Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods
Abstract
:1. Introduction
2. Results
2.1. The Performance of the Treatments and the Application Modes with Increased Selenium Concentration on the Biofortification of Florets
2.2. The Performance of the Application Modes and the Treatments with Selenium 0.2 mM Enriched with Amino Acids in the Biofortification of Florets
3. Discussion
3.1. Selenium Biofortification and S Nutrition of the Broccoli Floret
3.2. Could We Overcome the Se-S Competition by Exogenously Applying the S-Containing Amino Acids Cysteine or/and Methionine?
3.3. The Role of the Surfactant
4. Materials and Methods
4.1. Plant Materials and Cultivation
4.2. Sample Handling and Determinations
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Se | Selenium | FM | Fresh mass |
Se0.2 | Selenium concentration 0.2 mM | DM | Dry mass |
GSLs | Glucosinolates | C | Carbon |
ΣGSL | Total determined glucosinolates | N | Nitrogen |
GlRa | Glucoraphanin | S | Sulfur |
GlIb | Glucoiberin | SO4-S | Sulfate |
GlBr | Glucobrassicin | Stot | Total sulfur |
FERT | Fertigation | Sorg | Organic sulfur |
FA | Foliar application | Car | Carotenoids |
IAE | Isodecyl alcohol ethoxylate | Chltot | Total chlorophyll |
SiE | Organosilicon-based ethoxylate | Chla | Chlorophyll-a |
FA,SiE | Foliar application with SiE | Chlb | Chlorophyll-b |
FA,IAE | Foliar application with IAE | PPs | Polyphenols |
Cys | Cysteine | Met | Methionine |
Mix | Mixture of phenylalanine, tryptophane, and methionine |
References
- López-Varela, S.; González-Gross, M.; Marcos, A. Functional foods and the immune system: A review. Eur. J. Clin. Nutr. 2002, 56, S29–S33. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.N.; Bansal, S.; Tushir, S.; Kaur, J.; Sharma, K. Advantage of biofortification over fortification technologies. In Wheat and Barley Grain Biofortification; Gupta, O.M., Pandey, V., Narwal, S., Sharma, P., Ram, S., Singh, G.P., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 257–273. [Google Scholar] [CrossRef]
- Mahn, A.; Reyes, A. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci. Technol. Int. 2012, 18, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.J.; Keck, A.-S.; Banuelos, G.; Finley, J.W. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosino- late, and sulforaphane content of broccoli. J. Med. Food 2005, 8, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Moreno, D.A.; Carvajal, M.; López-Berenguer, C.; García-Viguera, C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 2006, 41, 1508–1522. [Google Scholar] [CrossRef]
- Wiesner-Reinhold, M.; Schreiner, M.; Baldermann, S.; Schwarz, D.; Hanschen, F.S.; Kipp, A.P.; Rowan, D.D.; Bentley-Hewitt, K.L.; McKenzie, M.J. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. Front. Plant Sci. 2017, 8, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavon, M.; Nardi, S.; dalla Vecchia, F.; Ertani, A. Selenium biofortification in the 21st century: Status and challenges for healthy human nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef]
- Newmman, R.; Waterland, N.; Moon, Y.; Tou, J.C. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prenention—A review. Plant Foods Hum. Nutr. 2019, 74, 449–460. [Google Scholar] [CrossRef]
- Hsu, F.-C.; Wirtz, M.; Hepel, S.C.; Bogs, J.; Kraemer, U.; Khan, M.S.; Bub, A.; Hell, R.; Rausch, T. Generation of Se-fortified broccoli as functional food: Impact of Se fertilization on S metabolism. Plant Cell Environ. 2011, 34, 192–207. [Google Scholar] [CrossRef]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2015, 117, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Whanger, P.D. Selenium and its relationship to cancer: An update. Br. J. Nutr. 2004, 91, 11–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyrzynscka, K.; Sentkowska, A. Selenium in plant foods: Speciation analysis, bioavailability, and factors affecting composition. Crit. Rev. Food Sci. Nutr. 2021, 61, 1340–1352. [Google Scholar] [CrossRef] [PubMed]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H.; German Nutrition Society (DGE). Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finley, J.W.; Sigrid-Keck, A.; Robbins, R.J.; Hintze, K.J. Selenium enrichment of broccoli: Interactions between selenium and secondary plant compounds. J. Nutr. 2005, 135, 1236–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahn, A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem. 2017, 233, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, Μ.; Borhannuddin Bhuyan, M.H.N.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Al Mahnud, J.; Nahar, K.; Fujita, M. Selenium in plants: Boon or bane? Environ. Exp. Bot. 2020, 178, 104170. [Google Scholar] [CrossRef]
- Kolbert, Z.; Molnar, A.; Feigl, G.; Van Hoewyk, D. Plant selenium toxicity: Proteome in the crosshairs. J. Plant Physiol. 2019, 232, 292–300. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A.H. On the ecology of selenium accumulation in plants. Plants 2019, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.H.; Dhankher, O.P.; Tripathi, R.D. Understanding selenium metabolism in plants and its role as a beneficial element. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Mitreiter, S.; Gigolashvili, T. Regulation of glucosinolate biosynthesis. J. Exp. Bot. 2021, 72, 70–91. [Google Scholar] [CrossRef]
- Chhajed, S.; Mostafa, I.; He, Y.; Abou-Hashem, M.; El-Domiaty, M.; Chen, S. Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense. Agronomy 2020, 10, 1786. [Google Scholar] [CrossRef]
- Jeschke, V.; Weber, K.; Moore, S.S.; Burow, M. Coordination of Glucosinolate Biosynthesis and Turnover Under Different Nutrient Conditions. Front. Plant Sci. 2019, 10, 1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.P.T.; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020, 25, 4537. [Google Scholar] [CrossRef]
- Sepúlveda, I.; Barrientos, H.; Mahn, A.; Moenne, A. Changes in SeMSC, Glucosinolates and Sulforaphane Levels, and in Proteome Profile in Broccoli (Brassica oleracea var. Italica) Fertilized with Sodium Selenate. Molecules 2013, 18, 5221–5234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrkıc, V.; Cocci, E.; Rosa, M.D.; Sacchetti, G. Effect of drying conditions on bioactive compounds and antioxidant activity of broccoli (Brassica oleracea L.). J. Sci. Food Agric. 2006, 86, 1559–1566. [Google Scholar] [CrossRef]
- Malagoli, M.; Schiavon, M.; dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yang, J.; Kronzucker, H.J.; Shi, W. Selenium biofortification and interaction with other elements in plants: A review. Front. Plant Sci. 2020, 11, 586421. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Ertani, A.; Pilon-Smits, E.A.H.; Fabrega-Prats, M.; Schiavon, M. Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa Mill. and Diplotaxis tenuilolia) grown in hydroponics. Plants 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloem, E.; Haneklaus, S.; Schnug, E. Comparative effects of sulfur and nitrogen fertilization and post-harvest processing parameters on the glucotropaeolin content of Tropaeolum majus L. J. Sci. Food Agric. 2007, 87, 1576–1585. [Google Scholar] [CrossRef]
- Aarabi, F.; Kusajima, M.; Tohge, T.; Konishi, T.; Gigolashvili, T.; Takamune, M.; Sasazaki, Y.; Watanabe, M.; Nakashita, H.; Fernie, A.R.; et al. Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants. Sci. Adv. 2016, 2, e1601087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros, G.H.; van Rotterdam, A.M.D.; Bussink, D.W.; Bindraban, P.S. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil. 2016, 404, 99–112. [Google Scholar] [CrossRef]
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Dal Bosco, A.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C.; et al. Current knowledge on selenium biofortification to improve the neutraceutical profile of food: A comprehensive review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef]
- Sarwar, N.; Akhtar, M.; Kamran, M.A.; Imran, M.; Riaz, M.A.; Kamran, K.; Hussain, S. Selenium biofortification in food crops: Key mechanisms and future perspective. J. Food Compos. Anal. 2020, 93, 103615. [Google Scholar] [CrossRef]
- Räsch, A.; Hunsche, M.; Mail, M.; Burkhardt, J.; Noga, G.; Pariyar, S. Agricultural adjuvants may impair leaf transpiration and photosynthetic activity. Plant Physiol. Biochem. 2018, 132, 229–237. [Google Scholar] [CrossRef]
- Burghardt, M.; Schreiber, L.; Riederer, M. Enhancement of the Diffusion of Active Ingredients in Barley Leaf Cuticular Wax by Monodisperse Alcohol Ethoxylates. J. Agric. Food Chem. 1998, 46, 1593–1602. [Google Scholar] [CrossRef]
- Kirkwood, R.C. Use and mode of action of adjuvants for herbicides: A review of some current work. Pestic. Sci. 1993, 38, 93–102. [Google Scholar] [CrossRef]
- Ruecker, C.; Kuemmerer, K. Environmental chemistry of organosiloxanes. Chem. Rev. 2015, 115, 466–524. [Google Scholar] [CrossRef]
- Lusterio, A.; Brook, M.A. Naturally Derived Silicone Surfactants Based on Saccharides and Cysteamine. Molecules 2021, 26, 4802. [Google Scholar] [CrossRef] [PubMed]
- Knoche, M. Organosilicone surfactant performance in agricultural spray application: A review. Weed Res. 1994, 34, 221–239. [Google Scholar] [CrossRef]
- Courbet, G.; Gallardo, K.; Vigani, G.; Brunel-Muguet, S.; Trouverie, J.; Salon, C.; Ourry, A. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. J. Exp. Bot. 2019, 70, 4183–4196. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulou, M.; Bouzas, E.A.; Siyiannis, V.; Perouli, M.; Kokotou, M.; Chorianopoulou, S.N.; Constantinou-Kokotou, V.; Bouranis, D.L. Selenium assimilation by broccoli: Effect of Se inputs on the biosynthesis of secondary metabolites under normal or reduced S inputs. In Proceedings of the 28th International Symposium of CIEC, Fertilization and Nutrient Use Efficiency in Mediterranean Environments; Bouranis, D.L., Haneklaus, S.H., Chorianopoulou, S.N., Li, J., De Kok, L.J., Schnug, E., Ji, L., Eds.; Utopia Publishing Ltd.: Athens, Greece, 2020; pp. 169–173. ISBN 978-618-5173-62-3. [Google Scholar]
- Stylianidis, G.; Kokotou, M.; Chorianopoulou, S.N.; Contantinou-Kokotou, V.; Bouranis, D.L. Effect of sulfur deprivation on biofortification of Broccoli with selenium: Aspects of nutriome response. In Proceedings of the S-Bio 2021—Joint Meeting for Plant and Human Sulfur Biology and Glucosinolates Conference, Seville, Spain, 26–30 September 2021. [Google Scholar]
- Manta, V.; Karousis, E.N.; Stylianidis, G.; Tzanaki, A.; Dimitriadi, D.; Chorianopoulou, S.N.; Bouranis, D.L. Combined biofortification of broccoli heads with selenium, cysteine, and/or methionine: A potential approach to overcome the antagonistic relationship between sulfur and selenium? In Proceedings of the 12th International Plant Sulfur Workshop, London, ON, Canada, 15–18 July 2022. [Google Scholar]
- Bouranis, D.L.; Karousis, E.N.; Stylianidis, G.; Tzanaki, A.; Dimitriadi, D.; Siyiannis, V.; Chorianopoulou, S.N. Monitoring of broccoli crop before and after biofortification: Toward revealing potential transient stressful periods during development. In Proceedings of the 2nd AGROECOINFO Conference, Volos, Greece, 30 June–1 July 2022; ISBN 978-618-84403-8-8. [Google Scholar]
- Karousis, E.N.; Stylianidis, G.; Tzanaki, A.; Dimitriadi, D.; Chorianopoulou, S.N.; Bouranis, D. Monitoring of broccoli crop before and after biofortification: The use of photochemical reflection index. In Proceedings of the 2nd AGROECOINFO Conference, Volos, Greece, 30 June–1 July 2022; ISBN 978-618-84403-8-8. [Google Scholar]
- Tian, M.; Hui, M.; Thannhauser, T.W.; Pan, S.; Li, L. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica). Front. Plant Sci. 2017, 8, 1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godoy, F.; Olivos-Hernández, K.; Stange, C.; Handford, M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef]
- Chomchan, R.; Siripongvutikorn, S.; Puttarak, P. Selenium bio-fortification: An alternative to improve phytochemicals and bioactivities of plant foods. Funct. Foods Health Dis. 2017, 7, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Cieslik, E.; Greda, A.; Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem. 2006, 94, 135–142. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Yang, Y.; Ávila, F.W.; Fish, T.; Yuan, H.; Hui, M.; Pan, S.; Thannhauser, T.W.; Li, L. Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli. J. Agric. Food Chem. 2018, 66, 8036–8044. [Google Scholar] [CrossRef]
- Pavlovic, J.; Kostic, L.; Bosnic, P.; Kirkby, E.A.; Nikolic, M. Interactions of Silicon With Essential and Beneficial Elements in Plants. Front. Plant Sci. 2021, 12, 697592. [Google Scholar] [CrossRef]
- Mesnage, R.; Antoniou, M.N. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. Front. Public Health 2018, 5, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welna, M.; Szymczycha-Madeja, A. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES. Food Chem. 2014, 159, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Korenovska, M. Determination of arsenic, antimony, and selenium by FI-HGAAS in foods consumed in Slovakia. J. Food Nutr. Res. 2006, 45, 84–88. [Google Scholar]
- Miller, R.O. Extractable chloride, nitrate, orthophosphate, potassium, and sulfate-sulfur in plant tissue: 2% acetic acid extraction. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press LLC.: Boca Raton, FL, USA, 1998; pp. 115–118. [Google Scholar]
- Sörbo, B. Sulfate: Turbidimetric and nephelometric methods. In Methods in Enzymology: Sulfur and Sulfur Amino Acids; Jakoby, W.B., Griffith, O.W., Eds.; Academic Press, Inc.: New York, NY, USA, 1987; Volume 143, pp. 3–6. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- EU Methode Nr. L170/28; Bestimmung des Glucosinolatgehaltes von Oelsaaten durch HPLC. EU: Brussels, Belgium, 1990.
- Bloem, E.; Gerighausen, H.; Chen, X.; Schnug, E. The Potential of Spectral Measurements for Identifying Glyphosate Application to Agricultural Fields. Agronomy 2020, 10, 1409. [Google Scholar] [CrossRef]
1. Fresh Mass (g) | 2. Dry Mass (g) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FERT | FA, IAE | FA, SiE | TR | FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||
A Se 0.0 | 77 | ± | 4 | - | 61 | ± | 6 | - | 61 | ± | 7 | - | AΒ | 10.96 | ± | 0.91 | - | 8.38 | ± | 1.20 | - | 9.65 | ± | 0.87 | - | - |
Se 0.2 | 81 | ± | 5 | - | 77 | ± | 7 | - | 73 | ± | 3 | - | A | 10.75 | ± | 0.48 | - | 12.41 | ± | 0.49 | - | 10.04 | ± | 0.51 | - | - |
Se 1.5 | 64 | ± | 2 | - | 71 | ± | 7 | - | 61 | ± | 5 | - | AΒ | 9.62 | ± | 0.58 | - | 10.49 | ± | 1.36 | - | 9.29 | ± | 1.07 | - | - |
Se 3.0 | 54 | ± | 12 | - | 68 | ± | 3 | - | 65 | ± | 4 | - | Β | 11.26 | ± | 0.53 | - | 9.73 | ± | 0.39 | - | 11.87 | ± | 2.47 | - | - |
AppM | - | - | - | - | - | - | ||||||||||||||||||||
B Se 0.2 | 81 | ± | 5 | - | 77 | ± | 7 | - | 73 | ± | 3 | - | AΒ | 10.75 | ± | 0.48 | ab | 12.41 | ± | 0.49 | ab | 10.04 | ± | 0.51 | ab | AB |
Cys, Se 0.2 | 90 | ± | 4 | - | 91 | ± | 2 | - | 73 | ± | 5 | - | A | 13.33 | ± | 0.19 | a | 12.54 | ± | 0.03 | ab | 9.87 | ± | 1.05 | ab | A |
Met, Se 0.2 | 86 | ± | 3 | - | 81 | ± | 5 | - | 70 | ± | 4 | - | AΒ | 11.95 | ± | 0.63 | ab | 11.53 | ± | 0.69 | ab | 9.84 | ± | 0.44 | ab | AB |
Cys, Met, Se 0.2 | 71 | ± | 6 | - | 63 | ± | 7 | - | 76 | ± | 6 | - | Β | 8.99 | ± | 0.47 | b | 8.56 | ± | 1.14 | b | 11.57 | ± | 1.17 | ab | B |
mix, Se 0.2 | 77 | ± | 4 | - | 62 | ± | 9 | - | 76 | ± | 12 | - | AΒ | 10.24 | ± | 0.44 | ab | 10.23 | ± | 1.55 | ab | 11.84 | ± | 1.14 | ab | AB |
AppM | - | - | - | - | - | - | ||||||||||||||||||||
3. Selenium content (μmol g−1 DM) | 4. Total sulfur content (μmol g−1 DM) | |||||||||||||||||||||||||
FERT | FA, IAE | FA, SiE | TR | FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||
A Se 0.0 | 0.0 | ± | 0.0 | e | 0.0 | ± | 0.0 | e | 0.0 | ± | 0.0 | e | C | 60.2 | ± | 6.1 | - | 47.1 | ± | 2.7 | - | 62.9 | ± | 6.4 | - | A |
Se 0.2 | 0.7 | ± | 0.1 | de | 0.5 | ± | 0.1 | de | 0.3 | ± | 0.0 | de | C | 54.5 | ± | 3.3 | - | 59.7 | ± | 4.0 | - | 39.0 | ± | 3.4 | - | AB |
Se 1.5 | 4.4 | ± | 0.2 | ab | 2.0 | ± | 0.2 | cd | 2.6 | ± | 0.2 | bc | B | 66.8 | ± | 2.4 | - | 56.8 | ± | 4.5 | - | 54.0 | ± | 1.9 | - | A |
Se 3.0 | 5.7 | ± | 0.8 | a | 4.1 | ± | 0.7 | ab | 2.9 | ± | 0.5 | bc | A | 46.6 | ± | 10.9 | - | 41.9 | ± | 5.2 | - | 46.3 | ± | 4.7 | - | B |
AppM | A’ | B’ | B’ | - | - | - | ||||||||||||||||||||
B Se 0.2 | 0.7 | ± | 0.1 | ab | 0.5 | ± | 0.1 | bc | 0.3 | ± | 0.0 | c | A | 54.5 | ± | 3.3 | - | 59.7 | ± | 4.0 | - | 39.0 | ± | 3.4 | - | - |
Cys, Se 0.2 | 0.8 | ± | 0.1 | a | 0.3 | ± | 0.1 | c | 0.4 | ± | 0.1 | c | A | 50.2 | ± | 4.7 | - | 64.5 | ± | 8.4 | - | 39.0 | ± | 3.0 | - | - |
Met, Se 0.2 | 0.7 | ± | 0.1 | ab | 0.2 | ± | 0.1 | c | 0.2 | ± | 0.0 | c | A | 47.9 | ± | 10.8 | - | 73.8 | ± | 4.6 | - | 34.8 | ± | 4.5 | - | - |
Cys, Met, Se 0.2 | 0.9 | ± | 0.0 | a | 0.2 | ± | 0.1 | c | 0.3 | ± | 0.1 | c | A | 41.4 | ± | 2.1 | - | 72.8 | ± | 5.2 | - | 41.5 | ± | 1.8 | - | - |
mix, Se 0.2 | 0.7 | ± | 0.1 | ab | 0.2 | ± | 0.0 | c | 0.3 | ± | 0.0 | c | A | 54.9 | ± | 9.8 | - | 63.4 | ± | 11.9 | - | 45.0 | ± | 2.1 | - | - |
AppM | A’ | B’ | B’ | B’ | A’ | C’ | ||||||||||||||||||||
5. Sulfate content (μmol g−1 DM) | 6. Organic sulfur content (μmol g−1 DM) | |||||||||||||||||||||||||
FERT | FA, IAE | FA, SiE | TR | FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||
A Se 0.0 | 11.3 | ± | 0.7 | - | 10.2 | ± | 1.3 | - | 13.2 | ± | 3.2 | - | B | 48.9 | ± | 5.6 | - | 36.9 | ± | 2.7 | - | 49.6 | ± | 3.3 | - | A |
Se 0.2 | 18.0 | ± | 1.6 | - | 20.8 | ± | 4.3 | - | 12.1 | ± | 1.1 | - | AB | 36.5 | ± | 1.7 | - | 39.0 | ± | 1.4 | - | 26.9 | ± | 2.3 | - | AB |
Se 1.5 | 19.0 | ± | 1.3 | - | 24.5 | ± | 4.4 | - | 21.1 | ± | 2.7 | - | A | 47.8 | ± | 3.6 | - | 32.4 | ± | 4.2 | - | 32.9 | ± | 1.8 | - | A |
Se 3.0 | 18.7 | ± | 2.0 | - | 25.8 | ± | 2.0 | - | 19.1 | ± | 3.0 | - | A | 27.9 | ± | 11.8 | - | 16.2 | ± | 6.9 | - | 27.2 | ± | 3.5 | - | B |
AppM | - | - | - | A’ | B’ | A’B’ | ||||||||||||||||||||
B Se 0.2 | 18.0 | ± | 1.6 | - | 20.8 | ± | 4.3 | - | 12.1 | ± | 1.1 | - | - | 36.5 | ± | 1.7 | - | 39.0 | ± | 1.4 | - | 26.9 | ± | 2.3 | - | - |
Cys, Se 0.2 | 19.2 | ± | 0.5 | - | 18.2 | ± | 2.7 | - | 21.4 | ± | 3.6 | - | - | 31.0 | ± | 4.7 | - | 46.3 | ± | 9.9 | - | 17.6 | ± | 2.8 | - | - |
Met, Se 0.2 | 16.7 | ± | 1.8 | - | 17.4 | ± | 2.5 | - | 18.1 | ± | 3.6 | - | - | 31.2 | ± | 9.1 | - | 56.4 | ± | 2.8 | - | 16.7 | ± | 1.2 | - | - |
Cys, Met, Se 0.2 | 27.6 | ± | 2.5 | - | 24.4 | ± | 3.0 | - | 16.8 | ± | 0.3 | - | - | 13.8 | ± | 1.3 | - | 48.4 | ± | 6.0 | - | 24.7 | ± | 2.1 | - | - |
mix, Se 0.2 | 21.6 | ± | 5.7 | - | 23.5 | ± | 5.9 | - | 23.3 | ± | 3.8 | - | - | 33.3 | ± | 14.1 | - | 40.0 | ± | 13.2 | - | 21.7 | ± | 4.4 | - | - |
AppM | - | - | - | B’ | A’ | B’ |
1. Carotenoids Content (mg g−1 DM) | 2. Total Chlorophylls Content (mg g−1 DM) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FERT | FA, IAE | FA, SiE | TR | FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||
A Se 0.0 | 0.14 | ± | 0.02 | a | 0.17 | ± | 0.01 | a | 0.13 | ± | 0.01 | a | - | 1.44 | ± | 0.11 | a | 1.58 | ± | 0.11 | a | 1.37 | ± | 0.05 | a | - |
Se 0.2 | 0.11 | ± | 0.01 | a | 0.15 | ± | 0.01 | a | 0.17 | ± | 0.01 | a | - | 1.19 | ± | 0.07 | a | 1.54 | ± | 0.06 | a | 1.40 | ± | 0.07 | a | - |
Se 1.5 | 0.14 | ± | 0.01 | a | 0.13 | ± | 0.00 | a | 0.15 | ± | 0.01 | a | - | 1.42 | ± | 0.02 | a | 1.36 | ± | 0.04 | a | 1.62 | ± | 0.12 | a | - |
Se 3.0 | 0.14 | ± | 0.01 | a | 0.12 | ± | 0.02 | a | 0.16 | ± | 0.01 | a | - | 1.39 | ± | 0.04 | a | 1.26 | ± | 0.15 | a | 1.48 | ± | 0.12 | a | - |
AppM | - | - | - | - | - | - | ||||||||||||||||||||
B Se 0.2 | 0.11 | ± | 0.01 | - | 0.15 | ± | 0.01 | - | 0.17 | ± | 0.01 | - | - | 1.19 | ± | 0.07 | - | 1.54 | ± | 0.06 | - | 1.40 | ± | 0.07 | - | - |
Cys, Se 0.2 | 0.17 | ± | 0.01 | - | 0.13 | ± | 0.03 | - | 0.16 | ± | 0.02 | - | - | 1.62 | ± | 0.13 | - | 1.21 | ± | 0.28 | - | 1.52 | ± | 0.16 | - | - |
Met, Se 0.2 | 0.14 | ± | 0.02 | - | 0.16 | ± | 0.01 | - | 0.17 | ± | 0.01 | - | - | 1.29 | ± | 0.14 | - | 1.51 | ± | 0.06 | - | 1.64 | ± | 0.11 | - | - |
Cys, Met, Se 0.2 | 0.18 | ± | 0.02 | - | 0.18 | ± | 0.01 | - | 0.16 | ± | 0.01 | - | - | 1.61 | ± | 0.15 | - | 1.71 | ± | 0.08 | - | 1.43 | ± | 0.06 | - | - |
mix, Se 0.2 | 0.14 | ± | 0.02 | - | 0.15 | ± | 0.03 | - | 0.16 | ± | 0.01 | - | - | 1.38 | ± | 0.13 | - | 1.52 | ± | 0.23 | - | 1.45 | ± | 0.05 | - | - |
AppM | - | - | - | - | - | - | ||||||||||||||||||||
3. Chlorophyll-a content (mg g−1 DM) | 4. Chlorophyll-b content (mg g−1 DM) | |||||||||||||||||||||||||
FERT | FA, IAE | FA, SiE | TR | FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||
A Se 0.0 | 0.99 | ± | 0.08 | a | 1.11 | ± | 0.09 | a | 0.94 | ± | 0.04 | a | - | 0.44 | ± | 0.02 | - | 0.47 | ± | 0.02 | - | 0.43 | ± | 0.01 | - | - |
Se 0.2 | 0.80 | ± | 0.06 | a | 1.06 | ± | 0.04 | a | 0.98 | ± | 0.06 | a | - | 0.38 | ± | 0.01 | - | 0.48 | ± | 0.02 | - | 0.42 | ± | 0.01 | - | - |
Se 1.5 | 0.98 | ± | 0.02 | a | 0.93 | ± | 0.03 | a | 1.13 | ± | 0.09 | a | - | 0.44 | ± | 0.00 | - | 0.43 | ± | 0.01 | - | 0.49 | ± | 0.03 | - | - |
Se 3.0 | 0.97 | ± | 0.03 | a | 0.85 | ± | 0.11 | a | 1.03 | ± | 0.09 | a | - | 0.43 | ± | 0.01 | - | 0.41 | ± | 0.04 | - | 0.45 | ± | 0.04 | - | - |
AppM | - | - | - | - | - | - | ||||||||||||||||||||
B Se 0.2 | 0.80 | ± | 0.06 | - | 1.06 | ± | 0.04 | - | 0.98 | ± | 0.06 | - | - | 0.38 | ± | 0.01 | - | 0.48 | ± | 0.02 | - | 0.42 | ± | 0.01 | - | - |
Cys, Se 0.2 | 1.12 | ± | 0.09 | - | 0.82 | ± | 0.21 | - | 1.05 | ± | 0.12 | - | - | 0.50 | ± | 0.04 | - | 0.39 | ± | 0.07 | - | 0.47 | ± | 0.04 | - | - |
Met, Se 0.2 | 0.89 | ± | 0.11 | - | 1.04 | ± | 0.05 | - | 1.11 | ± | 0.06 | - | - | 0.40 | ± | 0.03 | - | 0.47 | ± | 0.01 | - | 0.53 | ± | 0.05 | - | - |
Cys, Met, Se 0.2 | 1.14 | ± | 0.12 | - | 1.23 | ± | 0.07 | - | 0.99 | ± | 0.04 | - | - | 0.47 | ± | 0.04 | - | 0.52 | ± | 0.01 | - | 0.44 | ± | 0.01 | - | - |
mix, Se 0.2 | 0.96 | ± | 0.10 | - | 1.06 | ± | 0.18 | - | 1.01 | ± | 0.04 | - | - | 0.42 | ± | 0.03 | - | 0.46 | ± | 0.06 | - | 0.44 | ± | 0.01 | - | - |
AppM | - | - | - | - | - | - |
1. Polyphenols (GAE) Content (mg g−1 DM) | 2. Total glucosinolates Content (mg g−1 DM) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FERT | FA, IAE | FA, SiE | TR | FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||
A Se 0.0 | 8.27 | ± | 0.13 | - | 7.78 | ± | 0.94 | - | 7.81 | ± | 0.51 | - | B | 2.34 | ± | 0.18 | - | 2.83 | ± | 0.59 | - | 2.47 | ± | 0.32 | - | - |
Se 0.2 | 9.87 | ± | 0.28 | - | 10.62 | ± | 0.37 | - | 8.81 | ± | 0.50 | - | A | 2.83 | ± | 0.18 | - | 2.89 | ± | 0.27 | - | 2.60 | ± | 0.23 | - | - |
Se 1.5 | 9.52 | ± | 0.67 | - | 9.28 | ± | 0.36 | - | 8.24 | ± | 1.09 | - | AB | 1.95 | ± | 0.27 | - | 3.36 | ± | 0.80 | - | 3.05 | ± | 0.83 | - | - |
Se 3.0 | 9.75 | ± | 1.08 | - | 10.03 | ± | 0.25 | - | 7.82 | ± | 0.25 | - | AB | 1.89 | ± | 0.10 | - | 3.22 | ± | 0.17 | - | 2.73 | ± | 0.01 | - | - |
AppM | A’ | A’ | B’ | B’ | A’ | A’B’ | ||||||||||||||||||||
B Se 0.2 | 9.87 | ± | 0.28 | - | 10.62 | ± | 0.37 | - | 8.81 | ± | 0.50 | - | - | 2.83 | ± | 0.18 | - | 2.89 | ± | 0.27 | - | 2.60 | ± | 0.23 | - | B |
Cys, Se 0.2 | 10.76 | ± | 0.20 | - | 10.45 | ± | 0.99 | - | 9.47 | ± | 0.69 | - | - | 2.52 | ± | 0.09 | - | 2.65 | ± | 0.32 | - | 4.01 | ± | 0.24 | - | B |
Met, Se 0.2 | 9.81 | ± | 0.74 | - | 9.89 | ± | 1.07 | - | 8.54 | ± | 0.22 | - | - | 3.59 | ± | 0.48 | - | 2.80 | ± | 0.36 | - | 4.24 | ± | 0.17 | - | AB |
Cys, Met, Se 0.2 | 8.65 | ± | 0.71 | - | 9.57 | ± | 0.70 | - | 10.01 | ± | 0.65 | - | - | 3.87 | ± | 0.64 | - | 3.89 | ± | 0.96 | - | 4.35 | ± | 0.20 | - | A |
mix, Se 0.2 | 9.15 | ± | 0.26 | - | 10.14 | ± | 0.33 | - | 9.55 | ± | 0.86 | - | - | 3.91 | ± | 0.12 | - | 2.45 | ± | 0.09 | - | 4.30 | ± | 0.26 | - | AB |
AppM | - | - | - | A’B’ | B’ | A’ | ||||||||||||||||||||
3. Glucoraphanin content (mg g−1 DM) | 4. Glucoiberin content (mg g−1 DM) | |||||||||||||||||||||||||
FERT | FA, IAE | FA, SiE | TR | FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||
A Se 0.0 | 1.64 | ± | 0.14 | - | 2.21 | ± | 0.53 | - | 1.85 | ± | 0.22 | - | - | 0.13 | ± | 0.01 | abc | 0.15 | ± | 0.02 | abc | 0.14 | ± | 0.01 | abc | - |
Se 0.2 | 2.16 | ± | 0.15 | - | 2.06 | ± | 0.26 | - | 2.09 | ± | 0.23 | - | - | 0.18 | ± | 0.00 | ab | 0.22 | ± | 0.02 | a | 0.09 | ± | 0.02 | bc | - |
Se 1.5 | 1.48 | ± | 0.21 | - | 2.59 | ± | 0.75 | - | 2.54 | ± | 0.79 | - | - | 0.12 | ± | 0.02 | abc | 0.20 | ± | 0.06 | ab | 0.15 | ± | 0.01 | abc | - |
Se 3.0 | 1.41 | ± | 0.08 | - | 2.53 | ± | 0.12 | - | 2.26 | ± | 0.02 | - | - | 0.11 | ± | 0.01 | abc | 0.21 | ± | 0.00 | a | 0.06 | ± | 0.02 | c | - |
AppM | B’ | A’ | A’B’ | B’ | A’ | B’ | ||||||||||||||||||||
B Se 0.2 | 2.16 | ± | 0.15 | - | 2.06 | ± | 0.26 | - | 2.09 | ± | 0.23 | - | B | 0.18 | ± | 0.00 | bcd | 0.22 | ± | 0.02 | bcd | 0.09 | ± | 0.02 | d | B |
Cys, Se 0.2 | 2.00 | ± | 0.10 | - | 1.94 | ± | 0.22 | - | 3.22 | ± | 0.23 | - | B | 0.18 | ± | 0.02 | bcd | 0.16 | ± | 0.01 | bcd | 0.28 | ± | 0.01 | abc | AB |
Met, Se 0.2 | 2.93 | ± | 0.44 | - | 2.17 | ± | 0.32 | - | 3.54 | ± | 0.17 | - | AB | 0.25 | ± | 0.05 | abcd | 0.18 | ± | 0.01 | bcd | 0.29 | ± | 0.01 | abc | A |
Cys, Met, Se 0.2 | 3.06 | ± | 0.51 | - | 3.32 | ± | 0.93 | - | 3.62 | ± | 0.20 | - | A | 0.24 | ± | 0.03 | abcd | 0.18 | ± | 0.08 | bcd | 0.32 | ± | 0.03 | ab | A |
mix, Se 0.2 | 3.14 | ± | 0.12 | - | 1.84 | ± | 0.08 | - | 3.55 | ± | 0.21 | - | AB | 0.24 | ± | 0.01 | abcd | 0.14 | ± | 0.02 | cd | 0.39 | ± | 0.05 | a | A |
AppM | B’ | B’ | A’ | B’ | B’ | A’ | ||||||||||||||||||||
5. Glucobrassicin content (mg g−1 DM) | ||||||||||||||||||||||||||
FERT | FA, IAE | FA, SiE | TR | |||||||||||||||||||||||
A Se 0.0 | 0.56 | ± | 0.07 | - | 0.47 | ± | 0.05 | - | 0.48 | ± | 0.09 | - | - | |||||||||||||
Se 0.2 | 0.49 | ± | 0.04 | - | 0.62 | ± | 0.03 | - | 0.41 | ± | 0.03 | - | - | |||||||||||||
Se 1.5 | 0.36 | ± | 0.05 | - | 0.57 | ± | 0.02 | - | 0.36 | ± | 0.03 | - | - | |||||||||||||
Se 3.0 | 0.38 | ± | 0.01 | - | 0.48 | ± | 0.05 | - | 0.40 | ± | 0.01 | - | - | |||||||||||||
AppM | B’ | A’ | B’ | |||||||||||||||||||||||
B Se 0.2 | 0.49 | ± | 0.04 | ab | 0.62 | ± | 0.03 | a | 0.41 | ± | 0.03 | ab | - | |||||||||||||
Cys, Se 0.2 | 0.34 | ± | 0.03 | b | 0.54 | ± | 0.10 | ab | 0.51 | ± | 0.02 | ab | - | |||||||||||||
Met, Se 0.2 | 0.41 | ± | 0.01 | ab | 0.46 | ± | 0.04 | ab | 0.42 | ± | 0.03 | ab | - | |||||||||||||
Cys, Met, Se 0.2 | 0.57 | ± | 0.10 | ab | 0.39 | ± | 0.01 | ab | 0.40 | ± | 0.03 | ab | - | |||||||||||||
mix, Se 0.2 | 0.54 | ± | 0.06 | ab | 0.46 | ± | 0.01 | ab | 0.35 | ± | 0.07 | b | - | |||||||||||||
AppM | - | - | - |
Se | Se | FM | DM | Sorg | SO4-S | Stot | Car | Chltot | Chla | Chlb | PP | ΣGSL | GlRa | GlIb | GlBr | |
Se0.0/FERT | 0 | 0 | 77 | 11 | 48.9 | 11.3 | 60.2 | 0.14 | 1.44 | 0.99 | 0.44 | 8.27 | 2.34 | 1.64 | 0.13 | 0.56 |
μmol g−1 DM | μg floret−1 | g | μmol g−1 DM | mg g−1 DM | ||||||||||||
Treatment | Application mode | |||||||||||||||
Δ(%) compared with Se0.0/FERT as control | ||||||||||||||||
Fertigation | ||||||||||||||||
Se 0.2 | 0.7 | 597 | −25 | 59 | −21 | −17 | −19 | 19 | 21 | 32 | 38 | |||||
Se 1.5 | 4.4 | 3356 | −17 | 68 | 15 | −17 | −36 | |||||||||
Se 3.0 | 5.7 | 5089 | −30 | −43 | 65 | −23 | 18 | −19 | −15 | −32 | ||||||
Foliar application plus IAE | ||||||||||||||||
Se0.0/FA,IAE | 0 | 0 | −21 | −24 | −25 | −10 | −22 | 21 | -6 | 21 | 35 | −16 | ||||
Se 0.2 | 0.5 | 492 | −20 | 84 | 28 | 24 | 26 | 69 | ||||||||
Se 1.5 | 2.0 | 1663 | −34 | 117 | 44 | 58 | 54 | |||||||||
Se 3.0 | 4.1 | 3163 | −67 | 128 | −30 | 21 | 38 | 54 | 62 | |||||||
Foliar application plus SiE | ||||||||||||||||
Se0.0/FA,SiE | 0 | 0 | −21 | −12 | 17 | |||||||||||
Se 0.2 | 0.3 | 239 | −45 | −35 | 21 | 27 | −31 | −27 | ||||||||
Se 1.5 | 2.6 | 1915 | −21 | −15 | −33 | 87 | 30 | 55 | −36 | |||||||
Se 3.0 | 2.9 | 2729 | −16 | −44 | 69 | −23 | 17 | 38 | −54 | −29 |
Se | Se | FM | DM | Stot | SO4-S | Sorg | Car | Chltot | Chla | Chlb | PP | ΣGSL | GlRa | GlIb | GlBr | |
Se 0.2/FERT | 0.7 | 597 | 81 | 11 | 54.5 | 18 | 37 | 0.11 | 1.19 | 0.8 | 0.38 | 9.9 | 2.83 | 2.16 | 0.18 | 0.49 |
μmol g−1 DM | μg floret−1 | g | μmol g−1 DM | mg g−1 DM | ||||||||||||
Treatment | Application mode | |||||||||||||||
Δ(%) compared with Se 0.2 /FERT as control | ||||||||||||||||
Fertigation | ||||||||||||||||
Cys, Se 0.2 | 0.8 | 846 | 24 | 55 | 36 | 40 | 32 | −31 | ||||||||
Met, Se 0.2 | 0.7 | 663 | 27 | 27 | 36 | 39 | −16 | |||||||||
Cys, Met, Se 0.2 | 0.9 | 642 | −24 | 53 | −62 | 64 | 35 | 43 | 24 | 37 | 42 | 33 | 16 | |||
mix, Se 0.2 | 0.7 | 568 | 20 | 27 | 16 | 20 | 38 | 45 | 33 | |||||||
Foliar application plus IAE | ||||||||||||||||
Se 0.2/FA, IAE | 0.4 | 492 | 16 | 36 | 29 | 33 | 26 | 22 | 27 | |||||||
Cys, Se 0.2 | 0.3 | 298 | 17 | 18 | 27 | 18 | ||||||||||
Met, Se 0.2 | 0.2 | 183 | 35 | 55 | 45 | |||||||||||
Cys, Met, Se 0.2 | 0.2 | 136 | −22 | −20 | 34 | 36 | 33 | 64 | 47 | 54 | 37 | 37 | 54 | −20 | ||
mix, Se 0.2 | 0.2 | 162 | −23 | 16 | 31 | 36 | 28 | 33 | 21 | −22 | ||||||
162 | Foliar application plus SiE | |||||||||||||||
Se 0.2/FA,SiE | 0.3 | 239 | −28 | −33 | −26 | 55 | 18 | 23 | −50 | −16 | ||||||
Cys, Se 0.2 | 0.4 | 313 | −28 | 19 | −52 | 45 | 28 | 31 | 24 | 42 | 49 | 56 | ||||
Met, Se 0.2 | 0.2 | 156 | −36 | −54 | 55 | 38 | 39 | 39 | 50 | 64 | 61 | |||||
Cys, Met, Se 0.2 | 0.3 | 275 | −24 | −32 | 45 | 20 | 24 | 16 | 54 | 68 | 78 | −18 | ||||
mix, Se 0.2 | 0.3 | 282 | −17 | 29 | −41 | 45 | 22 | 26 | 16 | 52 | 64 | 117 | −29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouranis, D.L.; Stylianidis, G.P.; Manta, V.; Karousis, E.N.; Tzanaki, A.; Dimitriadi, D.; Bouzas, E.A.; Siyiannis, V.F.; Constantinou-Kokotou, V.; Chorianopoulou, S.N.; et al. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. Plants 2023, 12, 1272. https://doi.org/10.3390/plants12061272
Bouranis DL, Stylianidis GP, Manta V, Karousis EN, Tzanaki A, Dimitriadi D, Bouzas EA, Siyiannis VF, Constantinou-Kokotou V, Chorianopoulou SN, et al. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. Plants. 2023; 12(6):1272. https://doi.org/10.3390/plants12061272
Chicago/Turabian StyleBouranis, Dimitris L., Georgios P. Stylianidis, Vassiliki Manta, Evangelos N. Karousis, Andriani Tzanaki, Despina Dimitriadi, Emmanuel A. Bouzas, Vassilis F. Siyiannis, Violetta Constantinou-Kokotou, Styliani N. Chorianopoulou, and et al. 2023. "Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods" Plants 12, no. 6: 1272. https://doi.org/10.3390/plants12061272
APA StyleBouranis, D. L., Stylianidis, G. P., Manta, V., Karousis, E. N., Tzanaki, A., Dimitriadi, D., Bouzas, E. A., Siyiannis, V. F., Constantinou-Kokotou, V., Chorianopoulou, S. N., & Bloem, E. (2023). Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. Plants, 12(6), 1272. https://doi.org/10.3390/plants12061272