Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Vegetal Material
2.3. Tomato Pomace Stabilization
- (a)
- Drum-drying process: This process was carried out in a double tube drum dryer and applied to viscous pasty or pureed foods, such as pre-gelatinized starches and mashed potatoes [33]. In this process, the feeding of the tomato pomace falls in the space between tubes (0.7 mm of space), giving a contact surface of 1 m2 in which thermal exchange takes place. The tomato pomace load was equivalent to 30% of the surface. The stainless-steel drums were heated with saturated steam at 2.5–3.0 bar, causing the drums to heat up to between 115 and 135 °C. The rotation speed of the drums was 0.5 rpm, which implies a residence time of the tomato pomace of 90 s. Tomase was dried in the drum dryer at two different temperatures of 115 and 135 °C.
- (b)
- Vacuum microwave drying process: The use of microwaves in food processing has increased considerably in the last 2 decades and is classified as an advanced thermal technology for food processing. The massive warming phenomenon is the unique feature of these techniques, which reduces the food processing time and improves the quality of the product [34]. Fresh tomase was fed to the vacuum microwave dryer in two batches of 36 and 38.5 kg. The operating variables used were the following: temperature of 60 °C, working pressure in vacuum of 780 MPa, and time of 2.5 h.
2.4. Solid–Liquid Extraction Process
2.4.1. Microwave-Assisted Extraction
2.4.2. Ultrasound-Assisted Extraction
2.4.3. Preparation of Extracts for Analysis
2.4.4. Determination of Total Soluble Solids
2.4.5. Determination of Total Phenols
2.4.6. Determination of Antioxidant Capacity
2.5. Microencapsulation of TP Extracts
Characterization of Microencapsulate Extract
2.6. Studies on Platelet Aggregation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Vegetal Material Characterization
3.2. Tomato Pomace Drying
Drum-Drying Process
3.3. Total Phenolic Content and Antioxidant Activity of Extracts Tomato Pomace
3.3.1. Effect of Extraction Solvent
3.3.2. Effect of Mass–Volume Ratio
3.4. Effect of Operating Variables
3.5. Studies on Platelet Aggregation of Extracts Tomato Pomace
3.6. Microencapsulation of More Active Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laslett, L.J.; Alagona, P.; Clark, B.A.; Drozda, J.P.; Saldivar, F.; Wilson, S.R.; Poe, C.; Hart, M.J. The worldwide environment of cardiovascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology. J. Am. Coll. Cardiol. 2012, 60, S1–S49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, L.; Trostchansky, A.; Wood, I.; Mastrogiovanni, M.; Vogel, H.; González, B.; Maróstica, M., Jr.; Fuentes, E.; Palomo, I. Antiplatelet activity and chemical analysis of leaf and fruit extracts from Aristotelia chilensis. PLoS ONE 2021, 16, e0250852. [Google Scholar] [CrossRef] [PubMed]
- Ansa, B.E.; Hoffman, Z.; Lewis, N.; Savoy, C.; Hickson, A.; Stone, R.; Johnson, T. Aspirin Use among Adults with Cardiovascular Disease in the United States: Implications for an Intervention Approach. J. Clin. Med. 2019, 8, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.; Manmathan, G.; Wilkinson, P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 2017, 6, 2048004016687211. [Google Scholar] [CrossRef] [Green Version]
- Latorre, A.; Moscardó, A. Regulation of platelet function by acetylation/deacetylation mechanisms. Curr. Med. Chem. 2016, 23, 3966–3974. [Google Scholar] [CrossRef]
- Ruggeri, Z.M. Mechanisms initiating platelet thrombus formation. Thromb. Haemost. 1997, 78, 611–616. [Google Scholar] [CrossRef]
- Wu, Y.; Benjamin, E.J.; MacMahon, S. Prevention and Control of Cardiovascular Disease in the Rapidly Changing Economy of China. Circulation 2016, 133, 2545–2560. [Google Scholar] [CrossRef] [Green Version]
- Palomo, I.; Concha-Meyer, A.; Lutz, M.; Said, M.; Sáez, B.; Vásquez, A.; Fuentes, E. Chemical characterization and antiplatelet potential of bioactive extract from tomato pomace (byproduct of tomato paste). Nutrients 2019, 11, 456. [Google Scholar] [CrossRef] [Green Version]
- WPTC World Production Estimate of Tomatoes for Processing. Available online: https://www.westconfoods.com/wp-content/uploads/2021/03/WPTC-world-production-estimate-2.22.21.pdf (accessed on 23 March 2022).
- ODEPA. Boletín de Hortalizas, Junio 2021. Ministerio de Agricultura, Gobierno de Chile. Available online: https://www.odepa.gob.cl/publicaciones/boletines/boletin-de-hortalizas-junio-2021 (accessed on 21 March 2022).
- Li, J.; Yang, Z.; Zhang, Y.; Gao, B.; Niu, Y.; Yu, L.L. The structural and functional characteristics of soluble dietary fibers modified from tomato pomace with increased content of lycopene. Food Chem. 2022, 382, 132333. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Technology, Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Saini, R.K.; Moon, S.H.; Keum, Y.S. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Food Res. Int. 2018, 108, 516–529. [Google Scholar] [CrossRef]
- Chada, P.S.N.; Santos, P.H.; Rodrigues, L.G.; Goulart, G.A.S.; Dos Santos, J.D.A.; Maraschin, M.; Lanza, M. Non-conventional techniques for the extraction of antioxidant compounds and lycopene from industrial tomato pomace (Solanum lycopersicum L.) using spouted bed drying as a pre-treatment. Food Chem. X 2022, 13, 100237. [Google Scholar] [CrossRef]
- Reda, F.M.; Madkour, M.; Abd El-Azeem, N.; Aboelazab, O.; Ahmed, S.Y.; Alagawany, M. Tomato pomace as a non-traditional feedstuff: Productive and reproductive performance, digestive enzymes, blood metabolites and the deposition of carotenoids into egg yolk in quail breeders. Poult. Sci. 2022, 101, 101730. [Google Scholar] [CrossRef] [PubMed]
- Yagci, S.; Calıskan, R.; Gunes, Z.S.; Capanoglu, E.; Tomas, M. Impact of tomato pomace powder added to extruded snacks on the in vitro gastrointestinal behaviour and stability of bioactive compounds. Food Chem. 2022, 368, 130847. [Google Scholar] [CrossRef] [PubMed]
- Belović, M.; Torbica, A.; Pajić-Lijaković, I.; Mastilović, J. Development of low calorie jams with increased content of natural dietary fibre made from tomato pomace. Food Chem. 2017, 237, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Pavlić, B.; Tomović, V.; Kocić-Tanackov, S.; Đurović, S.; Zeković, Z.; Belović, M.; Torbica, A.; Jokanović, M.; Urumović, N. Tomato pomace extract and organic peppermint essential oil as effective sodium nitrite replacement in cooked pork sausages. Food Chem. 2020, 330, 127202. [Google Scholar] [CrossRef]
- Goula, A.; Adamopoulos, K.G. Spray Drying of Tomato Pulp: Effect of Feed Concentration. Dry. Technol. 2004, 22, 2309–2330. [Google Scholar] [CrossRef]
- Sramek, M.; Schweiggert, R.M.; Van Kampen, A.; Carle, R.; Kohlus, R. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method. J. Food Sci. 2015, 80, E1755–E1762. [Google Scholar] [CrossRef]
- Al-Harahsheh, M.; Al-Muhtaseb, A.H.; Magee, T. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chem. Eng. Process. Process. Intensif. 2009, 48, 524–531. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Staniszewska, I.; Liu, Z.-L.; Zielinska, D.; Xiao, H.-W.; Pan, Z.; Nowak, K.W.; Zielinska, M.J.L. Microwave-vacuum-assisted drying of pretreated cranberries: Drying kinetics, bioactive compounds and antioxidant activity. LWT 2021, 146, 111464. [Google Scholar] [CrossRef]
- Sakare, P.; Prasad, N.; Thombare, N.; Singh, R.; Sharma, S.C. Infrared Drying of Food Materials: Recent Advances. Food Eng. Rev. 2020, 12, 381–398. [Google Scholar] [CrossRef]
- Wiktor, A.; Lammerskitten, A.; Barba, F.; Michalski, M.; Toepfl, S.; Parniakov, O. Drying Processes Assisted by PEF for Plant-Based Materials. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 271–280. [Google Scholar]
- Panda, D.; Manickam, S. Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Technology, Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Dumitrash, P.; Bologa, M.; Shemyakova, T.D. Ultrasound-assisted extraction of biologically active substances from tomato seeds. Surf. Eng. Appl. Electrochem. 2016, 52, 270–275. [Google Scholar] [CrossRef]
- Concha-Meyer, A.; Palomo, I.; Plaza, A.; Gadioli Tarone, A.; Junior, M.R.M.; Sáyago-Ayerdi, S.G.; Fuentes, E.J. Platelet anti-aggregant activity and bioactive compounds of ultrasound-assisted extracts from whole and seedless tomato pomace. Foods 2020, 9, 1564. [Google Scholar] [CrossRef]
- Fuentes, E.; Carle, R.; Astudillo, L.; Guzmán, L.; Gutiérrez, M.; Carrasco, G.; Palomo, I. Antioxidant and antiplatelet activities in extracts from green and fully ripe tomato fruits (Solanum lycopersicum) and pomace from industrial tomato processing. Evid.-Based Complement. Altern. Med. 2013, 9, 867578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, E.; Forero-Doria, O.; Carrasco, G.; Maricán, A.; Santos, L.S.; Alarcón, M.; Palomo, I. Effect of tomato industrial processing on phenolic profile and antiplatelet activity. Molecules 2013, 18, 11526–11536. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.; Trostchansky, A.; Reguengo, L.M.; Junior, M.R.; Palomo, I. Antiplatelet effects of bioactive compounds present in tomato pomace. Curr. Drug Targets 2021, 22, 1716–1724. [Google Scholar]
- Kalogianni, E.; Xynogalos, V.; Karapantsios, T.; Kostoglou, M. Effect of feed concentration on the production of pregelatinized starch in a double drum dryer. LWT 2002, 35, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Bhatkar, N.S.; Shirkole, S.S.; Mujumdar, A.S.; Thorat, B.N. Drying of tomatoes and tomato processing waste: A critical review of the quality aspects. Dry. Technol. 2021, 39, 1720–1744. [Google Scholar] [CrossRef]
- Vera, G. Determinación de Azúcares Totales, Hidratos de Carbono Disponibles y Factores de cálculo de Energía en Alimentos. Available online: http://www.achipia.cl/wp-content/uploads/2016/06/8-M--todos-Az--cares-Totales-H.-de-Carbono-F--ctores-c--lculo-energ--a-Dra.-Gloria-Vera.pdf (accessed on 24 March 2022).
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- Rodríguez, L.; Plaza, A.; Méndez, D.; Carrasco, B.; Tellería, F.; Palomo, I.; Fuentes, E.J.P. Antioxidant Capacity and Antiplatelet Activity of Aqueous Extracts of Common Bean (Phaseolus vulgaris L.) Obtained with Microwave and Ultrasound Assisted Extraction. Plants 2022, 11, 1179. [Google Scholar] [CrossRef] [PubMed]
- Deneva, V.; Bakardzhiyski, I.; Bambalov, K.; Antonova, D.; Tsobanova, D.; Bambalov, V.; Cozzolino, D.; Antonov, L. Using Raman spectroscopy as a fast tool to classify and analyze Bulgarian wines—A feasibility study. Molecules 2019, 25, 170. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente, B.; Pallarés, N.; Berrada, H.; Barba, F. Salmon (Salmo salar) Side Streams as a Bioresource to Obtain Potential Antioxidant Peptides after Applying Pressurized Liquid Extraction (PLE). Mar. Drugs 2021, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Badimon, L.; Caballero, J.; Padró, T.; Vilahur, G.; Alarcón, M.; Pérez, P.; Palomo, I. Protective mechanisms of adenosine 5′-monophosphate in platelet activation and thrombus formation. Thromb. Haemost. 2014, 111, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Born, G.V.R.; Cross, M. The aggregation of blood platelets. J. Physiol. 1963, 168, 178–195. [Google Scholar] [CrossRef]
- Rodríguez, L.; Badimon, L.; Méndez, D.; Padró, T.; Vilahur, G.; Peña, E.; Carrasco, B.; Vogel, H.; Palomo, I.; Fuentes, E. Antiplatelet Activity of Isorhamnetin via Mitochondrial Regulation. Antioxidants 2021, 10, 666. [Google Scholar] [CrossRef]
- Alarcón, M.; Bustos, M.; Mendez, D.; Fuentes, E.; Palomo, I.; Lutz, M. In Vitro Assay of Quinoa (Chenopodium quinoa Willd.) and Lupin (Lupinus spp.) Extracts on Human Platelet Aggregation. Plant Foods Hum. Nutr. 2020, 75, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, M.; Cámara, M.; Torija, M.E. Chemical characterization of tomato pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Qiu, J.; Acharya, P.; Jacobs, D.M.; Boom, R.M.; Schutyser, M.A. A systematic analysis on tomato powder quality prepared by four conductive drying technologies. Food Sci. Emerg. Technol. 2019, 54, 103–112. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.; Sineiro, J.; Domínguez, H.; Núñez, M.J.; Parajó, J. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Orsat, V.; Routray, W. Microwave-Assisted Extraction of Flavonoids. In Water Extraction of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, pp. 221–244. [Google Scholar]
- Chemat, F.; Cravotto, G. (Eds.) Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Springer US: New York, NY, USA, 2012; Volume 4, pp. 15–52. [Google Scholar]
- Zhang, H.-F.; Yang, X.-H.; Zhao, L.-D.; Wang, Y. Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innov. Food Sci. Emerg. Technol. 2009, 10, 54–60. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Y.; Xiu, Z. Microwave-assisted aqueous two-phase extraction of piceid, resveratrol and emodin from Polygonum cuspidatum by ethanol/ammonium sulphate systems. Biotechnol. Lett. 2008, 30, 2079–2084. [Google Scholar] [CrossRef]
- Li, H.; Chen, B.; Zhang, Z.; Yao, S. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta 2004, 63, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Huang, W.; RoyChowdhury, M.; Liu, C. Microwave-assisted extraction of scutellarin from Erigeron breviscapus Hand-Mazz and its determination by high-performance liquid chromatography. Anal. Chim. Acta 2007, 591, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Sparr, E.C.; Bjorklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, Q.E.; Fuentes, Q.F.; Andrés, V.; Pello, O.M.; de Mora, J.F.; Palomo, I. Role of platelets as mediators that link inflammation and thrombosis in atherosclerosis. Platelets 2013, 24, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Hartley, L.; Igbinedion, E.; Holmes, J.; Flowers, N.; Thorogood, M.; Clarke, A.; Stranges, S.; Hooper, L.; Rees, K. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst. Rev. 2013, 6, CD009874. [Google Scholar] [CrossRef] [Green Version]
- Cámara, M.; Fernández-Ruiz, V.; Sánchez-Mata, M.-C.; Domínguez Díaz, L.; Kardinaal, A.; van Lieshout, M. Evidence of antiplatelet aggregation effects from the consumption of tomato products, according to EFSA health claim requirements. Crit. Rev. Food Sci. Nutr. 2020, 60, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Rodríguez-Azúa, R.; Treuer, A.; Moore-Carrasco, R.; Cortacáns, D.; Gutiérrez, M.; Astudillo, L.; Fuentes, E.; Palomo, I. Effect of tomato industrial processing (different hybrids, paste, and pomace) on inhibition of platelet function in vitro, ex vivo, and in vivo. J. Med. Food 2014, 17, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasinska, B.; Osińska, A.; Osinski, M.; Krasinska, A.; Rzymski, P.; Tykarski, A.; Krasiński, Z. Standardised tomato extract as an alternative to acetylsalicylic acid in patients with primary hypertension and high cardiovascular risk—A randomised, controlled trial. Arch. Med. Sci. 2018, 14, 773. [Google Scholar] [CrossRef]
- O’Kennedy, N.; Duss, R.; Duttaroy, A.K. Dietary antiplatelets: A new perspective on the health benefits of the water-soluble tomato concentrate Fruitflow®. Nutrients 2021, 13, 2184. [Google Scholar] [CrossRef]
- O’Kennedy, N.; Crosbie, L.; Song, H.; Zhang, X.; Horgan, G.; Duttaroy, A.K. A randomised controlled trial comparing a dietary antiplatelet, the water-soluble tomato extract Fruitflow, with 75 mg aspirin in healthy subjects. Eur. J. Clin. Nutr. 2017, 71, 723–730. [Google Scholar] [CrossRef]
- Le Gall, G.; Colquhoun, I.J.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J. Agric. Food Chem. 2003, 51, 2447–2456. [Google Scholar] [CrossRef]
- Rolnik, A.; Żuchowski, J.; Stochmal, A.; Olas, B. Quercetin and kaempferol derivatives isolated from aerial parts of Lens culinaris Medik as modulators of blood platelet functions. Ind. Crops Prod. 2020, 152, 112536. [Google Scholar] [CrossRef]
- Vallance, T.M.; Ravishankar, D.; Albadawi, D.A.I.; Osborn, H.M.I.; Vaiyapuri, S. Synthetic Flavonoids as Novel Modulators of Platelet Function and Thrombosis. Int. J. Mol. Sci. 2019, 20, 3106. [Google Scholar] [CrossRef] [Green Version]
- Stainer, A.R.; Sasikumar, P.; Bye, A.P.; Unsworth, A.J.; Holbrook, L.M.; Tindall, M.; Lovegrove, J.A.; Gibbins, J.M. The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects. Th. Open 2019, 3, e244–e258. [Google Scholar] [CrossRef] [PubMed]
- Zaragozá, C.; Monserrat, J.; Mantecón, C.; Villaescusa, L.; Álvarez-Mon, M.Á.; Zaragozá, F.; Álvarez-Mon, M. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed. Pharmacother. 2021, 141, 111867. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-S.; Park, H.-R.; Lee, K.-A. A Comparative Study of Rutin and Rutin Glycoside: Antioxidant Activity, Anti-Inflammatory Effect, Effect on Platelet Aggregation and Blood Coagulation. Antioxidants 2021, 10, 1696. [Google Scholar] [CrossRef]
- Al-Harbi, N.O.; Imam, F.; Al-Harbi, M.M.; Al-Shabanah, O.A.; Alotaibi, M.R.; As Sobeai, H.M.; Afzal, M.; Kazmi, I.; Al Rikabi, A.C. Rutin inhibits carfilzomib-induced oxidative stress and inflammation via the NOS-mediated NF-κB signaling pathway. Inflammopharmacology 2019, 27, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Vorobyova, V.; Skiba, M.; Vasyliev, G. Extraction of phenolic compounds from tomato pomace using choline chloride–based deep eutectic solvents. J. Food Meas. Charact. 2022, 16, 1087–1104. [Google Scholar] [CrossRef]
- Lukitasari, M.; Rohman, M.S.; Nugroho, D.A.; Widodo, N.; Nugrahini, N.I.P. Cardiovascular protection effect of chlorogenic acid: Focus on the molecular mechanism. F1000Research 2020, 9, 1462. [Google Scholar] [CrossRef]
- Jung, H.-J.; Im, S.-S.; Song, D.-K.; Bae, J.-H. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells. BMB Rep. 2017, 50, 323. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.; Caballero, J.; Alarcón, M.; Rojas, A.; Palomo, I. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation. PLoS ONE 2014, 9, e90699. [Google Scholar] [CrossRef] [Green Version]
Variables | Type of Extraction | Time | TP/Solvent Ratio (R) | Solvent |
---|---|---|---|---|
Levels | UAE MAE | 60 min 60 min | 1/10 1/8 1/5 | Water Water/ethanol 5% Water/ethanol 10% Water/ethanol 15% Water/ethanol 20% |
Operating Conditions | Batch 1 | Batch 2 |
---|---|---|
Drum temperature | 115 °C | 135 °C |
Rotation speed | 0.5 rpm | 0.5 rpm |
Initial mass | 13.61 kg | 12.33 kg |
Initial humidity | 72.65% | 72.65% |
Product | 3.17 kg | 2.96 kg |
Product humidity | 3.68% | 0.41% |
Time | 0.5 h | 0.5 h |
Operational performance | 23.39% | 24.01% |
Drying performance | 82.03% | 87.41% |
Parameter | Values |
---|---|
Tomato pomace feed in batch 1 (kg) | 38.5 |
Tomato pomace feed in batch 2 (kg) | 36.0 |
Dry mass obtained (kg) | 14.7 |
Product humidity (%) | 5.7 |
Operating temperature (°C) | 60 |
Vacuum working pressure (MPa) | 780 |
Time (h) | 2.5 |
Operational performance (%) | 19.7 |
Stabilization Process | Sample Name | R | Type of Extraction | Solvent | ORAC µmol ET/100 g dw | Total Phenolic Compounds mg GAE/100 g Sample dw | °Brix | TRAP-6 5 µM | ADP 4 µM | ||
---|---|---|---|---|---|---|---|---|---|---|---|
PA (%) | Inb (%) | PA (%) | Inb (%) | ||||||||
Drum-dry, 115 °C | MAE 1 | 1/5 | MAE | water | 11,788.0 ± 1126 | 294.3 ± 12.8 | 4.8 ± 0.05 | 73 ± 3 | 15 ± 4 | 67 ± 3 | 27 ± 7 |
Drum-dry, 115 °C | UAE 1 | 1/5 | UAE | water | 9021.5 ± 961 | 268.3 ± 22.5 | 3.8 ± 0.02 | 67 ± 3 | 17 ± 6 | 47 ± 3 | 44 ± 4 |
Drum-dry, 115 °C | MAE 2 | 1/10 | MAE | ethanol 20% | 16,654.0 ± 1255 | 435.5 ± 22.8 | 7.0 ± 0.05 | 75 ± 1 | 8 ± 2 | 62 ± 1 | 25 ± 4 |
Drum-dry, 115 °C | UAE 2 | 1/10 | UAE | ethanol 20% | 15,155.5 ± 1396 | 398.1 ± 34.1 | 8.8 ± 0.00 | 32 ± 4 | 60 ± 4 | 62 ± 4 | 22 ± 2 |
Drum-dry, 115 °C | MAE 3 | 1/8 | MAE | water | 10,072.5 ± 49.5 | 365.7 ± 27.9 | 2.7 ± 0.08 | 27 ± 3 | 67 ± 4 | 74 ± 3 | 10 ± 4 |
Drum-dry, 115 °C | UAE 3 | 1/8 | UAE | water | 8941.0 ± 126 | 371.7 ± 23.6 | 2.3 ± 0.05 | 72 ± 5 | 16 ± 6 | 71 ± 5 | 23 ± 1 |
Drum-dry, 115 °C | MAE 4 | 1/10 | MAE | water | 13,227.0 ± 2467 | 391.8 ± 19.3 | 3.2 ± 0.04 | 77 ± 1 | 9 ± 3 | 77 ± 1 | 7 ± 3 |
Drum-dry, 115 °C | UAE 4 | 1/10 | UAE | water | 10,822.0 ± 961 | 901.6 ± 92.1 | 2.6 ± 0.08 | 59 ± 1 | 30 ± 2 | 59 ± 1 | 29 ± 1 |
Drum-dry, 115 °C | MAE 5 | 1/5 | MAE | ethanol 20% | 14,311.0 ± 2358 | 324.8 ± 4.3 | 10.8 ± 0.03 | 80 ± 1 | 4 ± 2 | 78 ± 1 | 7 ± 2 |
Drum-dry, 115 °C | UAE 5 | 1/5 | UAE | ethanol 20% | 9263.5 ± 692 | 296.5 ± 8.2 | 10.6 ± 0.00 | 20 ± 2 | 74 ± 2 | 41 ± 2 | 50 ± 2 |
Drum-dry, 115 °C | MAE 6 | 1/8 | MAE | ethanol 20% | 16,122.0 ± 2397 | 363.1 ± 19.6 | 7.70 ± 0.00 | 59 ± 7 | 30 ± 9 | 75 ± 7 | 18 ± 6 |
Drum-dry, 115 °C | UAE 6 | 1/8 | UAE | ethanol 20% | 13,264.0 ± 622 | 382.2 ± 36.3 | 9.40 ± 0.00 | 13 ± 1 | 83 ± 2 | 42 ± 1 | 49 ± 5 |
Drum-dry, 115 °C | MAE 7 | 1/5 | MAE | ethanol 5% | 9466.0 ± 1199 | 293.0 ± 6.8 | 5.6 ± 0.05 | 29 ± 1 | 64 ± 2 | 72 ± 1 | 13 ± 7 |
Drum-dry, 115 °C | UAE 7 | 1/5 | UAE | ethanol 5% | 8792.5 ± 963.5 | 317.5 ± 5.3 | 4.6 ± 0.04 | 64 ± 3 | 24 ± 4 | 72 ± 3 | 22 ± 2 |
Drum-dry, 115 °C | MAE 8 | 1/8 | MAE | ethanol 5% | 19,544.3 ± 1320 | 342.2 ± 1.2 | 3.7 ± 0.00 | 81 ± 4 | 10 ± 5 | 75 ± 4 | 17 ± 6 |
Drum-dry, 115 °C | UAE 8 | 1/8 | UAE | ethanol 5% | 18,307.6 ± 1123 | 322.9 ± 3.6 | 3.9 ± 0.04 | 58 ± 4 | 31 ± 5 | 68 ± 4 | 26 ± 5 |
Drum-dry, 115 °C | MAE 9 | 1/10 | MAE | ethanol 5% | 22,375.4 ± 987 | 325.9 ± 7.2 | 3.1 ± 0.03 | 31 ± 1 | 62 ± 3 | 72 ± 1 | 13 ± 3 |
Drum-dry, 115 °C | UAE 9 | 1/10 | UAE | ethanol 5% | 19,408.0 ± 1608 | 400.9 ± 2.9 | 3.4 ± 0.02 | 23 ± 1 | 71 ± 2 | 37 ± 1 | 55 ± 5 |
Drum-dry, 115 °C | MAE 10 | 1/5 | MAE | ethanol 15% | 12,035.7 ± 1132 | 307.3 ± 3.9 | 8.7 ± 0.00 | 77 ± 5 | 10 ± 6 | 77 ± 5 | 31 ± 8 |
Drum-dry, 115 °C | UAE 10 | 1/5 | UAE | ethanol 15% | 9770.6 ± 815 | 294.5 ± 3.9 | 8.5 ± 0.02 | 27 ± 1 | 68 ± 1 | 66 ± 1 | 20 ± 6 |
Drum-dry, 115 °C | MAE 11 | 1/8 | MAE | ethanol 15% | 18,374.8 ± 1529 | 424.4 ± 4.7 | 6.3 ± 0.03 | 73 ± 8 | 19 ± 9 | 78 ± 8 | 13 ± 4 |
Drum-dry, 115 °C | UAE 11 | 1/8 | UAE | ethanol 15% | 15,656.6 ± 989 | 405.3 ± 10.7 | 7.7 ± 0.00 | 24 ± 2 | 70 ± 4 | 66 ± 2 | 20 ± 7 |
Drum-dry, 115 °C | MAE 12 | 1/10 | MAE | ethanol 15% | 16,819.2 ± 1263 | 414.3 ± 6.4 | 5.7 ± 0.04 | 76 ± 7 | 16 ± 8 | 71 ± 7 | 21 ± 7 |
Drum-dry, 115 °C | UAE 12 | 1/10 | UAE | ethanol 15% | 14,978.1 ± 145 | 420.4 ± 5.7 | 7.4 ± 0.05 | 15 ± 2 | 80 ± 2 | 45 ± 2 | 45 ± 1 |
Drum-dry, 135 °C | MAE 13 | 1/5 | MAE | ethanol 5% | 6113.1 ± 787 | 278.3 ± 1.8 | 6.0 ± 0.05 | 32 ± 2 | 61 ± 3 | 74 ± 2 | 10 ± 7 |
Drum-dry, 135 °C | UAE 13 | 1/5 | UAE | ethanol 5% | 9722.9 ± 353 | 181.2 ± 2.9 | 4.4 ± 0.02 | 23 ± 3 | 73 ± 3 | 63 ± 3 | 31 ± 8 |
Drum-dry, 135 °C | MAE 14 | 1/8 | MAE | ethanol 5% | 13,875.1 ± 294 | 441.8 ± 7.1 | 4.1 ± 0.03 | 44 ± 1 | 47 ± 3 | 79 ± 1 | 3 ± 1 |
Drum-dry, 135 °C | UAE 14 | 1/8 | UAE | ethanol 5% | 15,107.9 ± 181 | 412.8 ± 3.6 | 4.3 ± 0.04 | 70 ± 4 | 16 ± 3 | 72 ± 4 | 12 ± 5 |
Drum-dry, 135 °C | MAE 15 | 1/10 | MAE | ethanol 5% | 16,723.6 ± 695 | 712.7 ± 6.4 | 3.5 ± 0.03 | 36 ± 5 | 58 ± 7 | 70 ± 5 | 24 ± 4 |
Drum-dry, 135 °C | UAE 15 | 1/10 | UAE | ethanol 5% | 13,611.1 ± 702 | 434.0 ± 14.9 | 3.7 ± 0.04 | 36 ± 5 | 58 ± 7 | 70 ± 5 | 24 ± 4 |
Drum-dry, 135 °C | MAE 16 | 1/5 | MAE | ethanol 10% | 111,743.2 ± 701 | 291.1 ± 1.1 | 7.9 ± 0.07 | 78 ± 5 | 7 ± 3 | 84 ± 5 | 1 ± 0 |
Drum-dry, 135 °C | UAE 16 | 1/5 | UAE | ethanol 10% | 10,012.6 ± 696 | 306.9 ± 4.3 | 7.8 ± 0.06 | 56 ± 6 | 43 ± 5 | 44 ± 4 | 56 ± 7 |
Drum-dry, 135 °C | MAE 17 | 1/8 | MAE | ethanol 10% | 24,836.3 ± 399 | 384.8 ± 9.5 | 5.7 ± 0.05 | 85 ± 2 | 0 ± 0 | 85 ± 2 | 0 ± 0 |
Drum-dry, 135 °C | UAE 17 | 1/8 | UAE | ethanol 10% | 11,742.8 ± 39 | 411.5 ± 9.6 | 5.9 ± 0.00 | 46 ± 5 | 38 ± 7 | 60 ± 5 | 18 ± 4 |
Drum-dry, 135 °C | MAE 18 | 1/10 | MAE | ethanol 10% | 22,505.1 ± 796 | 405.9 ± 9.9 | 5.2 ± 0.00 | 27 ± 2 | 69 ± 2 | 79+ ± 2 | 14 ± 4 |
Drum-dry, 135 °C | UAE 18 | 1/10 | UAE | ethanol 10% | 14,229.2 ± 2242 | 645.9 ± 9.3 | 5.6 ± 0.03 | 85 ± 2 | 0 ± 0 | 86 ± 2 | 0 ± 0 |
Drum-dry, 135 °C | MAE 19 | 1/5 | MAE | ethanol 15% | 15,800.5 ± 362 | 284.9 ± 5.0 | 9.1 ± 0.05 | 64 ± 6 | 22 ± 9 | 72 ± 6 | 13 ± 5 |
Drum-dry, 135 °C | UAE 19 | 1/5 | UAE | ethanol 15% | 9838.3 ± 48 | 278.9 ± 4.9 | 8.5 ± 0.05 | 54 ± 2 | 36 ± 1 | 50 ± 2 | 40 ± 3 |
Drum-dry, 135 °C | MAE 20 | 1/8 | MAE | ethanol 15% | 16,165.4 ± 110.4 | 383.2 ± 11.2 | 7.2 ± 0.05 | 59 ± 4 | 26 ± 4 | 67 ± 4 | 8 ± 6 |
Drum-dry, 135 °C | UAE 20 | 1/8 | UAE | ethanol 15% | 13,161.3 ± 0.6 | 413.2 ± 4.2 | 6.9 ± 0.00 | 66 ± 6 | 22 ± 8 | 57 ± 6 | 38 ± 3 |
Drum-dry, 135 °C | MAE 21 | 1/10 | MAE | ethanol 15% | 16,266.8 ± 1550 | 444.2 ± 9.2 | 6.5 ± 0.05 | 36 ± 3 | 55 ± 3 | 76 ± 3 | 2 ± 5 |
Drum-dry, 135 °C | UAE 21 | 1/10 | UAE | ethanol 15% | 14,421.5 ± 552 | 469.1 ± 2.1 | 7.3 ± 0.05 | 55 ± 1 | 35 ± 1 | 60 ± 1 | 28 ± 3 |
Drum-dry, 135 °C | MAE 22 | 1/5 | MAE | ethanol 20% | 11,567.8 ± 752 | 600.9 ± 13.3 | 10.1 ± 0.00 | 25 ± 2 | 67 ± 3 | 70 ± 2 | 14 ± 2 |
Drum-dry, 135 °C | UAE 22 | 1/5 | UAE | ethanol 20% | 9093.1 ± 516 | 248.9 ± 9.6 | 9.6 ± 0.08 | 35 ± 3 | 56 ± 3 | 63 ± 3 | 16 ± 4 |
Drum-dry, 135 °C | MAE 23 | 1/8 | MAE | ethanol 20% | 15,958.7 ± 534 | 406.3 ± 5.9 | 8.3 ± 0.00 | 78 ± 4 | 9 ± 5 | 79 ± 4 | 15 ± 2 |
Drum-dry, 135 °C | UAE 23 | 1/8 | UAE | ethanol 20% | 11,835.6 ± 617 | 326.7 ± 20.3 | 8.6 ± 0.04 | 69 ± 2 | 19 ± 0 | 68 ± 2 | 18 ± 1 |
Drum-dry, 135 °C | MAE 24 | 1/10 | MAE | ethanol 20% | 19,077.7 ± 33 | 449.6 ± 20.3 | 8.6 ± 0.03 | 56 ± 7 | 31 ± 7 | 77 ± 7 | 15 ± 8 |
Drum-dry, 135 °C | UAE 24 | 1/10 | UAE | ethanol 20% | 18,846.2 ± 1171 | 444.4 ± 1.4 | 8.6 ± 0.04 | 62 ± 8 | 31 ± 9 | 69 ± 8 | 23 ± 2 |
Drum-dry, 135 °C | MAE 25 | 1/5 | MAE | water | 2440.2 ± 142 | 1786.5 ± 151.7 | 4.5 ± 0.01 | 26 ± 4 | 66 ± 6 | 71 ± 4 | 13 ± 3 |
Drum-dry, 135 °C | UAE 25 | 1/5 | UAE | water | 4354.6 ± 92 | 1410.3 ± 135.9 | 4.0 ± 0.03 | 72 ± 4 | 15 ± 3 | 71 ± 4 | 15 ± 1 |
Drum-dry, 135 °C | MAE 26 | 1/8 | MAE | water | 10,774.9 ± 253 | 1552.8 ± 154.4 | 2.8 ± 0.00 | 30 ± 5 | 61 ± 6 | 70 ± 5 | 15 ± 4 |
Drum-dry, 135 °C | UAE 26 | 1/8 | UAE | water | 1,296,979 ± 475 | 1752.1 ± 63.7 | 2.6 ± 0.01 | 66 ± 3 | 23 ± 4 | 66 ± 3 | 29 ± 4 |
Drum-dry, 135 °C | MAE 27 | 1/10 | MAE | water | 18,073.4 ± 67.7 | 1674.2 ± 36.1 | 2.0 ± 0.00 | 73 ± 5 | 14 ± 6 | 77 ± 5 | 16 ± 4 |
Drum-dry, 135 °C | UAE 27 | 1/10 | UAE | water | 17,915.3 ± 1326 | 1864.7 ± 79.6 | 2.2 ± 0.00 | 64 ± 5 | 29 ± 6 | 61 ± 5 | 32 ± 4 |
Vacuum microwave | MAE 28 | 1/5 | MAE | water | 3549.3 ± 544 | 1270.8 ± 113.6 | 5.5 ± 0.05 | 62 ± 3 | 26 ± 4 | 65 ± 3 | 19 ± 4 |
Vacuum microwave | UAE 28 | 1/5 | UAE | water | 6681.1 ± 672.5 | 1174.4 ± 15.3 | 4.8 ± 0.00 | 31 ± 5 | 59 ± 7 | 73 ± 5 | 11 ± 2 |
Vacuum microwave | MAE 29 | 1/8 | MAE | water | 7176.6 ± 547 | 1383.8 ± 38.5 | 3.6 ± 0.00 | 35 ± 2 | 56 ± 3 | 72 ± 2 | 13 ± 4 |
Vacuum microwave | UAE 29 | 1/8 | UAE | water | 9311.8 ± 74 | 1330.5 ± 114 | 3.1 ± 0.0 | 39 ± 2 | 52 ± 3 | 69 ± 2 | 14 ± 4 |
Vacuum microwave | MAE 30 | 1/10 | MAE | water | 13,978.0 ± 798 | 1408.5 ± 21.4 | 2.9 ± 0.00 | 66 ± 7 | 20 ± 6 | 73 ± 7 | 12 ± 5 |
Vacuum microwave | UAE 30 | 1/10 | UAE | water | 15,944.2 ± 130 | 1385.6 ± 121.6 | 2.6 ± 0.00 | 56 ± 3 | 35 ± 4 | 50 ± 3 | 45 ± 6 |
Vacuum microwave | MAE 31 | 1/5 | MAE | ethanol 5% | 6351.4 ± 130 | 1386.7 ± 42.0 | 6.9 ± 0.05 | 51 ± 6 | 37 ± 5 | 72 ± 6 | 6 ± 4 |
Vacuum microwave | UAE 31 | 1/5 | UAE | ethanol 5% | 7044.9 ± 441 | 1088.6 ± 35.3 | 6.2 ± 0.05 | 49 ± 2 | 50 ± 3 | 67 ± 2 | 13 ± 4 |
Vacuum microwave | MAE 32 | 1/8 | MAE | ethanol 5% | 11,489.5 ± 329 | 1385.4 ± 281.3 | 4.8 ± 0.00 | 66 ± 2 | 20 ± 3 | 73 ± 6 | 10 ± 5 |
Vacuum microwave | UAE 32 | 1/8 | UAE | ethanol 5% | 13,511.5 ± 998 | 1273.7 ± 52.9 | 4.5 ± 0.01 | 59 ± 3 | 32 ± 4 | 55 ± 3 | 49 ± 6 |
Vacuum microwave | MAE 33 | 1/10 | MAE | ethanol 5% | 16,343.7 ± 810 | 1408.5 ± 98.4 | 3.9 ± 0.00 | 52 ± 4 | 34 ± 5 | 73 ± 4 | 11 ± 1 |
Vacuum microwave | UAE 33 | 1/10 | UAE | ethanol 5% | 21,065.9 ± 113 | 1291.8 ± 10.6 | 3.5 ± 0.00 | 27 ± 6 | 67 ± 5 | 52 ± 6 | 25 ± 7 |
Vacuum microwave | MAE 34 | 1/5 | MAE | ethanol 10% | 54,529.0 ± 4344 | 1347.9 ± 40.3 | 8.2 ± 0.05 | 83 ± 1 | 3 ± 2 | 77 ± 1 | 16 ± 4 |
Vacuum microwave | UAE 34 | 1/5 | UAE | ethanol 10% | 7269.0 ± 556 | 1009.6 ± 13.9 | 7.9 ± 0.02 | 88 ± 2 | 0 ± 0 | 72 ± 2 | 22 ± 5 |
Vacuum microwave | MAE 35 | 1/8 | MAE | ethanol 10% | 9574.9 ± 703 | 1291.6 ± 96.0 | 5.4 ± 0.00 | 70 ± 5 | 16 ± 3 | 72 ± 4 | 12 ± 5 |
Vacuum microwave | UAE 35 | 1/8 | UAE | ethanol 10% | 12,276.6 ± 106 | 1128.9 ± 73.2 | 5.1 ± 0.00 | 80 ± 4 | 11 ± 4 | 75 ± 4 | 16 ± 6 |
Vacuum microwave | MAE 36 | 1/10 | MAE | ethanol 10% | 18,041.2 ± 454 | 1442.4 ± 43.9 | 3.9 ± 0.00 | 75 ± 1 | 8 ± 2 | 62 ± 1 | 25 ± 4 |
Vacuum microwave | UAE 36 | 1/10 | UAE | ethanol 10% | 18,538.0 ± 863 | 1232.8 ± 56.8 | 3.5 ± 0.02 | 29 ± 4 | 66 ± 5 | 70 ± 4 | 15 ± 7 |
Vacuum microwave | MAE 37 | 1/5 | MAE | ethanol 15% | 12,847.2 ± 590 | 1440.3 ± 288.7 | 9.4 ± 0.05 | 50 ± 5 | 36 ± 5 | 75 ± 4 | 14 ± 2 |
Vacuum microwave | UAE 37 | 1/5 | UAE | ethanol 15% | 12,671.4 ± 937 | 1075.9 ± 124.1 | 9.4 ± 0.01 | 34 ± 3 | 56 ± 5 | 73 ± 6 | 25 ± 4 |
Vacuum microwave | MAE 38 | 1/8 | MAE | ethanol 15% | 17,541.5 ± 1129 | 1099.2 ± 120.4 | 7.6 ± 0.02 | 33 ± 5 | 57 ± 8 | 66 ± 5 | 20 ± 1 |
Vacuum microwave | UAE 38 | 1/8 | UAE | ethanol 15% | 16,816.7 ± 114 | 1123.4 ± 85.8 | 7.4 ± 0.05 | 35 ± 6 | 57 ± 5 | 70 ± 6 | 28 ± 3 |
Vacuum microwave | MAE 39 | 1/10 | MAE | ethanol 15% | 19,179.1 ± 694 | 1358.5 ± 23.2 | 4.2 ± 0.02 | 39 ± 5 | 53 ± 6 | 74 ± 5 | 10 ± 4 |
Vacuum microwave | UAE 39 | 1/10 | UAE | ethanol 15% | 18,036.3 ± 1224 | 1158.5 ± 43.0 | 4.0 ± 0.00 | 73 ± 4 | 15 ± 5 | 76 ± 4 | 18 ± 1 |
Vacuum microwave | MAE 40 | 1/5 | MAE | ethanol 20% | 12,840.8 ± 229 | 1055.1 ± 89.6 | 11.3 ± 0.05 | 68 ± 6 | 21 ± 7 | 70 ± 6 | 10 ± 2 |
Vacuum microwave | UAE 40 | 1/5 | UAE | ethanol 20% | 11,658.7 ± 87 | 1035.8 ± 88.8 | 10.8 ± 0.03 | 71 ± 6 | 17 ± 7 | 79 ± 6 | 14 ± 1 |
Vacuum microwave | MAE 41 | 1/8 | MAE | ethanol 20% | 11,505.4 ± 656 | 1203.8 ± 93.0 | 8.8 ± 0.01 | 70 ± 5 | 22 ± 6 | 71 ± 5 | 21 ± 7 |
Vacuum microwave | UAE 41 | 1/8 | UAE | ethanol 20% | 9906.7 ± 834.7 | 1167.1 ± 59.9 | 8.8 ± 0.02 | 65 ± 7 | 23 ± 6 | 71 ± 7 | 14 ± 7 |
Vacuum microwave | MAE 42 | 1/10 | MAE | ethanol 20% | 16,433.8 ± 265 | 1481.3 ± 158.9 | 4.7 ± 0.03 | 24 ± 2 | 70 ± 4 | 73 ± 2 | 11 ± 7 |
Vacuum microwave | UAE 42 | 1/10 | UAE | ethanol 20% | 102,166.1 ± 2691 | 1490.9 ± 29.3 | 4.3 ± 0.00 | 41 ± 6 | 54 ± 6 | 39 ± 6 | 57 ± 4 |
Effect | Estimated Coefficient | Standard Error | Estimated Coefficient | Standard Error | Estimated Coefficient | Standard Error | Estimated Coefficient | Standard Error |
---|---|---|---|---|---|---|---|---|
ORAC | Total Phenolic Compounds | Platelet Inhibition%, TRAP-6 10 µM | Platelet Inhibition%, ADP 4 µM | |||||
Average | 13,269.7 | 2909.6 | 766.96 | 43.60 | 35.19 | 6.77 | 17.41 | 3.37 |
A | 917.3 | 2765.3 | 845.82 | 41.44 | −0.93 | 6.44 | −2.33 | 3.20 |
B | −10,825.5 | 3386.3 | −229.13 | 50.75 | −7.95 | 7.88 | −1.40 | 3.92 |
C | 1769.6 | 2765.4 | −3.76 | 41.44 | 8.93 | 6.44 | 13.67 | 3.20 |
D | 8841.1 | 3910.7 | −72.84 | 58.60 | 7.53 | 9.10 | 1.43 | 4.53 |
AB | −5838.5 | 3386.7 | −53.94 | 50.75 | −3.95 | 7.88 | −6.50 | 3.92 |
AC | 4488.6 | 2765.3 | −58.85 | 41.44 | −1.13 | 6.44 | −3.27 | 3.20 |
AD | 6960.6 | 3910.7 | −35.04 | 50.60 | −10.47 | 9.10 | 0.37 | 4.53 |
BB | 5022.8 | 5866.0 | −2.59 | 87.90 | −5.25 | 13.65 | 1.40 | 6.79 |
BC | −4171.9 | 3386.7 | −13.63 | 50.75 | 5.75 | 7.88 | −0.10 | 3.92 |
BD | −7308.0 | 4789.6 | 0.55 | 71.77 | −4.65 | 11.15 | −0.35 | 5.54 |
CD | 3977.2 | 3910.7 | −31.92 | 58.60 | 7.33 | 9.10 | 0.37 | 4.5 |
DD | 1312.9 | 6610.3 | 160.48 | 99.05 | 11.43 | 15.39 | 9.95 | 7.65 |
N° | Po (g) | Mx (g) | Ga (g) | SS (Brix) | Pr (g) | Hf (%) | Ro (%) | aw |
---|---|---|---|---|---|---|---|---|
1 | 2114 | 105.7 | 0 | 11.8 | 136.5 | 2.0 | 6.3 | 0.299 |
2 | 2108 | 52.7 | 52.7 | 10.8 | 129.1 | 2.3 | 6.0 | 0.245 |
3 | 2180 | 0 | 109 | 12.4 | 129.4 | 3.6 | 5.7 | 0.294 |
4 | 2594 | 43.3 | 86.4 | 14.0 | 131 | 3.1 | 5.9 | 0.267 |
Sample | TRAP-6 10 µM | ADP 4 µM | ||
---|---|---|---|---|
PA (%) | Inb (%) | PA (%) | Inb (%) | |
UAE6 | 13 ± 1 | 83 ± 2 | 42 ± 1 | 49 ± 5 |
1 | 55 ± 4 | 31 ± 4 | 57 ± 4 | 31 ± 1 |
2 | 45 ± 1 | 43 ± 4 | 46 ± 1 | 42 ± 2 |
3 | 32 ± 5 | 59 ± 7 | 46 ± 5 | 30 ± 7 |
4 | 18 ± 2 | 76 ± 4 | 37 ± 2 | 56 ± 3 |
Sample | Chlorogenic Acid (mg/g of Dry Sample) | Rutin (mg/g of Dry Sample) | Quercetin (mg/g of Dry Sample) |
---|---|---|---|
UAE 6 | 0.729 | 2.747 | 0.255 |
1 | 0.137 | 0.529 | 0.05 |
2 | 0.124 | 0.432 | 0.041 |
3 | 0.143 | 0.564 | 0.052 |
4 | 0.110 | 0.397 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza, A.; Rodríguez, L.; Concha-Meyer, A.A.; Cabezas, R.; Zurob, E.; Merlet, G.; Palomo, I.; Fuentes, E. Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts. Plants 2023, 12, 1188. https://doi.org/10.3390/plants12051188
Plaza A, Rodríguez L, Concha-Meyer AA, Cabezas R, Zurob E, Merlet G, Palomo I, Fuentes E. Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts. Plants. 2023; 12(5):1188. https://doi.org/10.3390/plants12051188
Chicago/Turabian StylePlaza, Andrea, Lyanne Rodríguez, Anibal A. Concha-Meyer, René Cabezas, Elsie Zurob, Gastón Merlet, Iván Palomo, and Eduardo Fuentes. 2023. "Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts" Plants 12, no. 5: 1188. https://doi.org/10.3390/plants12051188
APA StylePlaza, A., Rodríguez, L., Concha-Meyer, A. A., Cabezas, R., Zurob, E., Merlet, G., Palomo, I., & Fuentes, E. (2023). Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts. Plants, 12(5), 1188. https://doi.org/10.3390/plants12051188