Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat (Triticum durum Desf.)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Biological Material and Experimental Design
4.2. Experimental Design and Germination, Initial Vigor Indicators
- -
- Germination capacity (GC, %): This parameter represents the maximum germination percentage reached at the end of the experiment (three stable GPs), expressed as follows:
- -
- Germination percentage (GP, %): Expressed as the ratio of germinated seeds at day n to the total number of seeds:
- -
- Velocity coefficient (Vc): Calculated as follows:
- -
- Mean time germination time (MTG, days): This parameter is determined according to the following formula [47]:
- -
- Daily mean germination (DMG, %): According to Osborne and Mercer [63], the DMG is calculated as the ratio of the germination percentage to the total number of germination days at the end of the experiment:
- -
- Germination recovery (GRec, %): Expressed as the capacity to recover the germination capacity lost on NaCl treatment, calculated using the following equation:
- -
- Final germination capacity (FGC, %): This parameter represents the maximum germination capacity reached after recovery, expressed as the sum of GC and GRec at each treatment:
- -
- Initial vigor (IV): This indicator is a good parameter for relating the germination capacity to plant growth. It is calculated as follows:
- -
- Stress index (SI): This parameter is the indicator of the degree of stress on each cultivar. It is calculated as follows:
- (a)
- based on GC:
- (b)
- based on plant growth:
4.3. Analysis of Sodium and Potassium
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanji, K.K. Nature and extent of agricultural salinity. In Agricultural Salinity Assessment and Management; Tanji, K.K., Ed.; ASCE Manual No. 71; American Society of Civil Engineers: New York, NY, USA, 2012; Chapter 1. [Google Scholar]
- Abdelly, C.; Öztürk, M.; Ashraf, M.; Grignon, C. Biosaline Agriculture and High Salinity Tolerance; Birkhäuser: Basel, Switzerland, 2008. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Benidire, L.; Daoui, K.; Fatemi, Z.A.; Achouak, W.; Bouarab, L.; Oufdou, K. Effect of salt stress on germination and seedling of Vicia faba L.). J. Mater. Environ. Sci. 2015, 6, 840–851. [Google Scholar]
- Sheng, M.; Tang, M.; Chen, H.; Yang, B.W.; Zhang, F.F.; Huang, Y.H. Influence of arbuscular mycorrhizae on photosynthesis. and water status of maize plants under salt stress. Mycorrhiza 2008, 18, 287–296. [Google Scholar] [CrossRef]
- Alzahrani, O.; Abouseadaa, H.; Abdelmoneim, T.K.; Alshehri, M.A.; Elmogy, M.M.; El-Beltagi, H.S.; Atia, M.A.M. Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12310. [Google Scholar] [CrossRef]
- Hmissi, M.; Chaieb, M.; Krouma, A. Differences in the physiological indicators of seed germination and seedling establishment of durum wheat (Triticum durum Desf.) cultivars subjected to salinity stress. Agronomy 2023, 13, 1718. [Google Scholar] [CrossRef]
- Subramanyam, K.; Du Laing, G.; Van Damme, E.J. Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Front. Plant Sci. 2019, 10, 116. [Google Scholar] [CrossRef]
- Bouzidi, A.; Krouma, A.; Chaieb, M. Chemical seed priming alleviates salinity stress and improves Sulla carnosa germination in the saline depression of Tunisia. Plant Direct 2021, 5, e357. [Google Scholar] [CrossRef]
- Saddiq, M.S.; Iqbal, S.; Afzal, I.; Ibrahim, A.M.; Bakhtavar, M.A.; Hafeez, M.B.; Maqbool, M.M. Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements. J. Plant Nutr. 2019, 42, 1192–1204. [Google Scholar] [CrossRef]
- Bruce, T.J.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- Abu El-Soud, W.A.; Hegab, M.M.; AbdElgawad, H.; Zinta, G.; Asard, H. Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol. Biochem. 2013, 71, 173–183. [Google Scholar] [CrossRef]
- Khaing, M.; Ultra, V.U., Jr.; Chul Lee, S. Seed priming influence on growth, yield, and grain biochemical composition of two wheat cultivars. J. Agri. Sci. Tech. 2020, 22, 875–888. [Google Scholar]
- Li, X.; Yu, B.; Cui, Y.; Yin, Y. Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice. Plant Growth Reg. 2017, 83, 441–454. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Shao, H.; Qi, W.; Daly, P.; Sharma, A.; Shaghaleh, H.; Hamoud, Y.A.; El-Esawi, M.A.; Pan, R.; Wan, Q.; et al. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J. Sci. Food Agri. 2020, 101, 2027–2041. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Kumar, P.R.; Singh, A.K.; Bhatt, B.P. Effect of priming treatments on seed germination and seedling growth in bamboo [Dendrocalamus strictus (Roxb.) Nees]. Acta Ecol. Sin. 2020, 40, 128–133. [Google Scholar] [CrossRef]
- Saed-Moocheshi, A.; Shekoofa, A.; Sadeghi, H.; Pessarakli, M. Drought and salt stress mitigation by seed priming with KNO3 and urea in various maize hybrids: An experimental approach based on enhancing antioxidant responses. J. Plant Nutr. 2014, 37, 674–689. [Google Scholar] [CrossRef]
- Iqbal, S.; Khan, A.M.; Dishad, I.; Moatter, K.; Ahmed, T.; Gilani, S.A. Influence of seed priming with CuSO4 and ZnSO4 on germination and seedling growth of oat under NaCl stress. Pure App. Biol. 2020, 9, 897–912. [Google Scholar] [CrossRef]
- Khan, I.; Raza, M.A.; Awan, S.A.; Shah, G.A.; Rizwan, M.; Ali, B.; Tariq, R.; Hassan, M.J.; Alyemeni, M.N.; Brestic, M.; et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 2020, 156, 221–232. [Google Scholar] [CrossRef]
- Mazhoud, H.; Chemak, F.; Chenoune, R. Analyse typologique et performance productive de la culture du blé dur irrigué en Tunisie. Cah. Agric. 2020, 29, 24. [Google Scholar] [CrossRef]
- Patade, V.Y.; Bhargava, S.; Suprasanna, P. Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric. Ecosyst. Environ. 2009, 134, 24–28. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J.K. Understanding and improving salt tolerance in plants. Crop Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef]
- Zhang, J.L.; Shi, H. Physiological and molecular mechanisms of plant salt tolerance. Photosynth. Res. 2013, 115, 1–22. [Google Scholar] [CrossRef]
- Ellouzi, H.; Oueslati, S.; Hessini, K.; Rabhi, M.; Abdelly, C. Seed-priming with H2O2 alleviates subsequent salt stress by preventing ROS production and amplifying antioxidant defence in cauliflower seeds and seedlings. Sci. Hortic. 2021, 288, 110360. [Google Scholar] [CrossRef]
- Mamedi, A.; Sharifzadeh, F.; Maali-Amiri, R.; Divargar, F.; Rasoulnia, A. Seed osmopriming with Ca2+ and K+ improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defence and ameliorating the osmotic adjustment process. Physiol. Mol. Biol. Plants 2022, 28, 251–274. [Google Scholar] [CrossRef]
- Paul, A.; Mondal, S.; Pal, A.; Biswas, S.; Chakraborty, K.; Mazumder, A.; Biswas, A.K.; Kundu, R. Seed priming with NaCl helps to improve tissue tolerance, potassium retention ability of plants, and protects the photosynthetic ability in two different legumes, chickpea and lentil, under salt stress. Planta 2023, 257, 111. [Google Scholar] [CrossRef]
- De Oliviera, F.A.; De Compos, T.G.S.; Oliviera, M.J. Effect of substrate on germination, vigor and growth of herbaceous cotton. Eng. Agric. 1998, 18, 1–10. [Google Scholar]
- Lachhab, L.; Louahlia, S.; Laamariti, M.; Hammani, K. Effect of salt stress on germination and enzyme activity in vitro genotypes of Medicago sativa. Intern. J. Innov. Appl. Stud. 2013, 3, 511–516. [Google Scholar]
- Kalemba, E.; Pukacha, S. Possible roles of LEA proteins and HSPS in seed protection: A short review. Biol. Lett. 2007, 44, 3–16. [Google Scholar]
- Mahi, Z.; Dedaldechamp, F.; Mourousse, L.; Lemoine, R.; Belkhoudja, M. Étude de la peroxydation lipidique (MDA) et l’activité antioxydative (POD) chez deux halophytes: Atriplex halimus L. et Atriplex canescens (Pursh) Nutt sous l’effet du sel. Intern. J. Appl. Stud. 2015, 10, 450–458. [Google Scholar]
- Reolon, F.; Marini, P.; De Magales, J.; De Moraes, D.M.; De Amarante, L. Salicylic acid maize seedlings subjected to salt stress. J. Seed Sci. 2013, 35, 457–465. [Google Scholar]
- Biswas, S.; Biswas, A.K.; De, B. Influence of sodium chloride on growth and metabolic reprogramming in nonprimed and haloprimed seedlings of blackgram (Vigna mungo L.). Protoplasma 2020, 257, 1559–1583. [Google Scholar] [CrossRef]
- Guo, X.; Zhi, W.; Feng, Y.; Zhou, G.; Zhu, G. Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defense. PLoS ONE 2022, 17, e0263036. [Google Scholar] [CrossRef]
- Biswas, S.; Seal, P.; Majumder, B.; Biswas, A.K. Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress 2023, 9, 100186. [Google Scholar] [CrossRef]
- Saha, P.; Kunda, P.; Biswas, A.K. Influence of sodium chloride on the regulation of Krebs cycle intermediates and enzymes of respiratory chain in mungbean (Vigna radiata L. Wilczek) seedlings. Plant Physiol. Biochem. 2012, 60, 214–222. [Google Scholar] [CrossRef]
- Biswas, S.; Ghosh, A.; Paul, A.; Biswas, A.K. Isolation, purification and partial characterization of low molecular weight peptides from nonprimed and haloprimed seedlings of Vigna mungo L. and Cajanus cajan L. and their impact on physiological aspects under NaCl exposure. J. Exp. Biol. Agric. Sci. 2019, 7, 12–24. [Google Scholar] [CrossRef]
- Sen, A.; Puthur, J.T. Influence of different seed priming techniques on oxidative and antioxidative responses during the germination of Oryza sativa varieties. Physiol. Mol. Biol. Plants 2020, 26, 551–565. [Google Scholar] [CrossRef]
- Biswas, S.; Paul, A.; Biswas, A.K. Potential of seed halopriming in mitigating NaCl-induced adversities on nitrogen metabolism in legume crops. Legume Res. 2022, 45, 73–81. [Google Scholar] [CrossRef]
- Paul, A.; Biswas, S.; Banerjee, R.; Mukherjee, A.; Biswas, A.K. Halopriming imparts salt tolerance by reducing oxidative, osmotic stress and DNA damage in five different legume cultivars. Legume Res. 2021, 4723, 1–11. [Google Scholar] [CrossRef]
- Joshi, N.; Jain, A.; Arya, K. Alleviation of Salt stress in Cucumis sativus L. through seed priming with calcium chloride. Ind. J. App. Res. 2013, 3, 22–25. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, R.; Xing, Y.; Jiang, B.; Li, B.; Xu, X.; Zhou, Y. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE 2021, 16, e0245505. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, O.; Mihara, M. Characterization of membrane lipids of high plants, different in salt tolerance. Agric. Biol. Chem. 1987, 51, 3215–3221. [Google Scholar]
- Tang, W.; Luo, Z.; Wen, S.; Dong, H.; Xin, C.; Li, W. Comparison of inhibitory effects on leaf photosynthesis in cotton seedlings between drought and salinity stress. Cotton Sci. 2007, 19, 28–32. [Google Scholar]
- Gouia, H.; Ghorbal, M.H.; Touraine, B. Effects of NaCI on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol. 1994, 105, 1409–1418. [Google Scholar] [CrossRef]
- Brenchley, J.L.; Probert, R.J. Seed germination responses to some environmental factors in the seagrass Zostera capricorni from eastern Australia. Aquat. Bot. 1998, 62, 177–188. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Sun, L.; Dai, J.; Dong, H. Mitigating Salinity Stress and Improving Cotton Productivity with Agronomic Practices. Agronomy 2023, 13, 2486. [Google Scholar] [CrossRef]
- Ltaief, S.; Krouma, A. Functional Dissection of the Physiological Traits Promoting Durum Wheat (Triticum durum Desf.) Tolerance to Drought Stress. Plants 2023, 12, 1420. [Google Scholar] [CrossRef]
- Tavakol, E.; Jákli, B.; Cakmak, I.; Dittert, K.; Senbayram, M. Optimization of Potassium Supply under Osmotic Stress Mitigates oxidative Damage in Barley. Plants 2022, 11, 55. [Google Scholar] [CrossRef]
- Ben Youssef, R.; Jelali, N.; Boukari, N.; Albacete, A.; Martinez, C.; Alfocea, F.P.; Abdelly, C. The efficiency of different priming agents for improving germination and early seedling growth of local tunisian barley under salinity stress. Plants 2021, 10, 2264. [Google Scholar] [CrossRef] [PubMed]
- Uz-Zaman, B.; Ali, A.; Hyder, S.I.; Arshadullah, M.; Umar Bhatti, S. Potasssium chloride as a nutrient seed primer to enhance salt-tolerance in maize. Pesq. Agropec. Bras. 2012, 47, 1181–1184. [Google Scholar] [CrossRef]
- Aloui, H.; Souguir, M.; Latique, S.; Hannachi, C. Germination and growth in control and primed seeds of pepper as affected by salt stress. Cercetar. Agron. Mold. 2014, 47, 83–95. [Google Scholar] [CrossRef]
- Farhoudi, R.; Lee, D.J. Halopriming corn seeds improves seed emergence and carbohydrate metabolism under salinity stress. Seed Sci. Technol. 2014, 42, 461–465. [Google Scholar] [CrossRef]
- Steiner, F.; Zuffo, A.M.; Oliveira, C.E.S.; Honda, G.B.; Machado, J.S. Potassium nitrate priming mitigates salt stress on wheat seedlings. Rev. Bras. Cienc. Agrar. 2018, 41, 121–130. [Google Scholar] [CrossRef]
- Aboutalebian, M.A.; Zare Ekbatani, G.; Sepehri, A. Effects of on-farm seed priming with zinc sulfate and urea solutions on emergence properties, yield and yield components of three rainfed wheat cultivars. Sch. Res. Libr. Ann. Biol. Res. 2012, 3, 4790–4796. [Google Scholar]
- Tajlil, A.H.; Pazoki, A.; Asli, D.E. Effects of seed priming by mannitol and zinc sulfate on biochemical parameters and seed germination of chickpea. Int. J. Farming Allied Sci. 2014, 3, 294–298. [Google Scholar]
- Bourhim, M.R.; Cheto, S.; Qaddoury, A.; Hirich, A.; Ghoulam, C. Chemical Seed Priming with Zinc Sulfate Improves Quinoa Tolerance to Salinity at Germination Stage. Environ. Sci. Proc. 2022, 16, 23. [Google Scholar] [CrossRef]
- McDonald, M.B. Seed priming. In Seed Technology and Its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press Ltd.: Sheffield, UK, 2000; pp. 287–325. [Google Scholar]
- Basra, S.M.A.; Afzal, I.; Anwar, S.; Anwar-ul-Haq, M.; Shafiq, M.; Majeed, K. Alleviation of salinity stress by seed invigoration techniques in wheat (Triticum aestivum L.). Seed Technol. 2006, 28, 36–46. [Google Scholar]
- Moosavi, A.; Tavakkol-Afshari, R.; Sharif-Zadeh, F.; Aynehband, A. Effect of seed priming on germination characteristics, polyphenoloxidase, and peroxidase activities of four amaranth cultivars. J. Food Agric. Environ. 2009, 7, 353–358. [Google Scholar]
- Munns, R.; James, R.A.; Lauchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2002, 53, 1–30. [Google Scholar] [CrossRef]
- Osborne, J.M.; Fox, J.E.D.; Mercer, S. Germination response under elevated salinities of six semi-arid blue bush species (Western Australia). In Towards the Rational Use of High Salinity Plants; Lieth, H., Al Masoom, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 1, pp. 323–338. [Google Scholar]
- Gulzar, S.; Khan, M.A. Seed germination of a halophytic grass Aeluropus lagopoides. Ann. Bot. 2001, 87, 319–324. [Google Scholar] [CrossRef]
Cultivar | NaCl, g L−1 | K/Na-ZnSO4 | K/Na-KNO3 | IV | IV-ZnSO4 | IV-KNO3 |
---|---|---|---|---|---|---|
Karim | 0 | 743 ± 52 e | 1440 ± 71 a | 1410 ± 88 a | ||
5 | 3.4 ± 0.21 b | 3.4 ± 0.28 b | 447 ± 33.7 h | 1305 ± 63 b | 836 ± 55 d | |
10 | 4.1 ± 0.32 a | 3.0 ± 0.25 c | 29 ± 1.68 l | 370 ± 27 i | 517 ± 34 g | |
Razeg | 0 | 690 ± 45.6 ef | 1288 ± 72 b | 1316 ± 78 b | ||
5 | 2.6 ± 0.24 d | 2.5 ± 0.20 d | 380 ± 22.8 i | 966 ± 66 c | 796 ± 42 d | |
10 | 2.5 ± 0.19 d | 2.6 ± 0.22 d | 18 ± 1.23 m | 312 ± 21 j | 418 ± 22 hi | |
Maali | 0 | 602 ± 46.7 f | 1305 ± 83 b | 1305 ± 77 b | ||
5 | 1.8 ± 0.11 e | 1.9 ± 0.14 e | 355 ± 25.7 ij | 1000 ± 63 c | 640 ± 39 f | |
10 | 1.9 ± 0.16 e | 2.3 ± 0.18 de | 12 ± 1.0 n | 245 ± 27 k | 320 ± 28 j |
STI-Germination Capacity | STI-Seedling Growth | STI-Initial Vigor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NaCl, g L−1 | P0 | PZnSO4 | PKNO3 | P0 | PZnSO4 | PKNO3 | P0 | PZnSO4 | PKNO3 | |
Karim | 5 | 145 ± 10.2 a | 155 ± 10 a | 148 ± 7.5 a | 0.74 ± 0.05 j | 3.90 ± 0.25 a | 2.55 ± 0.17 d | 5951 ± 135 l | 33,677 ± 324 a | 21,125 ± 288 d |
10 | 121 ± 9.6 b | 151 ± 9.4 a | 138 ± 9.1 ab | 0.06 ± 0.003 m | 1.13 ± 0.09 h | 1.69 ± 0.11 f | 383 ± 26.3 p | 9538 ± 189 i | 13,054 ± 235 g | |
Razeg | 5 | 125 ± 8.4 b | 138 ± 8.6 ab | 155 ± 8.6 a | 0.67 ± 0.05 k | 2.9 ± 0.18 c | 2.17 ± 0.14 e | 4699 ± 202 n | 22,298 ± 313 c | 18,768 ± 168 e |
10 | 99 ± 6.3 d | 135 ± 8.8 ab | 138 ± 7.7 ab | 0.04 ± 0.002 m | 0.95 ± 0.07 i | 1.28 ± 0.11 g | 223 ± 17.6 q | 7192 ± 211 k | 9863 ± 189 h | |
Maali | 5 | 114 ± 7.7 c | 129 ± 9.2 b | 129 ± 7.2 b | 0.60 ± 0.004 l | 3.25 ± 0.21 b | 2.08 ± 0.13 e | 3832 ± 186 o | 23,387 ± 334 b | 14,968 ± 221 f |
10 | 89 ± 5.8 e | 113 ± 7.8 c | 129 ± 6.5 b | 0.03 ± 0.001 m | 0.91 ± 0.06 i | 1.04 ± 0.09 hi | 125 ± 9.2 r | 5730 ± 157 m | 7484 ± 193 j |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hmissi, M.; Krouma, A.; García-Sánchez, F.; Chaieb, M. Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat (Triticum durum Desf.). Plants 2024, 13, 66. https://doi.org/10.3390/plants13010066
Hmissi M, Krouma A, García-Sánchez F, Chaieb M. Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat (Triticum durum Desf.). Plants. 2024; 13(1):66. https://doi.org/10.3390/plants13010066
Chicago/Turabian StyleHmissi, Manel, Abdelmajid Krouma, Francisco García-Sánchez, and Mohamed Chaieb. 2024. "Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat (Triticum durum Desf.)" Plants 13, no. 1: 66. https://doi.org/10.3390/plants13010066
APA StyleHmissi, M., Krouma, A., García-Sánchez, F., & Chaieb, M. (2024). Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat (Triticum durum Desf.). Plants, 13(1), 66. https://doi.org/10.3390/plants13010066