Role of Polyamines in the Response to Salt Stress of Tomato
Abstract
:1. Introduction
2. Results
2.1. Determination of Halotolerance, Priming Agents and Priming Memory
2.2. Experiments on Soil
2.3. Effects of Combined Treatments on Plants Growth and Chlorophylls
2.4. Changes in Metabolism: Soluble Sugars, Phenolic Compounds and Proline
2.5. Lipid Peroxidation Inhibition
2.6. Antioxidant Activity
2.7. Relationship between Calcium and the Enzyme Transglutaminase (TGase)
3. Discussion
4. Materials and Methods
4.1. Determination of Halotolerance
4.2. Plants’ Growth Conditions and Saline Treatments
4.3. Soil Analysis
4.4. Morphological Parameters, Tolerance Index and Plant Water Content
4.5. Chlorophylls
4.6. Soluble Sugars
4.7. Secondary Metabolites and Proline Content
4.7.1. Phenolic Compounds
4.7.2. Flavonoids
4.7.3. Proline
4.8. Thiobarbituric acid Reactive Products
4.9. Antioxidant Activity
4.9.1. 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) Free Radical Assay
4.9.2. Potassium Ferricyanide and Ferric Reducing Antioxidant Power (PFRAP and FRAP) Assays
4.10. Enzymatic Activities
4.10.1. Peroxidase
4.10.2. Polyphenol Oxidase
4.10.3. Superoxide Dismutase
4.10.4. Ascorbate Peroxidase
4.11. Quantification of Intracellular Free Calcium and Determination of Transglutaminase (TGase) Enzyme Activity
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murtaza, G.; Saqib, M.; Ghafoor, A.; Javed, W.; Murtaza, B.; Ali, M.K.; Abbas, G. Climate Change and Water Security in Dry Areas. In Handbook of Climate Change Adaptation; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1701–1730. [Google Scholar] [CrossRef]
- Laureti, T.; Benedetti, I.; Branca, G. Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy. Socio Econ. Plan. Sci. 2021, 73, 100856. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Bozorg-Haddad, O.; Maroufpoor, E.; Gerbens-Leenes, P.W.; Loáiciga, H.A.; Savic, D.; Singh, V.P. Optimal virtual water flows for improved food security in water-scarce countries. Sci. Rep. 2021, 11, 21027. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Pan, X.; Najeeb, U.; Tan, D.K.Y.; Fahad, S.; Zahoor, R.; Luo, H. Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol. Res. 2018, 51, 47. [Google Scholar] [CrossRef] [PubMed]
- Yasuor, H.; Yermiyahu, U.; Ben-Gal, A. Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study. Agric. Water Manag. 2020, 242, 106362. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D.; Saha, J.K.; Dotaniya, C.K.; Mahmoud, A.E.D.; Meena, B.L.; Meena, M.D.; Sanwal, R.C.; Meena, R.S.; Doutaniya, R.K.; et al. Reuse of poor quality water for sustainable crop production in the changing scenario of climate. Environ. Dev. Sustain. 2022, 1–32. [Google Scholar] [CrossRef]
- Shelke, D.B.; Nikalje, G.C.; Chambhare, M.R.; Zaware, B.N.; Penna, S.; Nikam, T.D. Na+ and Cl− induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech 2019, 9, 91. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Hussain, Z.; Khattak, R.A.; Irshad, M.; Mahmood, Q.; An, P. Effect of saline irrigation water on the leachability of salts, growth and chemical composition of wheat (Triticum aestivum L.) in saline-sodic soil supplemented with phosphorus and potassium. J. Soil Sci. Plant Nutr. 2016, 16, 604–620. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Zhang, X.; Tian, P.; Li, J.; Tian, Y. Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality. Agric. Water Manag. 2019, 213, 521–533. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant salt tolerance. In ASCE Manual and Reports on Engineering Practice No. 71 Agricultural Salinity Assessment and Management, 2nd ed.; Wallender, W.W., Tanji, K.K., Eds.; ASCE: Reston, VA, USA, 2012; Chapter 13; pp. 405–459. [Google Scholar]
- Schneider, P.; Asch, F. Rice production and food security in Asian Mega deltas-A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 2020, 206, 491–503. [Google Scholar] [CrossRef]
- Stępień, P.; Kłbus, G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant 2006, 50, 610–616. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hossain, M.; Hossain, K.F.B.; Sikder, M.T.; Shammi, M.; Rasheduzzaman, M.; Hossain, M.A.; Alam, A.M.; Uddin, M.K. Effects of NaCl-salinity on tomato (Lycopersicon esculentum Mill.) plants in a pot experiment. Open Agric. 2018, 3, 578–585. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Al-Rawahy, S.; Ahmed, M. Response of different tomato cultivars to diluted seawater salinity. Asian J. Crop Sci. 2009, 1, 77–86. [Google Scholar] [CrossRef]
- Magán, J.J.; Gallardo, M.; Thompson, R.B.; Lorenzo, P. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric. Water Manag. 2008, 95, 1041–1055. [Google Scholar] [CrossRef]
- She, D.; Sun, X.; Gamareldawla, A.H.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S.E. Benefits of soil biochar amendments to tomato growth under saline water irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef]
- Farooq, H.; Bashir, M.A.; Khalofah, A.; Khan, K.A.; Ramzan, M.; Hussain, A.; Wu, L.; Simunek, L.; Aziz, I.; Samdani, M.S.; et al. Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environ. Bull. 2021, 30, 3557–3564. [Google Scholar]
- El-Mogy, M.M.; Garchery, C.; Stevens, R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agric. Scand. Sect. B Soil. Plant Sci. 2018, 68, 727–737. [Google Scholar] [CrossRef]
- Zhai, Y.; Yang, Q.; Hou, M. The Effects of Saline Water Drip Irrigation on Tomato Yield, Quality, and Blossom-End Rot Incidence—A 3a Case Study in the South of China. PLoS ONE 2015, 10, e0142204. [Google Scholar] [CrossRef]
- Sun, W.; Xu, X.; Zhu, H.; Liu, A.; Liu, L.; Li, J.; Hua, X. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol. 2010, 51, 997–1006. [Google Scholar] [CrossRef]
- Wang, W.; Cai, L.; Long, Z.; Zhang, X.; Zhao, F. Effects of non-uniform salt stress on growth, yield, and quality of tomato. Soil Sci. Plant Nutr. 2021, 67, 545–556. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology—Basic and Translational Research Driving Seed Technology; Araujo, S., Balestrazzi, A., Eds.; IntechOpen: Rijeka, Croatia, 2016; pp. 1–46. [Google Scholar] [CrossRef]
- Pandolfi, C.; Mancuso, S.; Shabala, S. Physiology of acclimation to salinity stress in pea (Pisum sativum). Environ. Exp. Bot. 2012, 84, 44–51. [Google Scholar] [CrossRef]
- Balmer, A.; Pastor, V.; Gamir, J.; Flors, V.; Mauch-Mani, B. The ‘prime-ome’: Towards a holistic approach to priming. Trends Plant Sci. 2015, 20, 443–452. [Google Scholar] [CrossRef]
- Stassinos, P.M.; Rossi, M.; Borromeo, I.; Capo, C.; Beninati, S.; Forni, C. Enhancement of Brassica napus Tolerance to High Saline Conditions by Seed Priming. Plants 2021, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Sheteiwy, M.; Shen, H.; Xu, J.; Guan, Y.; Song, W.; Hu, J. Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ. Exper. Bot. 2017, 137, 58–72. [Google Scholar] [CrossRef]
- Santangeli, M.; Capo, C.; Beninati, S.; Pietrini, F.; Forni, C. Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.). Water 2019, 11, 1667. [Google Scholar] [CrossRef]
- Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small amines with large effects on plant abiotic stress tolerance. Cells 2020, 9, 2373. [Google Scholar] [CrossRef]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef]
- Todorova, D.; Katerova, Z.; Alexieva, V.; Sergiev, I. Polyamines–possibilities for application to increase plant tolerance and adaptation capacity to stress. Genet. Plant Physiol. 2015, 5, 123–144. [Google Scholar]
- Parada, F.; Gabarrell, X.; Rufí-Salís, M.; Arcas-Pilz, V.; Muñoz, P.; Villalba, G. Optimizing irrigation in urban agriculture for tomato crops in rooftop greenhouses. Sci. Total. Environ. 2021, 794, 148689. [Google Scholar] [CrossRef]
- Bonachela, S.; Fernández, M.D.; Cabrera-Corral, F.J.; Granados, M.R. Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water. Agric. Water Manag. 2022, 262, 107433. [Google Scholar] [CrossRef]
- Alcázar, R.; Altabella, T.; Marco, F.; Bortolotti, C.; Reymond, M.; Koncz, C.; Carrasco, P.; Tiburcio, A.F. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 2010, 231, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Minocha, R.; Majumdar, R.; Minocha, S.C. Polyamines and abiotic stress in plants: A complex relationship. Front. Plant Sci. 2014, 5, 175. [Google Scholar] [CrossRef] [PubMed]
- Quinet, M.; Ndayiragije, A.; Lefevre, I.; Lambillotte, B.; Dupont-Gillain, C.C.; Lutts, S. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J. Exp. Bot. 2010, 61, 2719–2733. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Shi, Y.; Zhang, Z.; Zou, Z.; Zhang, H.; Zhao, J. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiol. Biochem. 2012, 57, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Diao, P.; Kong, L.; Yu, R.; Zhang, M.; Zuo, T.; Fan, Y.; Niu, Y.; Yan, F.; Wuriyanghan, H. Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway. Front. Plant Sci. 2020, 11, 1066. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Borromeo, I.; Capo, C.; Glick, B.R.; Del Gallo, M.; Pietrini, F.; Forni, C. PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils. Appl. Sci. 2021, 11, 11442. [Google Scholar] [CrossRef]
- Stassinos, P.M.; Rossi, M.; Borromeo, I.; Capo, C.; Beninati, S.; Forni, C. Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosyst. 2022, 156, 370–383. [Google Scholar] [CrossRef]
- Jeandet, P.; Formela-Luboinska, M.; Labudda, M.; Morkunas, I. The Role of Sugars in Plant Responses to Stress and Their Regulatory Function during Development. Int. J. Mol. Sci. 2022, 23, 5161. [Google Scholar] [CrossRef]
- Amirjani, M.R. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int. J. Bot. 2011, 7, 73–81. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kaur, N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 2005, 30, 761–776. [Google Scholar] [CrossRef]
- Cao, H.; Guo, S.; Xu, Y.; Jiang, K.; Jones, A.M.; Chong, K. Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa). J. Exp. Bot. 2011, 62, 4595–4604. [Google Scholar] [CrossRef] [PubMed]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Koca, H.; Ozdemir, F.; Turkan, I. Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol. Plant 2006, 50, 745–748. [Google Scholar] [CrossRef]
- Aziz, A.; Martin-Tanguy, J.; Larher, F. Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol. Plant 1998, 104, 195–202. [Google Scholar] [CrossRef]
- Abdelaal, K.; Alsubeie, M.S.; Hafez, Y.; Emeran, A.; Moghanm, F.; Okasha, S.; Omara, R.; Basahi, M.A.; Darwish, D.B.E.; Ibrahim, M.F.M.; et al. Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management. Agriculture 2022, 12, 2084. [Google Scholar] [CrossRef]
- Saha, J.; Brauer, E.K.; Sengupta, A.; Popescu, S.C.; Gupta, K.; Gupta, B. Polyamines as redox homeostasis regulators during salt stress in plants. Front. Environ. Sci. 2015, 3, 21. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Ranty, B.; Aldon, D.; Cotelle, V.; Galaud, J.P.; Thuleau, P.; Mazars, C. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 2016, 7, 327. [Google Scholar] [CrossRef]
- Halperin, S.J.; Kochian, L.V.; Lynch, J.P. Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots. New Phytol. 1997, 135, 419–427. [Google Scholar] [CrossRef]
- Serafini-Fracassini, D.; Del Duca, S.; Beninati, S. Plant transglutaminases. Phytochemistry 1995, 40, 355–365. [Google Scholar] [CrossRef]
- Parrotta, L.; Tanwar, U.K.; Aloisi, I.; Sobieszczuk-Nowicka, E.; Arasimowicz-Jelonek, M.; Del Duca, S. Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology. Cells 2022, 11, 1529. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Wang, Y.; Hou, K.; Shu, S.; Sun, J.; Guo, S. TGase positively regulates photosynthesis via activation of Calvin cycle enzymes in tomato. Horticulture Res. 2019, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Sairam, R.K.; Deshmukh, P.S.; Shukla, D.S. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J. Agron. Crop Sci. 1997, 178, 171–178. [Google Scholar] [CrossRef]
- Idrees, S.; Shabir, S.; Ilyas, N.; Batool, N.; Kanwal, S. Assessment of cadmium on wheat (Triticum aestivum L.) in hydroponics medium. Agrociencia 2015, 49, 917–929. [Google Scholar]
- Zeng, F.; Shabala, L.; Zhou, M.; Zhang, G.; Shabala, S. Barley responses to combined waterlogging and salinity stress: Separating effects of oxygen deprivation and elemental toxicity. Front. Plant Sci. 2013, 4, 313. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigment of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Chun, Y.; Yin, Z.D. Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. J. Clin. Microbiol. 1998, 36, 1081–1082. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug. Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Micheli, L.; Spitoni, S.; Di Cesare Mannelli, L.; Bilia, A.R.; Ghelardini, C.; Pallanti, S. Bacopa monnieri as augmentation therapy in the treatment of anhedonia, preclinical and clinical evaluation. Phytother. Res. 2020, 34, 2331–2340. [Google Scholar] [CrossRef]
- Kaur, M.; Jindal, R. Oxidative stress response in liver, kidney and gills of ctenopharyngodon idellus (cuvier & valenciennes) exposed to chlorpyrifos. MOJ Biol. Med. 2017, 1, 103–112. [Google Scholar] [CrossRef]
- Garcia, E.J.; Oldoni, T.L.; Alencar, S.M.; Reis, A.; Loguercio, A.D.; Grande, R.H. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz. Dent. J. 2012, 23, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Hue, S.M.; Boyce, A.N.; Somasundram, C. Antioxidant activity, phenolic and flavonoid contents in the leaves of different varieties of sweet potato (‘Ipomoea batatas’). Aust. J. Crop Sci. 2012, 6, 375–380. Available online: http://eprints.um.edu.my/id/eprint/7722 (accessed on 25 March 2023).
- Gohari, A.R.; Hajimehdipoor, H.; Saeidnia, S.; Ajani, Y.; Hadjiakhoondi, A. Antioxidant Activity of some Medicinal Species using FRAP Assay. J. Med. Plants 2011, 10, 54–60. Available online: http://jmp.ir/article-1-233-fa.html (accessed on 25 March 2023).
- Lim, C.S.H.; Lim, S.L. Ferric reducing capacity versus ferric reducing antioxidant power for measuring total antioxidant capacity. Lab. Med. 2013, 44, 51–55. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Yang, L.; Xi, Y.; Luo, X.Y.; Ni, H.; Liet, H.H. Preparation of peroxidase and phenolics using discarded sweet potato old stems. Sci. Rep. 2019, 9, 3769. [Google Scholar] [CrossRef]
- Orzali, L.; Forni, C.; Riccioni, L. Effect of chitosan seed treatment as elicitor of resistance to Fusarium graminearum in wheat. Seed Sci. Technol. 2014, 42, 132–149. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
Priming Solutions | 48 h | 72 h | 96 h | 120 h |
---|---|---|---|---|
CTRL | 21.1 ± 4.1 a | 53.7 ± 6.9 b | 83.8 ± 4.3 a | 91.3 ± 2.2 a |
2.5 mM PUT | 7 ± 3.7 a | 80.3 ± 2.9 a | 84.9 ± 3.6 a | 87.7 ± 3.7 a |
2.5 mM SPM | 12 ± 6.1 a | 83.5 ± 4.4 a | 88.5 ± 4 a | 91.2 ± 3.7 a |
2.5 mM SPD | 16 ± 8.2 a | 84.9 ± 4.4 a | 88.8 ± 4.2 a | 89.7 ± 4.1 a |
Priming Solutions | 72 h | 96 h | 120 h | 144 h | 168 h |
---|---|---|---|---|---|
CTRL | 0 a | 0 a | 0 a | 0 a | 19.4 ± 7.1 a |
2.5 mM PUT | 18.3 ± 1.7 b | 45 ± 2.9 b | 77.8 ± 11.1 b | 88.9 ± 11.1 b | 88.9 ± 11.1 b |
2.5 mM SPM | 0 a | 31.7 ± 1.7 c | 38.9 ± 5.6 c | 44.4 ± 5.6 c | 56.7 ± 3.3 c |
2.5 mM SPD | 15.7 ± 0.7 b | 52.3 ± 1.5 b | 73.3 ± 8.3 b | 73.3 ± 8.3 b | 73.3 ± 8.3 bc |
Priming Solutions | NaCl (mM) | GWC (%) | EC (dS/m) |
---|---|---|---|
CTRL | 0 | 40.93 ± 4.37 a | 0.48 ± 0.04 a |
80 | 45.65 ± 1.22 a | 1.05 ± 0.05 b | |
160 | 46.90 ± 4.61 a | 1.84 ± 0.08 c | |
2.5 mM PUT | 0 | 25.55 ± 5.95 a * | 0.37 ± 0.02 a * |
80 | 27.64 ± 5.09 a ** | 1.18 ± 0.13 b | |
160 | 46.96 ± 3.67 b | 2.30 ± 0.18 c * | |
2.5 mM SPM | 0 | 17.05 ± 3.50 a ** | 0.37 ± 0.04 a * |
80 | 34.45 ± 3.63 b * | 1.00 ± 0.07 b | |
160 | 50.99 ± 4.94 c | 2.17 ± 0.12 c * | |
2.5 mM SPD | 0 | 20.31 ± 3.35 a ** | 0.37 ± 0.02 a * |
80 | 36.23 ± 5.18 b * | 1.20 ± 0.11 b | |
160 | 46.22 ± 5.59 c | 1.22 ± 0.08 b *** |
Priming Solutions | NaCl (mM) | N. Leaves | Shoot Lenght (cm) | Root Lenght (cm) | TI (%) | PWC (%) | Biomass (g) |
---|---|---|---|---|---|---|---|
CTRL | 0 | 37 ± 4 a | 35.2 ± 3.3 a | 11.7 ± 0.9 a | 100 | 95.4 ± 0.6 a | 5.2 ± 0.9 a |
80 | 27 ± 2 ab | 24.2 ± 1.3 b | 9.6 ± 0.8 ab | 82 (−18%) | 94 ± 1.1 a | 3.2 ± 0.4 ab | |
160 | 21 ± 2 b | 15.4 ± 1.6 b | 5.3 ± 0.6 b | 45 (−55%) | 91.6 ± 0.8 b | 2.1 ± 0.3 b | |
2.5 mM PUT | 0 | 49 ± 1 a * | 44.3 ± 0.5 a * | 14.1 ± 1.2 a | 121 (+21%) | 93.7 ± 0.7 a * | 2.9 ± 1.4 a |
80 | 42 ± 3 ab ** | 36.3 ± 1.9 a ** | 14.4 ± 1.1 a * | 123 (+41%) | 93.6 ± 0.7 a | 4.6 ± 1.5 a | |
160 | 31 ± 2 b * | 25.6 ± 0.9 b * | 14.5 ± 1.2 a *** | 124 (+79%) | 93.6 ± 1 a | 4 ± 1.1 a | |
2.5 mM SPM | 0 | 42 ± 1 a | 45 ± 2.9 a * | 13 ± 1.8 a | 111 (+11%) | 92.8 ± 0.5 a * | 5.4 ± 1.3 a |
80 | 41 ± 1 a ** | 38.5 ± 1.7 ab *** | 12.6 ± 1.4 a | 108 (+26%) | 94.6 ± 0.9 a | 3.6 ± 1.4 a | |
160 | 28 ± 2 b | 34 ± 0.4 b *** | 14.9 ± 1.4 a *** | 127 (+82%) | 91.4 ± 2.6 a | 2.6 ± 0.7 a | |
2.5 mM SPD | 0 | 44 ± 1 a | 46.3 ± 1.6 a ** | 13 ± 0.7 a | 111 (+11%) | 90.4 ± 0.9 a ** | 6.1 ± 1.7 a |
80 | 39 ± 2 ab * | 38.8 ± 1.2 ab *** | 12.5 ± 1.3 a | 107 (+25%) | 93.5 ± 1.3 a | 5.7 ± 2 a | |
160 | 29 ± 2 b * | 31.5 ± 0.9 b *** | 12.5 ± 1 a ** | 107 (+62%) | 90.6 ± 1.1 a | 2.6 ± 0.8 a |
Priming Solution | NaCl (mM) | Chl a (μg/g f.w.) | Chl b (μg/g f.w.) | Total Chl (μg/g f.w.) |
---|---|---|---|---|
CTRL | 0 | 88.60 ± 2.24 a | 48.40 ± 5.64 a | 137 ± 4.90 a |
80 | 89.69 ± 6.86 a | 34.94 ± 5.41 a | 124.63 ± 7.72 ab | |
160 | 80.86 ± 4.12 a | 34.63 ± 3.35 a | 115.49 ± 5.09 b | |
2.5 mM PUT | 0 | 98.07 ± 7.21 a | 37.03 ± 4.44 a | 135.10 ± 3.19 a |
80 | 118.76 ± 5.19 ab ** | 47.16 ± 5.27 ab * | 166.37 ± 3.31 b *** | |
160 | 126.22 ± 1.73 b *** | 50.79 ± 0.50 b *** | 177.01 ± 1.50 c *** | |
2.5 mM SPM | 0 | 78.08 ± 5.62 a | 33.88 ± 5.65 a | 111.96 ± 3.31 a * |
80 | 126.82 ± 7.20 b *** | 56.06 ± 7.72 b * | 182.88 ± 4.04 b *** | |
160 | 143.25 ± 4.87 b *** | 58.57 ± 2.30 b *** | 201.82 ± 3.32 c *** | |
2.5 mM SPD | 0 | 112.39 ± 5.77 a * | 51.46 ± 7.57 a | 163.85 ± 2.67 a ** |
80 | 123.52 ± 2.42 b *** | 51.97 ± 4.43 a * | 175.49 ± 5.87 b *** | |
160 | 123.09 ± 2.90 b *** | 63.23 ± 4.36 a *** | 186.31 ± 6.49 c *** |
Priming Solutions | NaCl (mM) | Soluble Sugars (mg Glucose eq. g f.w.−1) | Proline (μg Proline eq. g f.w.−1) |
---|---|---|---|
CTRL | 0 | 0.269 ± 0.057 a | 320.6 ± 12.4 a |
80 | 1.244 ± 0.047 b | 356.3 ± 21.2 a | |
160 | 1.458 ± 0.034 c | 369.2 ± 10.4 a | |
2.5 mM PUT | 0 | 0.330 ± 0.022 a | 126.8 ± 6.5 a *** |
80 | 1.133 ± 0.073 b | 224 ± 6 b *** | |
160 | 1.422 ± 0.024 c | 802.6 ± 29.2 c *** | |
2.5 mM SPM | 0 | 0.199 ± 0.005 a | 131 ± 7 a *** |
80 | 1.022 ± 0.043 b * | 242.4 ± 12.62 b *** | |
160 | 1.159 ± 0.066 b *** | 652.6 ± 30.13 c *** | |
2.5 mM SPD | 0 | 0.270 ± 0.015 a | 112.6 ± 5.8 a *** |
80 | 0.985 ± 0.025 b ** | 520.3 ± 19.6 b *** | |
160 | 1.189 ± 0.052 b ** | 620.4 ± 5.3 c *** |
Priming Solutions | NaCl (mM) | Phenols (μg Chlorogenic Acid eq. g f.w.−1) | Flavonoids (μg Quercetin eq. g f.w.−1) |
---|---|---|---|
CTRL | 0 | 866.61 ± 22.83 a | 2.24 ± 0.06 a |
80 | 721.74 ± 23.72 b | 1.82 ± 0.06 b | |
160 | 572.23 ± 19.73 c | 1.27 ± 0.06 c | |
2.5 mM PUT | 0 | 602.83 ± 60.98 a*** | 1.71 ± 0.08 a*** |
80 | 813.57 ± 7.81 b** | 2 ± 0.05 b | |
160 | 871.68 ± 21.45 b*** | 2.02 ± 0.04 b*** | |
2.5 mM SPM | 0 | 563.84 ± 75 a*** | 1.31 ± 0.05 a*** |
80 | 867.32 ± 21.43 b** | 2.25 ± 0.04 b*** | |
160 | 913.12 ± 32.42 b*** | 2.29 ± 0.05 b*** | |
2.5 mM SPD | 0 | 700.67 ± 56.78 a | 1.97 ± 0.01 a* |
80 | 839.24 ± 19.65 b** | 1.94 ± 0.03 a | |
160 | 847 ± 24.13 b*** | 2.02 ± 0.02 a*** |
Priming Solutions | NaCl (mM) | Shoots (μg Ca2+ ⋅ mg f.w.−1) | Roots (μg Ca2+ ⋅ mg f.w.−1) |
---|---|---|---|
CTRL | 0 | 1.107 ± 0.034 a | 0.331 ± 0.053 a |
80 | 0.899 ± 0.065 b | 0.427 ± 0.059 a | |
160 | 0.734 ± 0.113 c | 0.751 ± 0.050 b | |
2.5 mM PUT | 0 | 1.347 ± 0.126 a | 0.170 ± 0.007 a *** |
80 | 1.624 ± 0.024 b *** | 0.217 ± 0.041 a *** | |
160 | 1.804 ± 0.064 c *** | 0.208 ± 0.023 a *** | |
2.5 mM SPM | 0 | 1.392 ± 0.136 a | 0.142 ± 0.002 a *** |
80 | 1.371 ± 0.146 a *** | 0.175 ± 0.031 a *** | |
160 | 1.390 ± 0.151 a *** | 0.121 ± 0.002 a *** | |
2.5 mM SPD | 0 | 1.201 ± 0.056 a | 0.126 ± 0.001 a *** |
80 | 1.691 ± 0.066 b *** | 0.155 ± 0.020 a *** | |
160 | 1.647 ± 0.061 b *** | 0.178 ± 0.015 a *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borromeo, I.; Domenici, F.; Del Gallo, M.; Forni, C. Role of Polyamines in the Response to Salt Stress of Tomato. Plants 2023, 12, 1855. https://doi.org/10.3390/plants12091855
Borromeo I, Domenici F, Del Gallo M, Forni C. Role of Polyamines in the Response to Salt Stress of Tomato. Plants. 2023; 12(9):1855. https://doi.org/10.3390/plants12091855
Chicago/Turabian StyleBorromeo, Ilaria, Fabio Domenici, Maddalena Del Gallo, and Cinzia Forni. 2023. "Role of Polyamines in the Response to Salt Stress of Tomato" Plants 12, no. 9: 1855. https://doi.org/10.3390/plants12091855
APA StyleBorromeo, I., Domenici, F., Del Gallo, M., & Forni, C. (2023). Role of Polyamines in the Response to Salt Stress of Tomato. Plants, 12(9), 1855. https://doi.org/10.3390/plants12091855