Identification and Quantification of Bioactive Compounds in Organic and Conventional Edible Pansy Flowers (Viola × wittrockiana) and Their Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemical Reagents
3.2. Flower Origins
3.3. Analysis of Dry Matter
3.4. Analysis of Polyphenols (Flavonoids and Phenolic Acids)
3.5. Analysis of Polyphenols (Anthocyanins)
3.6. Analysis of Carotenoids
3.7. Analysis of Antioxidant Activity
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maroyi, A. Ethnobotanical study of wild and cultivated vegetables in the Eastern Cape Province, South Africa. Biodivers. J. 2020, 21, 3982–3988. [Google Scholar] [CrossRef]
- Kibar, B.; Kibar, H. Determination of the nutritional and seed properties of some wild edible plants consumed as vegetable in the Middle Black Sea Region of Turkey. S. Afr. J. Bot. 2017, 108, 117–125. [Google Scholar] [CrossRef]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Nutr. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ntatsi, G.; Gutiérrez-Cortines, M.E.; Karapanos, I.; Barros, A.; Weiss, J.; Balliu, A.; dos Santos Rosa, E.A.; Savvas, D. The quality of leguminous vegetables as influenced by preharvest factors. Sci. Hortic. 2018, 232, 191–205. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Sampaio, S.L.; Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Ferreira, I. Grown to be blue—Antioxidant properties and health effects of colored vegetables. Part I: Root vegetables. Antioxidants 2019, 8, 617. [Google Scholar] [CrossRef] [Green Version]
- Rusman, Q.; Lucas-Barbosa, D.; Poelman, E.H.; Dicke, M. Ecology of plastic flowers. Trends Plant Sci. 2019, 24, 725–740. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, M.; Qiao, H.; Li, F.; Zhang, S.; Zhang, S.; Zhang, H.; Sun, R. Characterization of interspecific hybrids between flowering Chinese cabbage and broccoli. Sci. Hortic. 2018, 240, 552–557. [Google Scholar] [CrossRef]
- Wei, Y.; Li, F.; Zhang, S.; Zhang, S.; Zhang, H.; Sun, R. Characterization of interspecific hybrids between flowering chinese cabbage and chinese kale. Agronomy 2018, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Gostin, A.-I.; Waisundara, V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- Al-juhaimi, F.; Ghafoor, K.; Özcan, M.M.; Jahurul, M.H.A.; Babiker, E.E.; Jinap, S.; Sahena, F.; Sharifudin, M.S.; Zaidul, I.S.M. Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J. Food Sci. Technol. 2018, 55, 3872–3880. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Alfa, H.H.; Arroo, R.R.J. Over 3 decades of research on dietary flavonoid antioxidants and cancer prevention: What have we achieved? Phytochem. Rev. 2019, 18, 989–1004. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxidative Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef]
- Dos Santos, J.M.; Tewari, S.; Mendes, R.H. The role of oxidative stress in the development of diabetes mellitus and its complications. J. Diabetes Res. 2019, 2019, 4189813. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.S.; DeNicola, G.M. The complex interplay between antioxidants and ros in cancer. Trends Cell Biol. 2020, 30, 440–451. [Google Scholar] [CrossRef]
- Szeliga, M. Peroxiredoxins in neurodegenerative diseases. Antioxidants 2020, 9, 1203. [Google Scholar] [CrossRef]
- Kanwugu, O.N.; Glukhareva, T.V.; Danilova, I.; Kovaleva, E.G. Natural antioxidants in diabetes treatment and management: Prospects of astaxanthin. Crit. Rev. Food Sci. Nutr. 2021, 62, 5005–5028. [Google Scholar] [CrossRef]
- Erickson, E.; Adam, S.; Russo, L.; Wojcik, V.; Patch, H.M.; Grozinger, C.M. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 2019, 20, 178–188. [Google Scholar] [CrossRef]
- Kaur, K.; Jhanji, S.; Kaur, G.; Kaur, U. Evaluation of genetic diversity in pansy accessions (Viola spp.) using growth and flowering traits. Ann. Plant Soil Res. 2022, 24, 313–318. [Google Scholar] [CrossRef]
- Gandolfo, E.; Hakim, G.; Geraci, J.; Feuring, V.; Giardina, E.; Di Benedetto, A. Responses of pansy (Viola wittrockiana Gams.) to the quality of the growing media. Am. J. Exp. Agric. 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Gonçalves, J.; Ferreira Borges, J.C.; de Almeida, C.L. Bioactive compounds in edible flowers of garden pansy in response to irrigation and mycorrhizal inoculation. Rev. Ceres. 2019, 66, 407–415. [Google Scholar] [CrossRef]
- Zeljković, S.; Parađiković, N.; Tkalec Kojić, M. Effect of biostimulant application on development of pansy (Viola tricolor var. Hortensis dc.) seedlings. J. Cent. Eur. Agric. 2021, 22, 596–601. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. An overview on the market of edible flowers. Food Rev. Int. 2019, 36, 258–275. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef]
- Matyjaszczyk, E.; Śmiechowska, M. Edible flowers. Benefits and risks pertaining to their consumption. Trends Food Sci. Technol. 2019, 91, 670–674. [Google Scholar] [CrossRef]
- Purohit, S.R.; Sandeep, S.R.; Rana, S.; Idrishi, R.; Sharma, V.; Ghosh, P. A review on nutritional, bioactive, toxicological properties and preservation of edible flowers. Future Food 2021, 4, 100078. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, X.; Maninder, M.; Xu, B. Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int. J. Food Prop. 2018, 21, 1524–1540. [Google Scholar] [CrossRef] [Green Version]
- Nadot, S.; Carrive, L. The colourful life of flowers. Bot. Lett. 2020, 168, 120–130. [Google Scholar] [CrossRef]
- Wang, J.; Lewis, D.; Shi, R.; McGhie, T.; Wang, L.; Arathoon, S.; Schwinn, K.; Davies, K.; Qian, X.; Zhang, H. The colour variations of flowers in wild Paeonia delavayi plants are determined by four classes of plant pigments. N. Z. J. Crop Hortic. Sci. 2020, 50, 69–84. [Google Scholar] [CrossRef]
- Łysiak, G.P. Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties. Foods 2022, 11, 948. [Google Scholar] [CrossRef]
- Djaman, K.; Sanogo, S.; Koudahe, K.; Allen, S.; Saibou, A.; Essah, S. Characteristics of organically grown compared to conventionally grown potato and the processed products: A review. Sustainability 2021, 13, 6289. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V.; Codianni, P.; Russo, M.; Perrone, D.; Suriano, S.; Rascio, A. Phenolic acids variability and grain quality of organically and conventionally fertilised old wheats under a warm climate. J. Sci. Food Agric. 2019, 99, 4615–4623. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.B.; Basay, S.; Turker, A.U. A comparison of organically and conventionally grown artichokes: Phenolic constituents, antioxidant and antibacterial activities. Acta Aliment. 2020, 49, 69–75. [Google Scholar] [CrossRef]
- Pradhan, A.; Srijaya, M. Postharvest quality and storability of organically versus conventionally grown tomatoes: A comparative approach. Biol. Life Sci. Forum 2022, 16, 29. [Google Scholar]
- Kazimierczak, R.; Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Zarzyńska, K. The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Hallmann, E. The effects of organic and conventional farm management and harvest time on the polyphenol content in different raspberry cultivars. Food Chem. 2019, 301, 125295. [Google Scholar] [CrossRef]
- Kurubas, M.S.; Maltas, A.S.; Dogan, A.; Kaplan, M.; Erkan, M. Comparison of organically and conventionally produced Batavia type lettuce stored in modified atmosphere packaging for postharvest quality and nutritional parameters. J. Sci. Food Agric. 2018, 99, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Aina, O.E.; Amoo, S.O.; Mugivhisa, L.L.; Olowoyo, J.O. Effect of organic and inorganic sources of nutrients on the bioactive compounds and antioxidant activity of tomato. Appl. Ecol. Environ. Res. 2019, 17, 3681–3694. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, B.; Huang, W.; Amrouche, A.T.; Maurizio, B.; Simal-Gandara, J.; Tundis, R.; Xiao, J.; Zou, L.; Lu, B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci. Technol. 2020, 106, 30–41. [Google Scholar] [CrossRef]
- Prabawati, N.B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible flowers: Antioxidant compounds and their functional properties. Horticulturae 2021, 7, 66. [Google Scholar] [CrossRef]
- Kalemba-Drożdż, M.; Cierniak, A. Edible flowers are becoming more and more. J. Food Nutr. Res. 2019, 58, 42–50. [Google Scholar]
- Heaton, S. Organic Farming, Food Quality and Human Health: A Review of the Evidence; Soil Association: Bristol, UK, 2001; pp. 38–39. [Google Scholar]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Socha, R.; Kałwik, J.; Juszczak, L. Phenolic profile and antioxidant activity of the selected edible flowers grown in Poland. Acta Univ. Cinbinesis Ser. E Food Technol. 2021, 25, 185–200. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Hallmann, E.; Kazimierczak, R.; Marszałek, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional white cabbage (Brassica oleracea L. var. capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, S.; Maggio, A.; Orsini, F.; Barbieri, G. Cultivar, soil type, nitrogen source and irrigation regime as quality determinants of organically grown tomatoes. Sci. Hortic. 2016, 199, 88–94. [Google Scholar] [CrossRef]
- Yu, X.; Guo, L.; Jiang, G.; Song, Y.; Muminov, M. Advances of organic products over conventional productions with respect to nutritional quality and food security. Acta Ecol. Sin. 2018, 38, 53–60. [Google Scholar] [CrossRef]
- Ceglie, F.G.; Muhadri, L.; Piazzolla, F.; Martinez-Hernandez, G.B.; Amodio, M.L.; Colelli, G. Quality and postharvest performance of organically-grown tomato (Lycopersicon esculentum L. ‘Marmande’) under unheated tunnel in mediterranean climate. Acta Hortic. 2015, 1079, 487–494. [Google Scholar] [CrossRef]
- Bender, I.; Edesi, L.; Hiiesalu, I.; Ingver, A.; Kaart, T.; Kaldmäe, H.; Talve, T.; Tamm, I.; Luik, A. Organic Carrot (Daucus carota L.) production has an advantage over conventional in quantity as well as in quality. Agronomy 2020, 10, 1420. [Google Scholar] [CrossRef]
- Gąstoł, M.; Domagała-Świątkiewicz, I.; Krosniak, M. Organic versus conventional. A comparative study on quality and nutritional value of fruit and vegetable juices. Biol. Agric. Hortic. 2011, 27, 310–319. [Google Scholar] [CrossRef]
- Hallmann, E. Quantitative and qualitative identification of bioactive compounds in edible flowers of black and bristly locust and their antioxidant activity. Biomolecules 2020, 10, 1603. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Stefaniak, A.; Pachlewska, A. Biological value of various edible flower species. Acta Sci. Pol. Hortic. Cult. 2016, 15, 109–119. [Google Scholar]
- Young, J.E.; Zhao, X.; Carey, E.E.; Welti, R.; Yang, S.-S.; Wang, W. Phytochemical phenolics in organically grown vegetables. Mol. Nutr. Food Res. 2005, 49, 1136–1142. [Google Scholar] [CrossRef]
- Tyagi, P.; Singh, A.; Gupta, A.; Prasad, M.; Ranjan, R. Chapter 4—Mechanism and Function of Salicylate in Plant Toward Biotic Stress Tolerance. In Emerging Plant Growth Regulators in Agriculture; Roles in Stress Tolerance; Elsavier: Amsterdam, The Netherlands, 2022; pp. 131–164. [Google Scholar]
- Da Silva, L.A.; Fischer, S.Z.; Zambiazi, R.C. Proximal composition, bioactive compounds content and color preference of Viola x wittrockiana flowers. Int. J. Gastron. Food Sci. 2020, 22, 100236. [Google Scholar] [CrossRef]
- Villa-Ruano, N.; Rosas-Bautista, A.; Rico-Arzate, E.; Cruz-Narvaez, Y.; Zepeda-Vallejo, L.G.; Lalaleo, L.; Hidalgo-Martínez, D.; Becerra-Martínez, E. Study of nutritional quality of pomegranate (Punica granatum L.) juice using 1H NMR-based metabolomic approach: A comparison between conventionally and organically grown fruits. LWT 2020, 134, 110222. [Google Scholar] [CrossRef]
- De Morais, J.S.; Sant’Ana, A.S.; Dantas, A.M.; Silva, B.S.; Lima, M.S.; Borges, G.C.; Magnani, M. Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res. Int. 2020, 131, 109046. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Kopczyńska, K.; Góralska-Walczak, R.; Hallmann, E.; Barański, M.; Marszałek, K.; Kazimierczak, R. Are organic certified carrots richer in health-promoting phenolics and carotenoids than the conventionally grown ones? Molecules 2022, 27, 4184. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Matt, D.; Luik, A.; Gozdowski, D.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef]
- Bielarska, A.M.; Jasek, J.W.; Kazimierczak, R.; Hallmann, E. Red horse chestnut and horse chestnut flowers and leaves: A potential and powerful source of polyphenols with high antioxidant capacity. Molecules 2022, 27, 2279. [Google Scholar] [CrossRef]
- Aninowski, M.; Kazimierczak, R.; Hallmann, E.; Rachtan-Janicka, J.; Fijoł-Adach, E.; Feledyn-Szewczyk, B.; Majak, I.; Leszczyńska, J. Evaluation of the potential allergenicity of strawberries in response to different farming practices. Metabolites 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Głowacka, A.; Rozpara, E.; i Hallmann, E. The dynamic of polyphenols concentrations in organic and conventional sour cherry fruits: Results of a 4-year field study. Molecules 2020, 25, 3729. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Pereira, E.L.; Ramalhosa, E.; Saraiva, J.A. Effect of high hydrostatic pressure on the quality of four edible flowers: Viola × wittrockiana, Centaurea cyanus, Borago officinalis and Camellia japonica. Int. J. Food Sci. 2017, 52, 2455–2462. [Google Scholar] [CrossRef] [Green Version]
- Kandylis, P. Phytochemicals and antioxidant properties of edible flowers. Appl. Sci. 2022, 12, 9937. [Google Scholar] [CrossRef]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Garcia-Alonso, F.J.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Moliner, C.; Barros, L.; Dias, M.I.; Reigada, I.; Ferreira, I.C.F.R.; López, V.; Langa, E.; Rincón, C.G. Viola cornuta and Viola x wittrockiana: Phenolic compounds, antioxidant and neuroprotective activities on Caenorhabditis elegans. J. Food Drug Anal. 2019, 27, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Oyama, K.; Kondo, T. Structure of Polyacylated Anthocyanins and their UV Protective Effect. In Recent Advances in Polyphenol Research; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 171–192. [Google Scholar]
- Ponder, A.; Najman, K.; Aninowski, M.; Leszczyńska, J.; Głowacka, A.; Bielarska, A.; Lasinskas, M.; Hallmann, E. Polyphenols content, antioxidant properties and allergenic potency of organic and conventional blue honeysuckle berries. Molecules 2022, 27, 6083. [Google Scholar] [CrossRef] [PubMed]
- Rachtan-Janicka, J.; Ponder, A.; Hallmann, E. The effect of organic and conventional cultivations on antioxidants content in blackcurrant (Ribes nigrum L.) species. Appl. Sci. 2021, 11, 5113. [Google Scholar] [CrossRef]
- Skowyra, M.; Calvo, M.I.; Gallego, M.G.; Azman, N.A.M.; Almajano, M.P. Characterization of phytochemicals in petals of different colours from Viola × wittrockiana gams and their correlation with antioxidant activity. J. Agric. Sci. 2014, 6, 93–105. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Sun, H.-Y.; Shang, X. Flower color patterning in pansy (Viola × wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiol. Biochem. 2014, 84, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Crestoni, M.E.; Cesa, S.; Quaglio, D.; Botta, B.; Ingallina, C.; Mannina, L.; Tintaru, A.; Chiavarino, B.; Fornarini, S. IR ion spectroscopy in a combined approach with MS/MS and IM-MS to discriminate epimeric anthocyanin glycosides (cyanidin 3-O-glucoside and -galactoside). Int. J. Mass Spectrom. 2019, 444, 116179. [Google Scholar]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid metabolism in plants: The role of plastids. Mol. Plant 2018, 11, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, P.C.; Tomazini, A.P.B.; Stringheta, P.C.; Ribeiro, S.M.R.; Pinheiro-Sant’Ana, H.M. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011, 126, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Hoda, A.K.; Shimaa, M.H. Ascorbic acid, -carotene, total phenolic compound and microbiological quality of organic and conventional citrus and strawberry grown in Egypt. Afr. J. Biotechnol. 2015, 14, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Narbona, E.; del Valle, J.C.; Arista, M.; Buide, M.L.; Ortiz, P.L. Major flower pigments originate different colour signals to pollinators. Front. Ecol. Evol. 2021, 9, 743850. [Google Scholar] [CrossRef]
- Leccese, A.; Bureau, S.; Reich, M.; Renard, M.G.C.C.; Audergon, J.-M.; Mennone, C.; Bartolini, S.; Viti, R. Pomological and nutraceutical properties in apricot fruit: Cultivation systems and cold storage fruit management. Plant Foods Hum. Nutr. 2010, 65, 112–120. [Google Scholar] [CrossRef]
- Hallmann, E.; Rozpara, E.; Słowianek, M.; Leszczyńska, J. The effect of organic and conventional farm management on the allergenic potency and bioactive compounds status of apricots (Prunus armeniaca L.). Food Chem. 2019, 279, 171–178. [Google Scholar] [CrossRef]
- Fernandes, L.; Ramalhosa, E.; Pereira, J.A.; Saraiva, J.A.; Casal, S. Borage, camellia, centaurea and pansies: Nutritional, fatty acids, free sugars, vitamin E, carotenoids and organic acids characterization. Int. Food Res. 2020, 132, 109070. [Google Scholar] [CrossRef] [PubMed]
- Radó-Takács, A. The Effect of Growing Mixture Additives on the Development of Viola x wittrockiana ‘Carrera’. In Proceedings of the Scientific Proceedings of the 5th International Scientific Horticulture Conference, Nitra, Slovakia, 21–23 September 2016; pp. 11–121. [Google Scholar]
- Hu, Q.; Xu, J. Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation. J. Agric. Food Chem. 2011, 59, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.S.; Navarre, D.A.; Bamberg, J. Analysis of polyphenols, anthocyanins and carotenoids in tubers from Solanum tuberosum group Phureja, Stenotomum and Andigena. AJPR 2013, 90, 440–450. [Google Scholar] [CrossRef]
- Polish Norm PN-R-04013; The Estimation of Dry Matter in Fruits and Vegetables. Polish Standard Committee: Warszawa, Poland, 1988; pp. 1–5.
- Średnicka-Tober, D.; Ponder, A.; Hallmann, E.; Głowacka, A.; Rozpara, E. The profile and content of polyphenols and carotenoids in local and commercial sweet cherry fruits (Prunus avium L.) and their antioxidant activity in vitro. Antioxidants 2019, 8, 534. [Google Scholar]
- Ponder, A.; Hallmann, E. Phenolics and carotenoid contents in the leaves of different organic and conventional raspberry (Rubus idaeus L.) cultivars and their in vitro activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Nala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
(a) | ||||||
Compound Groups/Experimental Combinations | Production System | Flower Color | p-Value | |||
Conventional | Organic | (Violet/Yellow) | (Yellow) | Production System | Flower Color | |
dry matter | 13.40 ± 0.4 1 B | 15.32 ± 0.4 A | 14.49 ± 0.1 a | 14.24 ± 0.8 a | <0.0001 | N.S. 3 |
polyphenols | 245.06 ± 87.4 1 B 2 | 333.76 ± 100.9 A | 519.87 ± 25.1 a | 58.95 ± 11.4 b | <0.0001 | <0.0001 |
phenolic acids | 16.00 ± 0.9 B | 40.07 ± 6.9 A | 20.58 ± 1.1 b | 35.50 ± 8.8 a | <0.0001 | <0.0001 |
flavonoids | 229.06 ± 86.5 B | 293.69 ± 107.8 A | 499.29 ± 24.1 a | 23.46 ± 2.6 b | <0.0001 | <0.0001 |
anthocyanins | 209.95 ± 85.7 B | 241.95 ± 98.8 A | 451.90 ± 13.4 | not detected | <0.0001 | |
carotenoids | 5.29 ± 1.1 B | 8.46 ± 1.2 A | 4.17 ± 0.6 b | 9.58 ± 0.7 a | <0.0001 | <0.0001 |
chlorophylls | 9.16 ± 0.2 B | 13.89 ± 0.4 A | 11.08 ± 0.9 a | 11.97 ± 1.1 a | <0.0001 | N.S. |
(b) | ||||||
Compound Groups/Experimental Combinations | Conventional | Organic | p-Value | |||
Violet/Yellow Pansy | Yellow Pansy | Violet/Yellow Pansy | Yellow Pansy | |||
dry matter | 14.48 ± 0.13 1 b 2 | 12.33 ± 0.13 c | 14.50 ± 0.10 b | 16.15 ± 0.28 a | <0.0001 | |
polyphenols | 458.96 ± 3.97 a | 31.16 ± 0.61 c | 580.78 ± 6.22 a | 86.74 ± 1.60 b | <0.0001 | |
phenolic acids | 18.03 ± 0.21 c | 13.98 ± 0.42 d | 23.12 ± 0.35 b | 57.02 ± 1.09 a | <0.0001 | |
flavonoids | 440.93 ± 3.53 b | 17.19 ± 0.28 c | 557.65 ± 5.93 a | 29.73 ± 0.54 c | <0.0001 | |
anthocyanins | 419.91 ± 3.48 b | not detected | 483.90 ± 4.27 a | not detected | <0.0001 | |
carotenoids | 2.69 ± 0.02 c | 7.88 ± 0.20 b | 5.65 ± 0.06 b | 11.28 ± 0.29 a | 0.0001 | |
chlorophylls | 8.95 ± 0.31 b | 9.37 ± 0.26 b | 13.21 ± 0.32 a | 14.57 ± 0.40 a | 0.003 |
(a) | ||||||
Compounds/Experimental Combinations | Production System | Flowers’ Color | p-Value | |||
Conventional Pansy | Organic Pansy | (Violet/Yellow) | (Yellow) | Production System | Flower Color | |
gallic | 8.79 ± 0.6 B | 23.29 ± 5.3 A | 10.27 ± 0.2 b | 21.82 ± 5.9 a | <0.0001 | <0.0001 |
chlorogenic | 4.03 ± 0.1 B | 10.57 ± 1.8 A | 5.15 ± 0.4 b | 9.45 ± 2.3 a | <0.0001 | <0.0001 |
caffeic | 0.86 ± 0.1 B | 1.05 ± 0.1 A | 1.03 ± 0.1 a | 0.88 ± 0.1 b | 0.0091 | 0.0003 |
p-coumaric | 2.32 ± 0.2 B | 5.16 ± 0.2 A | 4.13 ± 0.6 a | 3.35 ± 0.6 b | <0.0001 | <0.0001 |
quercetin-3-O-rutinoside | 0.24 ± 0.1 B | 0.45 ± 0.1 A | 0.40 ± 0.1 a | 0.29 ± 0.1 b | <0.0001 | <0.0001 |
myticetin | 3.92 ± 0.2 B | 6.07 ± 0.1 A | 5.21 ± 0.3 a | 4.78 ± 0.5 b | <0.0001 | 0.0124 |
quercetin | 1.83 ± 0.1 B | 2.32 ± 0.1 A | 2.18 ± 0.1 a | 1.98 ± 0.1 b | <0.0001 | 0.0005 |
quercetin-3-O-glucoside | 10.93 ± 0.5 B | 40.80 ± 9.0 A | 37.41 ± 10.4 a | 14.32 ± 1.8 b | <0.0001 | <0.0001 |
kaempferol | 2.19 ± 0.1 A | 2.10 ± 0.1 B | 2.20 ± 0.1 a | 2.09 ± 0.1 b | 0.0155 | 0.004 |
cyanidin-3-O-rutinoside | 184.33 ± 75.3 B | 217.02 ± 88.6 A | 401.35 ± 13.6 | not detected | <0.0001 | <0.0001 |
cyanidin-3-O-glucoside | 25.62 ± 10.5 A | 24.93 ± 10.2 B | 50.56 ± 0.5 | not detected | <0.0001 | <0.0001 |
lutein | 3.01 ± 1.0 B | 5.61 ± 1.1 A | 1.76 ± 0.5 b | 6.87 ± 0.6 a | <0.0001 | <0.0001 |
zeaxanthin | 0.94 ± 0.1 B | 1.08 ± 0.1 A | 0.99 ± 0.1 b | 1.02 ± 0.1 a | <0.0001 | 0.048 |
β-carotene | 1.34 ± 0.1 B | 1.77 ± 0.1 A | 1.43 ± 0.1 b | 1.69 ± 0.1 a | <0.0001 | 0.0001 |
chlorophylls b | 4.80 ± 0.6 B | 8.78 ± 0.7 A | 8.30 ± 0.9 a | 5.27 ± 0.7 b | <0.0001 | <0.0001 |
chlorophylls a | 4.36 ± 0.6 B | 5.12 ± 1.0 A | 2.78 ± 0.1 b | 6.70 ± 0.4 a | 0.0106 | <0.0001 |
(b) | ||||||
Compounds Groups/Experimental Combinations | Conventional | Organic | p-Value | |||
Violet/Yellow Pansy | Yellow Pansy | Violet/Yellow Pansy | Yellow Pansy | |||
gallic | 10.17 ± 0.16 1 b 2 | 7.42 ± 0.30 c | 10.36 ± 0.30 b | 36.22 ± 0.63 a | <0.0001 | |
chlorogenic | 4.20 ± 0.06 c | 3.85 ± 0.14 c | 6.10 ± 0.03 b | 15.05 ± 0.34 a | <0.0001 | |
caffeic | 0.96 ± 0.01 | 0.76 ± 0.01 | 1.10 ± 0.02 | 1.00 ± 0.03 | N.S. 3 | |
p-coumaric | 2.70 ± 0.01 b | 1.94 ± 0.03 b | 5.57 ± 0.07 a | 4.75 ± 0.15 a | 0.0005 | |
quercetin-3-O-rutinoside | 0.27 ± 0.01 b | 0.20 ± 0.01 b | 0.52 ± 0.01 a | 0.37 ± 0.01a | 0.0003 | |
myrycetin | 4.38 ± 0.06 b | 3.47 ± 0.03 b | 6.05 ± 0.10 a | 6.09 ± 0.18 a | 0.0077 | |
quercetin | 2.05 ± 0.03 a | 1.62 ± 0.01 b | 2.30 ± 0.02 a | 2.34 ± 0.05 a | 0.0002 | |
quercetin-3-glucoside | 11.99 ± 0.10 b | 9.86 ± 0.26 b | 62.82 ± 1.62 a | 18.79 ± 0.31 b | <0.0001 | |
kaempferol | 2.34 ± 0.02 | 2.03 ± 0.02 | 2.06 ± 0.01 | 2.14 ± 0.04 | N.S. | |
cyanidin-3-O-rutinodise | 368.66 ± 2.92 b | not detected | 434.04 ± 3.86 a | not detected | <0.0001 | |
cyanidin-3-O-glucoside | 51.25 ± 0.61 a | not detected | 49.86 ± 0.41 b | not detected | <0.0001 | |
lutein | 0.57 ± 0.02 c | 5.45 ± 0.17a | 2.94 ± 0.05 b | 8.29 ± 0.25 a | 0.0043 | |
zeaxanthin | 0.98 ± 0.01 a | 0.89 ± 0.01 b | 0.99 ± 0.01 a | 1.16 ± 0.02 a | <0.0001 | |
β-carotene | 1.14 ± 0.03 b | 1.54 ± 0.03 a | 1.71 ± 0.03 a | 1.83 ± 0.03 a | 0.004 | |
chlorophyll b | 6.09 ± 0.35 b | 3.51 ± 0.15 c | 10.52 ± 0.36 a | 7.04 ± 0.16 a | 0.0001 | |
chlorophyll a | 2.86 ± 0.05 b | 5.86 ± 0.21 a | 2.70 ± 0.15 b | 7.54 ± 0.27 a | 0.0037 |
Groups of Compounds | Antioxidant Activity | |||
---|---|---|---|---|
Organic Pansy Flowers | p-Value | Conventional Pansy Flowers | p-Value | |
total polyphenols | 0.9997 | <0.0001 | 0.9998 | <0.0001 |
violet/yellow | yellow | |||
total anthocyanins | 0.8726 | <0.0001 | - | |
total carotenoids | 0.9553 | <0.0001 | 0.9095 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozicka, M.; Hallmann, E. Identification and Quantification of Bioactive Compounds in Organic and Conventional Edible Pansy Flowers (Viola × wittrockiana) and Their Antioxidant Activity. Plants 2023, 12, 1264. https://doi.org/10.3390/plants12061264
Kozicka M, Hallmann E. Identification and Quantification of Bioactive Compounds in Organic and Conventional Edible Pansy Flowers (Viola × wittrockiana) and Their Antioxidant Activity. Plants. 2023; 12(6):1264. https://doi.org/10.3390/plants12061264
Chicago/Turabian StyleKozicka, Michalina, and Ewelina Hallmann. 2023. "Identification and Quantification of Bioactive Compounds in Organic and Conventional Edible Pansy Flowers (Viola × wittrockiana) and Their Antioxidant Activity" Plants 12, no. 6: 1264. https://doi.org/10.3390/plants12061264
APA StyleKozicka, M., & Hallmann, E. (2023). Identification and Quantification of Bioactive Compounds in Organic and Conventional Edible Pansy Flowers (Viola × wittrockiana) and Their Antioxidant Activity. Plants, 12(6), 1264. https://doi.org/10.3390/plants12061264