- Macías, F.A.; Molinillo, J.M.; Varela, R.M.; Galindo, J.C. Allelopathy a natural alternative for weed control. Pest Management. Science 2007, 63, 327–348. [Google Scholar]
- Einhellig, F.A.; Leather, G.R.; Hobbs, L.L. Use of Lemna minor L. as a bioassay in allelopathy. J. Chem. Ecol. 1985, 11, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Inoue, M.; Nishimura, H.; Mizutani, J.; Tsuzuki, E. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol. 1993, 19, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Waller, G.R. Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series 330; American Chemical Society: Washington, WA, USA, 1987. [Google Scholar] [CrossRef] [Green Version]
- Haugland, E.; Brandsaeter, L.O. Experiments on bioassay sensitivity in the study of allelopathy. J. Chem. Ecol. 1996, 22, 1845–1859. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Baucom, R.S. Evolutionary and ecological insights from herbicide-resistant weeds: What have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019, 223, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.M.; Miller, D.A. Effect of alfalfa plant and soil extracts on germination and seedling growth. Agronomy J. 1995, 87, 762–767. [Google Scholar] [CrossRef]
- Muller, C.H.; Hanawalt, R.B.; McPherson, J.K. Allelopathic control of herb growth in the fire cycle of Californian chaparral. Bull. Torrey Bot. Club. 1968, 95, 225–231. [Google Scholar] [CrossRef]
- Martínez-Otero, A.; González, L.; Reigosa, M.J. Oxygen electrode for seedling metabolism measurement in allelopathy. Allelopathy J. 2005, 16, 95–104. [Google Scholar]
- Zhou, Y.H.; Yu, J.Q. Allelochemicals and photosynthesis. In Allelopathy: A Physiological Process with Ecological Implications; Reigosa, M.J., Pedrol, N., González, L., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2006; pp. 127–139. [Google Scholar] [CrossRef]
- Lorenzo, P.; Pazos-Malvido, E.; González, L.; Reigosa, M.J. Allelopathic interference of invasive Acacia dealbata: Physiological effects. Allelopath. J. 2008, 22, 64–76. [Google Scholar]
- Ishii-Iwamoto, E.L.; Abrahim, D.; Sert, M.A.; Bontato, C.M.; Kelmer-Brancht, A.M.; Bracht, A. Mitochondria as a site of allelochemicals action. In Allelopathy: A Physiological Process with Ecological Implications; Reigosa, M.J., Pedrol, N., González, L., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2006; Volume 12, pp. 267–284. [Google Scholar]
- Tena, C.; del Rosario Santiago, A.; Osuna, D.; Sosa, T. Phytotoxic Activity of p-Cresol, 2-Phenylethanol and 3-Phenyl-1-Propanol, Phenolic Compounds Present in Cistus ladanifer L. Plants 2021, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G.; Cedergreen, N.; Duke, S.O. Herbicide hormesis—Can it be useful in crop production? Weed Res. 2011, 51, 321–332. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, A.L.; Yokas, I. The role of plant hormones in plants under salinity stress. In Salinity and Water Stress: Improving Crop Efficiency; Ashraf, M., Ozturk, M., Athar, H.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 45–50. [Google Scholar]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdowsk, A. Allelochemicals as Bioherbicides-Present and Perspectives. In Herbicides-Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; IntechOpen: London, UK, 2013; pp. 517–542. Available online: https://www.intechopen.com/chapters/44466 (accessed on 15 February 2023).
- Yang, L.; Ruan, X.; Jiang, D.; Zhang, J.; Pan, C.; Wang, Q. Physiological effects of autotoxicity due to DHAP stress on Picea schrenkiana regeneration. PLoS ONE 2017, 12, e0177047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, M.S.; Yang, J.-Y.; Lee, H.S. Acaricidal Toxicity of 2′-Hydroxy-4′-methylacetophenone Isolated from Angelicae koreana Roots and Structure–Activity Relationships of Its Derivatives. J. Agric. Food Chem. 2012, 60, 3606–3611. [Google Scholar] [CrossRef]
- Macías, F.A.; Marín, D.; Oliveros-Bastidas, A.; Molinillo, J.M.G. Optimization of benzoxazinones as natural herbicide models by lipophilicity enhancement. J. Agric. Food Chem. 2006, 54, 9357–9365. [Google Scholar] [CrossRef] [Green Version]
- Macías, F.A.; Marín, D.; Oliveros-Bastidas, A.; Molinillo, J.M.G. Rediscovering the bioactivity and ecological role of 1,4- benzoxazinones. Nat. Prod. Rep. 2009, 26, 478–489. [Google Scholar] [CrossRef]
- Macías, F.A.; Molinillo, J.M.; Galindo, J.C.; Varela, R.M.; Simonet, A.M.; Castellano, D. The use of allelopathic studies in the search for natural herbicides. J. Crop Prod. 2001, 4, 237–255. [Google Scholar] [CrossRef]
- Chinchilla, N.; Marín, D.; Oliveros-Bastidas, A.; Molinillo, J.M.G.; Macías, F.A. Soil biodegradation of a benzoxazinone analog proposed as a natural products-based herbicide. Plant Soil 2015, 393, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Macías, F.A.; De Siqueira, J.M.; Chinchilla, N.; Marín, D.; Varela, R.M.; Molinillo, J.M.G. New herbicide models from benzoxazinones: Aromatic ring functionalization effects. J. Agric. Food Chem. 2006, 54, 9843–9851. [Google Scholar] [CrossRef]
- Macías, F.A.; Chinchilla, N.; Varela, R.M.; Molinillo, J.M.G.; Marín, D.; de Siqueira, J.M. Aromatic-ring-functionalised benzoxazinones in the system Oryza sativa-Echinochloa crusgalli as biorational herbicide models. Pest Manag. Sci. 2009, 65, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Chotpatiwetchkul, W.; Chotsaeng, N.; Laosinwattana, C.; Charoenying, P. Structure–Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS Omega 2022, 7, 29002–29012. [Google Scholar] [CrossRef] [PubMed]
- Dayan, F.E.; Duke, S.O. Biological activity of allelochemicals. In Plant Derived Natural Products: Synthesis, Function, and Application; Osbourn, A., Lanzotti, V., Eds.; Springer: New York, NY, USA, 2009; pp. 361–384. [Google Scholar]
- Bais, H.P.; Vepachedu, R.; Gilroy, S.; Callaway, R.M.; Vivanco, J.M. Allelopathy and Exotic Plant Invasion: From Molecules and Genes to Species Interactions. Science 2003, 301, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Ortega, A.; Lara-Núñez, A.; Anaya, A.L. Allelochemical stress can trigger oxidative damage in receptor plants mode of action of phytotoxicity. Plant Signal. Behav. 2007, 2, 269–270. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; Pedrol, N. Cytisus scoparius and Ulex europaeus produce volatile organic compounds with powerful synergistic herbicidal effects. Molecules 2019, 24, 4539. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Muras, M.; Puig, C.G.; Pedrol, N. Complex Synergistic Interactions among Volatile and Phenolic Compounds Underlie the Effectiveness of Allelopathic Residues Added to the Soil for Weed Control. Plants 2022, 11, 1114. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 7148, Propiophenone. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=propiophenone (accessed on 8 January 2023).
- Doi, M.; Shuto, Y. Oxidation of acetophenone by Aspergillus species and their possible contribution to Katsuobushi flavor. Biosci. Biotechnol. Biochem. 1996, 59, 2324–2325. [Google Scholar] [CrossRef]
- Dayan, F.E.; Owens, D.K.; Duke, S.O. Rationale for a natural products approach to herbicide discovery. Pest Manag. Sci. 2012, 68, 519–528. [Google Scholar] [CrossRef]
- Anaya, A.L. Alelopatía. In Ecología Química; Anaya, A.L., Ed.; Plaza y Valdés: Mexico, Mexico, 2003; pp. 255–298. [Google Scholar]
- Prichoa, F.C.; Leyser, G.; Vladimir-Oliveira, J.; Cansian, R.L. Comparative allelopathic effects of Cryptocarya moschata and Ocotea odorifera aqueous extracts on Lactuca sativa. Acta Sci. 2013, 35, 197–202. [Google Scholar] [CrossRef]
- Chiapusio, G.; Sánchez, M.A.; Reigosa, J.M.; González, L.; Pellissier, F. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 1997, 23, 2445–2454. [Google Scholar] [CrossRef]
- Wang, W. Literature review on higher plants for toxicity testing. Water Air Soil Poll. 1991, 59, 381–400. [Google Scholar] [CrossRef]
- International Organization for Standarization (ISO). Soil Quality-Determination of the Effects of Pollutants on Soil Flora. Part 1. Method for the Measurement of Inhibition of Root Growth; ISO: Geneva, Switzerland, 1993; p. 9. [Google Scholar]
- Organization of Economical Cooperation and Development (OECD). Terrestrial Plants, Growth Test; Guideline for Testing of Chemicals 208; OECD: Paris, France, 1984; p. 15. [Google Scholar]
- Kuuluvaine, T. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forest in Finland: A review. Ann. Zool. Fenn. 1994, 31, 35–51. [Google Scholar]
- Arango, M.C.; Ringuelet, J.; Viña, S. Intervención de los Compuestos Secundarios en las Interacciones Biológicas. In Productos Naturales Vegetales; Edulp integra la Red de Editoriales Universitarias Nacionales (REUN): Buenos Aires, Argentina, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Colín, M.; Hernandez-Caballero, I.; Infante, C.; Gago, I.; García-Muñoz, J.; Sosa, T. Evaluation of Propiophenone, 4-Methylacetophenone and 2′,4′-Dimethylacetophenone as Phytotoxic Compounds of Labdanum Oil from Cistus ladanifer L. Plants 2023, 12, 1187. https://doi.org/10.3390/plants12051187
Espinosa-Colín M, Hernandez-Caballero I, Infante C, Gago I, García-Muñoz J, Sosa T. Evaluation of Propiophenone, 4-Methylacetophenone and 2′,4′-Dimethylacetophenone as Phytotoxic Compounds of Labdanum Oil from Cistus ladanifer L. Plants. 2023; 12(5):1187. https://doi.org/10.3390/plants12051187
Chicago/Turabian StyleEspinosa-Colín, María, Irene Hernandez-Caballero, Celia Infante, Irene Gago, Javier García-Muñoz, and Teresa Sosa. 2023. "Evaluation of Propiophenone, 4-Methylacetophenone and 2′,4′-Dimethylacetophenone as Phytotoxic Compounds of Labdanum Oil from Cistus ladanifer L." Plants 12, no. 5: 1187. https://doi.org/10.3390/plants12051187
APA StyleEspinosa-Colín, M., Hernandez-Caballero, I., Infante, C., Gago, I., García-Muñoz, J., & Sosa, T. (2023). Evaluation of Propiophenone, 4-Methylacetophenone and 2′,4′-Dimethylacetophenone as Phytotoxic Compounds of Labdanum Oil from Cistus ladanifer L. Plants, 12(5), 1187. https://doi.org/10.3390/plants12051187