Artificial Grassland Had Higher Water Use Efficiency in Year with Less Precipitation in the Agro-Pastoral Ecotone
Abstract
:1. Introduction
2. Results
2.1. Effects of Land Use Type on Soil Physical and Chemical Properties and Dry Matter Accumulation
2.2. Water Storage, Evapotranspiration, and Soil Water Balance
2.3. Water Use Efficiency and Its Influencing Factors
3. Discussion
3.1. Differences in Dry Matter Accumulation of Plants under Different Land Use Types
3.2. Differences of Soil Water Storage and Evapotranspiration under Different Land Use Types
3.3. Analysis of Differences and Influencing Factors of Plant Water Use Efficiency under Different Land Use Types
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design and Field Management
4.3. Sampling and Measurements
4.4. Soil Moisture and Water Use Efficiency Index Calculation
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolger, T.P.; Turner, N.C. Transpiration efficiency of three Mediterranean annual pasture species and wheat. Oecologia 1998, 115, 32–38. [Google Scholar] [CrossRef]
- Kramer, P.J.; Boyer, J.S. Water relations of plants and soils. Forest Sci. 1997, 43, 151–152. [Google Scholar]
- Custer, N.A.; Schwinning, S.; DeFalco, L.A.; Esque, T.C. Local climate adaptations in two ubiquitous Mojave Desert shrub species, Ambrosia dumosa and Larrea tridentata. J. Ecol. 2022, 110, 1072–1089. [Google Scholar] [CrossRef]
- Konate, N.M.; Dreyer, E.; Epron, D. Differences in carbon isotope discrimination and whole-plant transpiration efficiency among nine australian and sahelian acacia species. Ann. Forest Sci. 2016, 73, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.X.; Tang, X.G.; Chen, Z.; Gu, Q.; Jin, W.; Ma, M.G. Differences in ecosystem water-use efficiency among the typical croplands. Agr. Water Manag. 2018, 209, 142–150. [Google Scholar] [CrossRef]
- Xiong, K.N.; Chi, Y.K.; Shen, X.Y. Research on photosynthetic leguminous forage in the karst rocky desertification regions of southwestern China. Pol. J. Environ. Stud. 2017, 26, 2319–2329. [Google Scholar] [CrossRef]
- Li, J.; Hou, F.J.; Ren, J.Z. Grazing intensity alters leaf and spike photosynthesis, transpiration, and related parameters of three grass species on an alpine steppe in the qilian mountains. Plants 2021, 10, 294. [Google Scholar] [CrossRef]
- Hou, C.L.; Tian, D.L.; Xu, B.; Ren, J.; Hao, L.; Chen, N.; Li, X.Y. Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area. Agr. Water Manag. 2021, 256, 107065. [Google Scholar] [CrossRef]
- Jia, G.D.; Chen, L.X.; Yu, X.X.; Liu, Z.Q. Soil water stress overrides the benefit of water-use efficiency from rising CO2 and temperature in a cold semi-arid poplar plantation. Plant Cell Environ. 2022, 45, 1172–1186. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Zhang, T.; Jiang, W.T.; Li, P.; Shi, P.; Xu, G.C.; Cheng, S.D.; Cheng, Y.T.; Fan, Z.; Wang, X.K. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agr. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Yu, L.Y.; Gao, X.D.; Zhao, X.N. Global synthesis of the impact of droughts on crops’ water-use efficiency (WUE): Towards both high WUE and productivity. Agr. Syst. 2020, 177, 102723. [Google Scholar] [CrossRef]
- Nie, C.; Huang, Y.F.; Zhang, S.; Yang, Y.T.; Zhou, S.; Lin, C.J.; Wang, G.Q. Effects of soil water content on forest ecosystem water use efficiency through changes in transpiration/evapotranspiration ratio. Agr. Forest Meteorol. 2021, 308, 108605. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, Q.; Coulter, J.A.; Xie, J.H.; Luo, Z.Z.; Zhang, R.Z.; Deng, X.P.; Li, L.L. Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis. Agr. Water Manag. 2020, 229, 105934. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Cui, Z.; Fang, Y.; He, H.H.; Liu, B.R.; Wu, G.L. Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crop. Res. 2018, 221, 1–6. [Google Scholar] [CrossRef]
- Shen, M.S.; Zhang, J.J.; Zhang, S.H.; Zhang, H.B.; Sun, R.X.; Zhang, Y.Z. Seasonal variations in the influence of vegetation cover on soil water on the loess hillslope. J. Mt. Sci. Engl. 2020, 17, 2148–2160. [Google Scholar] [CrossRef]
- Baldocchi, D. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency. Agr. Forest Meteorol. 1994, 67, 291–321. [Google Scholar] [CrossRef]
- Zhao, F.H.; Yu, G.R.; Li, S.G.; Ren, C.Y.; Sun, X.M.; Mi, N.; Li, J.; Ouyang, Z. Canopy water use efficiency of winter wheat in the North China Plain. Water Manag. 2007, 93, 99–108. [Google Scholar] [CrossRef]
- Han, X.Y.; Liu, W.Z.; Cheng, L.P. Vertical distribution characteristics and temporal stability of soil water in deep profile on the Loess Tableland, Northwest China. Chin. J. Appl. Ecol. 2019, 28, 430–438. [Google Scholar]
- Wang, Y.Q.; Zhang, X.C.; Huang, C.Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 2009, 150, 141–149. [Google Scholar] [CrossRef]
- Xue, B.L.; Guo, Q.; Otto, A.; Xiao, J.; Tao, S.; Li, L. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere 2015, 6, art174. [Google Scholar] [CrossRef]
- Fan, J.C.; Min, J.; Yang, Q.; Na, J.M.; Wang, X.Y. Spatial-Temporal Relationship Analysis of Vegetation Phenology and Meteorological Parameters in an Agro-Pasture Ecotone in China. Remote Sens. 2022, 14, 5417. [Google Scholar] [CrossRef]
- Liu, M.Z.; Wang, Y.F.; Pei, H.W. The changes of land use and carbon storage in the northern farming-pastoral ecotone under the background of returning farmland to forest(grass). J. Desert Res. 2021, 41, 174–182. [Google Scholar]
- Chen, W.; Li, A.J.; Hu, Y.G.; Li, L.H.; Zhao, H.M.; Han, X.R.; Yang, B. Exploring the long-term vegetation dynamics of different ecological zones in the farming-pastoral ecotone in northern China. Environ. Sci. Pollut. 2021, 28, 27914–27932. [Google Scholar] [CrossRef]
- Kipnis, T.; Vaismanl, I.; Granoth, I. Drought stress and alfalfa production in a mediterranean environment. Irrigation Sci. 1989, 10, 113–125. [Google Scholar] [CrossRef]
- Abd El-Hamid, H.T.; Wei, C.Y.; Hafiz, M.A.; Mustafa, E.K. Effects of land use/land cover and climatic change on the ecosystem of North Ningxia, China. Arab. J. Geosci. 2020, 13, 1099. [Google Scholar] [CrossRef]
- Sayao, V.M.; Santos, N.V.; Mendes, W.D.; Marques, K.P.P.; Safanelli, J.L.; Poppiel, R.R.; Dematte, J.A.M. Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil. Geoderma Reg. 2020, 22, e313. [Google Scholar] [CrossRef]
- Xie, J.; Evgenia, B.; Zhang, Y.; Wan, Y.; Hu, Q.J.; Zhang, C.M.; Wang, J.; Zhang, Y.Q.; Shi, X.J. Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improves rice grain yield, nutrient use efficiency and soil carbon sequestration. J. Integr Agr. 2022, 21, 3345–3355. [Google Scholar] [CrossRef]
- Yin, M.H.; Ma, Y.L.; Kang, Y.X.; Jia, Q.; Qi, G.P.; Wang, J.H.; Yang, C.K.; Yu, J.X. Optimized farmland mulching improves alfalfa yield and water use efficiency based on meta-analysis and regression analysis. Agr. Water Manag. 2022, 267, 107617. [Google Scholar] [CrossRef]
- Fan, J.; Shao, M.A.; Wang, Q.J.; Jones, S.B.; Reichardt, K.; Cheng, X.R.; Fu, X.L. Toward sustainable soil and water resources use in China’s highly erodible semi-arid loess plateau. Geoderma 2010, 155, 93–100. [Google Scholar]
- Zhou, X.; Lin, H.S.; Whtie, E.A. Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. Catena 2008, 73, 180–188. [Google Scholar] [CrossRef]
- Deng, L.; Yan, W.M.; Zhang, Y.W.; Shangguan, Z.P. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. Forest Ecol. Manag. 2016, 366, 1–10. [Google Scholar] [CrossRef]
- DuPont, S.T.; Beniston, J.; Glover, J.D.; Hodson, A.; Culman, S.W.; Lal, R.; Ferris, H. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant Soil 2014, 381, 405–420. [Google Scholar] [CrossRef]
- Elagib, N.A. Development and application of a drought risk index for food crop yield in Eastern Sahel. Ecol. Indic. 2014, 43, 114–125. [Google Scholar] [CrossRef]
- Xia, L.; Wang, F.; Mu, X.M.; Jin, K.; Sun, W.Y.; Gao, P.; Zhao, G.J. Water use efficiency of net primary production in global terrestrial ecosystems. J. Earth Syst. Sci. 2015, 124, 921–931. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Z.; Yang, X.; Cai, G.; Shen, Y. Effect of simulated precipitation regimes on sap flow and water use efficiency for xerophytic Caragana korshinskii. Ecol. Indic. 2022, 143, 109309. [Google Scholar] [CrossRef]
- Wang, C.J.; Pan, G.X.; Tian, Y.G.; Li, L.Q.; Zhang, X.H.; Han, X.J. Changes in cropland topsoil organic carbon with different fertilizations under long-term agro-ecosystem experiments across mainland China. Sci. China Life Sci. 2010, 53, 858–867. [Google Scholar] [CrossRef]
- Sha, S.; Zhao, X.; Li, Y.; Li, C.; Zhu, L.; Wang, Y.; Gao, Q. Nutrient expert system optimizes fertilizer management to improve potato productivity and tuber quality. J. Sci. Food Agr. 2022, 102, 1233–1244. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Y.; Wang, Y.; Wang, X.; Rengel, Z.; Zhang, W.; Shu, L. Alternate partial root-zone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency. Agr. Water Manag. 2020, 233, 106049. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Liu, J.; Hou, W.; Moroenyane, I.; Liu, Y.; Jin, J.; Liu, J.; Xiong, H.; Cheng, C.; et al. Effects of different land use types and soil depth on soil nutrients and soil bacterial communities in a karst area, Southwest China. Soil Syst. 2022, 6, 20. [Google Scholar] [CrossRef]
- Kebebew, S.; Bedadi, B.; Erkossa, T.; Yimer, F.; Wogi, L. Effect of Different Land-Use Types on Soil Properties in Cheha District, South-Central Ethiopia. Sustainability 2022, 14, 1323. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, O.J.; Huang, J.; Gao, Y.; Han, X. Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Funct. Ecol. 2006, 20, 753–762. [Google Scholar] [CrossRef]
- Fu, Y.L.; Cui, Z.H.; Yao, J.Q.; Ji, F.Y.; Lu, W.Y.; He, Z.J.; Gao, Z.K.; Wang, S.L. Effects of water and nitrogen coupling on photosynthetic characteristics and yield of winter wheat in film hole irrigation fields. Desalin. Water Treat. 2022, 268, 273–284. [Google Scholar] [CrossRef]
- Qiu, H.N.; Yang, S.H.; Jiang, Z.W.; Xu, Y.; Jiao, X.Y. Effect of Irrigation and Fertilizer Management on Rice Yield and Nitrogen Loss: A Meta-Analysis. Plants 2022, 11, 1690. [Google Scholar] [CrossRef]
- Luo, Z.Z.; Gan, Y.T.; Niu, Y.N.; Zhang, R.Z.; Li, L.L.; Gai, L.Q.; Xie, J.H. Soil quality indicators and crop yield under long-term tillage systems. Exp. Agr. 2017, 53, 497–511. [Google Scholar] [CrossRef]
- Wang, L.L.; Palta, J.A.; Chen, W.; Chen, Y.L.; Deng, X.P. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agr. Water Manag. 2018, 197, 41–53. [Google Scholar] [CrossRef]
- Yang, C.G.; Chai, S.X.; Chang, L. Influences of different plastic film mulches on soil water use and yield of winter wheat in semiarid rain-fed region. Acta Ecol. Sin. 2015, 35, 2676–2685. [Google Scholar]
- De Haan, K.; Khomik, M.; Green, A.; Helgason, W.; Macrae, M.L.; Kompanizare, M.; Petrone, R.M. Assessment of Different Water Use Efficiency Calculations for Dominant Forage Crops in the Great Lakes Basin. Agriculture 2021, 11, 739. [Google Scholar] [CrossRef]
AG | AL | NG | AG | AL | NG | AG | AL | NG | ||
---|---|---|---|---|---|---|---|---|---|---|
0~10 cm | 10~20 cm | 20~30 cm | ||||||||
2020 | TP (g·kg−1) | 0.29 ± 0.03 | 0.27 ± 0.02 A | 0.21 ± 0.03 | 0.23 ± 0.03 | 0.22 ± 0.02 AB * | 0.20 ± 0.02 | 0.21 ± 0.03 | 0.18 ± 0.03 B | 0.19 ± 0.02 |
TC (g·kg−1) | 15.67 ± 0.34 | 17.16 ± 0.88 | 17.66 ± 0.53 | 16.18 ± 0.41 | 16.77 ± 0.87 | 15.84 ± 0.44 | 15.71 ± 0.37 | 16.44 ± 1.17 | 17.91 ± 0.61 | |
TN (g·kg−1) | 1.60 ± 0.08 * | 1.72 ± 0.05 | 1.47 ± 0.09 A | 1.81 ± 0.05 a * | 1.65 ± 0.05 a | 1.17 ± 0.06 bB | 1.66 ± 0.09 a * | 1.63 ± 0.08 a | 1.08 ± 0.07 bB | |
SOC (g·kg−1) | 14.72 ± 0.32 a | 13.90 ± 0.39 abA | 12.34 ± 0.59 bA | 14.38 ± 0.36 a ** | 14.38 ± 0.29 aA | 11.06 ± 0.23 bAB | 13.86 ± 0.28 a | 12.84 ± 0.43 aB * | 10.00 ± 0.33 bB | |
Olsen-P (mg·kg−1) | 13.59 ± 1.74 aA | 10.44 ± 0.70 abA | 8.45 ± 0.40 Ba * | 9.90 ± 0.73 bA * | 8.03 ± 0.76 abB ** | 6.85 ± 0.60 bAB * | 8.31 ± 0.51 aB ** | 5.17 ± 0.50 bC | 5.43 ± 1.06 bB * | |
NH4+-N (μg·cm−2·d−1) | 0.11 ± 0.03 | 0.07 ± 0.02 | 0.02 ± 0.01 | - | - | - | - | - | - | |
NO3−-N (μg·cm−2·d−1) | 4.19 ± 0.17 a *** | 4.21 ± 0.14 a ** | 0.68 ± 0.03 b | - | - | - | - | - | - | |
Available N (μg·cm−2·d−1) | 4.29 ± 0.17 a *** | 4.28 ± 0.16 a ** | 0.70 ± 0.03 b | - | - | - | - | - | - | |
2021 | TP (g·kg−1) | 0.26 ± 0.02 A | 0.21 ± 0.03 | 0.18 ± 0.03 | 0.19 ± 0.02 B | 0.13 ± 0.02 | 0.20 ± 0.02 | 0.16 ± 0.02 bB | 0.14 ± 0.02 b | 0.22 ± 0.02 a |
TC (g·kg−1) | 16.19 ± 0.93 b | 17.26 ± 0.89 b | 20.23 ± 0.50 a | 16.67 ± 1.33 | 17.03 ± 0.90 | 18.82 ± 0.38 | 15.76 ± 1.11 b | 17.35 ± 1.18 b | 21.09 ± 0.88 a | |
TN (g·kg−1) | 1.49 ± 0.06 | 1.58 ± 0.06 | 1.51 ± 0.03 A | 1.48 ± 0.07 a | 1.53 ± 0.08 a | 1.27 ± 0.03 bB | 1.41 ± 0.07 a | 1.51 ± 0.08 a | 1.09 ± 0.03 bC | |
SOC (g·kg−1) | 15.05 ± 0.32 A | 15.49 ± 0.35 | 14.62 ± 0.30 A | 12.98 ± 0.18 bC | 14.53 ± 0.60 a | 11.60 ± 0.16 cB | 13.12 ± 0.38 bB | 14.92 ± 0.31 a | 11.41 ± 0.78 cB | |
Olsen-P (mg·kg−1) | 12.90 ± 3.87 a | 10.16 ± 2.20 abA | 3.38 ± 0.21 b | 7.49 ± 1.04 a | 4.44 ± 0.31 bB | 2.88 ± 0.21 b | 5.93 ± 0.48 a | 4.59 ± 1.07 abB | 2.73 ± 0.26 b | |
NH4+-N (μg·cm−2·d−1) | 0.04 ± 0.01 ab | 0.05 ± 0.01 a | 0.03 ± 0.01 b | - | - | - | - | - | - | |
NO3−-N (μg·cm−2·d−1) | 1.53 ± 0.14 b | 2.68 ± 0.31 a | 0.64 ± 0.05 c | - | - | - | - | - | - | |
Available N (μg·cm−2·d−1) | 1.57 ± 0.14 b | 2.73 ± 0.31 a | 0.67 ± 0.05 c | - | - | - | - | - | - |
Year | Land Use Type | Initial Soil Water Storage (mm) | Final Soil Water Storage (mm) | Evapotranspiration (mm) | Soil Water Storage Deficit Degree (%) | Soil Water Balance (mm) |
---|---|---|---|---|---|---|
2020 | AG | 40.75 ± 3.89 | 28.95 ± 3.29 b | 146.10 ± 3.11 *** | 65.56 ± 3.92 a | −11.80 ± 3.11 |
AL | 42.04 ± 4.46 * | 40.65 ± 3.00 a** | 135.70 ± 5.39 *** | 51.64 ± 3.58 b** | −1.40 ± 5.39 | |
NG | 31.53 ± 2.54 * | 28.46 ± 3.02 b | 137.38 ± 0.97 *** | 63.46 ± 3.88 ab | −3.08 ± 0.97 | |
2021 | AG | 28.59 ± 3.43 b | 25.04 ± 3.00 | 201.95 ± 1.87 b | 70.21 ± 3.56 | −3.55 ± 1.87 a |
AL | 26.60 ± 2.47 b | 20.90 ± 2.09 | 204.10 ± 2.97 b | 75.13 ± 2.49 | −5.7 ± 2.97 a | |
NG | 38.68 ± 2.80 a | 21.26 ± 1.82 | 215.81 ± 3.19 a | 72.70 ± 2.34 | −17.41 ± 3.19 b |
Year | Land Use Type | Equation | p | R2 |
---|---|---|---|---|
2020 | AG | WUE = 22.38 + 0.38SWB + 1.68NO3− − N | ** | 0.994 |
AL | WUE = 38.35 − 0.46ISW + 0.05DM | ** | 0.936 | |
NG | WUE = 81.63 − 2.79TC | * | 0.994 | |
2021 | AG | WUE = −3.00 + 0.05DM | *** | 0.892 |
AL | WUE = 1.00 + 0.05DM + 0.12SWB | *** | 0.999 | |
NG | WUE = 2.49 + 0.05DM + 0.13SWB | *** | 0.999 | |
2020–2021 | AG | WUE = 28.68 + 0.05DM − 0.16ET | *** | 0.988 |
AL | WUE = 108.31 − 0.46ET + 0.04DM − 0.46FSW | *** | 0.990 | |
NG | WUE = 54.94 + 0.03DM − 27.51TN + 0.23SWB | *** | 0.768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Qu, Y.; Wang, D.; Liu, Z.; Rong, Y. Artificial Grassland Had Higher Water Use Efficiency in Year with Less Precipitation in the Agro-Pastoral Ecotone. Plants 2023, 12, 1239. https://doi.org/10.3390/plants12061239
Zhao K, Qu Y, Wang D, Liu Z, Rong Y. Artificial Grassland Had Higher Water Use Efficiency in Year with Less Precipitation in the Agro-Pastoral Ecotone. Plants. 2023; 12(6):1239. https://doi.org/10.3390/plants12061239
Chicago/Turabian StyleZhao, Kun, Yan Qu, Deping Wang, Zhongkuan Liu, and Yuping Rong. 2023. "Artificial Grassland Had Higher Water Use Efficiency in Year with Less Precipitation in the Agro-Pastoral Ecotone" Plants 12, no. 6: 1239. https://doi.org/10.3390/plants12061239
APA StyleZhao, K., Qu, Y., Wang, D., Liu, Z., & Rong, Y. (2023). Artificial Grassland Had Higher Water Use Efficiency in Year with Less Precipitation in the Agro-Pastoral Ecotone. Plants, 12(6), 1239. https://doi.org/10.3390/plants12061239