Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures
Abstract
:1. Introduction
2. Results
2.1. Sequencing and Variant Calling
2.2. Distribution and Functional Impact of Variants
2.3. Population Structure
2.4. Accumulation of Mutations during Subculturing
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Media and Culture Conditions
4.3. DNA Extraction
4.4. Genotyping-by-Sequencing (GBS)
4.5. Bioinformatic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillig, K.W. Genetic Evidence for Speciation in Cannabis (Cannabaceae). Genet. Resour. Crop Evol. 2005, 52, 161–180. [Google Scholar] [CrossRef]
- Devinsky, O.; Cilio, M.R.; Cross, H.; Fernandez-Ruiz, J.; French, J.; Hill, C.; Katz, R.; Marzo, V.D.; Jutras-Aswad, D.; Notcutt, W.G.; et al. Cannabidiol: Pharmacology and Potential Therapeutic Role in Epilepsy and Other Neuropsychiatric Disorders. Epilepsia 2014, 55, 791–802. [Google Scholar] [CrossRef]
- González-García, C.; Torres, I.M.; García-Hernández, R.; Campos-Ruíz, L.; Esparragoza, L.R.; Coronado, M.J.; Grande, A.G.; García-Merino, A.; Sánchez López, A.J. Mechanisms of Action of Cannabidiol in Adoptively Transferred Experimental Autoimmune Encephalomyelitis. Exp. Neurol. 2017, 298 Pt A, 57–67. [Google Scholar] [CrossRef]
- Patel, S.; Grinspoon, R.; Fleming, B.; Skirvin, L.A.; Wade, C.; Wolper, E.; Bruno, P.L.; Thiele, E.A. The Long-Term Efficacy of Cannabidiol in the Treatment of Refractory Epilepsy. Epilepsia 2021, 62, 1594–1603. [Google Scholar] [CrossRef]
- Almogi-Hazan, O.; Or, R. Cannabis, the Endocannabinoid System and Immunity—The Journey from the Bedside to the Bench and Back. Int. J. Mol. Sci. 2020, 21, 4448. [Google Scholar] [CrossRef] [PubMed]
- Hurgobin, B.; Tamiru-Oli, M.; Welling, M.T.; Doblin, M.S.; Bacic, A.; Whelan, J.; Lewsey, M.G. Recent Advances in Cannabis sativa Genomics Research. New Phytol. 2020, 230, 73–89. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential Cannabis Synergy and Phytocannabinoid-Terpenoid Entourage Effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Spindle, T.R.; Zamarripa, C.A.; Russo, E.; Pollak, L.; Bigelow, G.; Ward, A.M.; Tompson, B.; Sempio, C.; Shokati, T.; Klawitter, J.; et al. Vaporized D-Limonene Selectively Mitigates the Acute Anxiogenic Effects of Δ9-Tetrahydrocannabinol in Healthy Adults Who Intermittently Use Cannabis. Drug Alcohol. Depend. 2024, 257, 111267. [Google Scholar] [CrossRef] [PubMed]
- Boxus, P. Review on Strawberry Mass Propagation. Acta Hortic. 1989, 265, 309–320. [Google Scholar] [CrossRef]
- Carrier, G.; Le Cunff, L.; Dereeper, A.; Legrand, D.; Sabot, F.; Bouchez, O.; Audeguin, L.; Boursiquot, J.-M.; This, P. Transposable Elements Are a Major Cause of Somatic Polymorphism in Vitis vinifera L. PLoS ONE 2012, 7, e32973. [Google Scholar] [CrossRef]
- McKey, D.; Elias, M.; Pujol, B.; Duputié, A. The Evolutionary Ecology of Clonally Propagated Domesticated Plants: Tansley Review. N. Phytol. 2010, 186, 318–332. [Google Scholar] [CrossRef]
- Monthony, A.S.; Page, S.R.; Hesami, M.; Jones, A.M.P. The Past, Present and Future of Cannabis sativa Tissue Culture. Plants 2021, 10, 185. [Google Scholar] [CrossRef]
- Adkar-Purushothama, C.R.; Sano, T.; Perreault, J.-P. Hop Latent Viroid: A Hidden Threat to the Cannabis Industry. Viruses 2023, 15, 681. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, E. Getting to the Root of a Growing Problem: The Virus and Fungus Affecting Cannabis Plants Worldwide. Cannabis Science Tech. Available online: https://www.cannabissciencetech.com/view/getting-to-the-root-of-a-growing-problem-the-virus-and-fungus-affecting-cannabis-plants-worldwide (accessed on 20 July 2023).
- Leva, A.; Rinaldi, L. Recent Advances in Plant In Vitro Culture; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Holmes, J.E.; Lung, S.; Collyer, D.; Punja, Z.K. Variables Affecting Shoot Growth and Plantlet Recovery in Tissue Cultures of Drug-Type Cannabis sativa L. Front. Plant Sci. 2021, 12, 732344. [Google Scholar] [CrossRef]
- Moraes, R.M.; Cerdeira, A.L.; Lourenço, M.V. Using Micropropagation to Develop Medicinal Plants into Crops. Molecules 2021, 26, 1752. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Hosokawa, M.; Doi, M. Somaclonal Variation Is Induced De Novo via the Tissue Culture Process: A Study Quantifying Mutated Cells in Saintpaulia. PLoS ONE 2011, 6, e23541. [Google Scholar] [CrossRef]
- Hesami, M.; Baiton, A.; Alizadeh, M.; Pepe, M.; Torkamaneh, D.; Jones, A.M.P. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021, 22, 5671. [Google Scholar] [CrossRef] [PubMed]
- Miguel, C.; Marum, L. An Epigenetic View of Plant Cells Cultured in Vitro: Somaclonal Variation and Beyond. J. Exp. Bot. 2011, 62, 3713–3725. [Google Scholar] [CrossRef]
- Duta-Cornescu, G.; Constantin, N.; Pojoga, D.-M.; Nicuta, D.; Simon-Gruita, A. Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 838. [Google Scholar] [CrossRef]
- Ahmad, A.; Qamar, M.T.U.; Shoukat, A.; Aslam, M.M.; Tariq, M.; Hakiman, M.; Joyia, F.A. The Effects of Genotypes and Media Composition on Callogenesis, Regeneration and Cell Suspension Culture of Chamomile (Matricaria chamomilla L.). PeerJ 2021, 9, e11464. [Google Scholar] [CrossRef]
- Hesami, M.; Adamek, K.; Pepe, M.; Jones, A.M.P. Effect of Explant Source on Phenotypic Changes of In Vitro Grown Cannabis Plantlets over Multiple Subcultures. Biology 2023, 12, 443. [Google Scholar] [CrossRef] [PubMed]
- Kintzios, S.; Barberaki, M.; Drossopoulos, J.; Turgelis, P.; Konstas, J. Effect of Medium Composition and Explant Source on the Distribution Profiles Selected Micronutrients in Mistletoe Tissue Cultures. J. Plant Nutr. 2003, 26, 369–397. [Google Scholar] [CrossRef]
- Rodrigues, P.H.V.; Tulmann Neto, A.; Cassieri Neto, P.; Mendes, B.M.J. Influence of the Number of Subcultures on Somaclonal Variation in Micropropagated Nanicão (Musa spp., Aaa Group). Acta Hortic. 1998, 490, 469–474. [Google Scholar] [CrossRef]
- Sahijram, L.; Soneji, J.R.; Bollamma, K.T. Analyzing Somaclonal Variation in Micropropagated Bananas (Musa spp.). Vitr. Cell Dev. Biol. Plant 2003, 39, 551–556. [Google Scholar] [CrossRef]
- Cruzan, M.B.; Streisfeld, M.A.; Schwoch, J.A. Fitness Effects of Somatic Mutations Accumulating during Vegetative Growth. Evol. Ecol. 2022, 36, 767–785. [Google Scholar] [CrossRef]
- Adamek, K.; Jones, A.M.P.; Torkamaneh, D. Accumulation of Somatic Mutations Leads to Genetic Mosaicism in Cannabis. Plant Genome 2022, 15, e20169. [Google Scholar] [CrossRef] [PubMed]
- de Schepper, S.; Debergh, P.; van Bockstaele, E.; de Loose, M.; Gerats, A.; Depicker, A.; van Staden, J.; Bornman, C.H. Genetic and Epigenetic Aspects of Somaclonal Variation: Flower Colour Bud Sports in Azalea, a Case Study. S. Afr. J. Bot. 2003, 69, 117–128. [Google Scholar] [CrossRef]
- Ban, S.; Jung, J.H. Somatic Mutations in Fruit Trees: Causes, Detection Methods, and Molecular Mechanisms. Plants 2023, 12, 1316. [Google Scholar] [CrossRef]
- Orr, A.J.; Padovan, A.; Kainer, D.; Külheim, C.; Bromham, L.; Bustos-Segura, C.; Foley, W.; Haff, T.; Hsieh, J.-F.; Morales-Suarez, A.; et al. A Phylogenomic Approach Reveals a Low Somatic Mutation Rate in a Long-Lived Plant. Proc. R. Soc. B 2020, 287, 20192364. [Google Scholar] [CrossRef]
- Schoen, D.J.; Schultz, S.T. Somatic Mutation and Evolution in Plants. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 49–73. [Google Scholar] [CrossRef]
- Dubrovina, A.S.; Kiselev, K.V. Age-Associated Alterations in the Somatic Mutation and DNA Methylation Levels in Plants. Plant Biol. 2016, 18, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Tomasetti, C.; Li, L.; Vogelstein, B. Stem Cell Divisions, Somatic Mutations, Cancer Etiology, and Cancer Prevention. Science 2017, 355, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Krishna, H.; Alizadeh, M.; Singh, D.; Singh, U.; Chauhan, N.; Eftekhari, M.; Sadh, R.K. Somaclonal Variations and Their Applications in Horticultural Crops Improvement. 3 Biotech 2016, 6, 54. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA Damage, Repair and Mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef]
- Adamek, K.; Grainger, C.; Jones, A.M.P.; Torkamaneh, D. Genotyping-by-Sequencing (GBS) Reveals Greater Somatic Mutations than Simple Sequence Repeats (SSRs) in Micropropagated Cannabis Plants. Vitr. Cell Dev. Biol. Plant 2023, 59, 757–766. [Google Scholar] [CrossRef]
- Desaulniers Brousseau, V.; Wu, B.-S.; MacPherson, S.; Morello, V.; Lefsrud, M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. Front. Plant Sci. 2021, 12, 620021. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, K.; Tomprou, I.; Mitsis, V.; Koropouli, P. Genetic Evaluation of In Vitro Micropropagated and Regenerated Plants of Cannabis sativa L. Using SSR Molecular Markers. Plants 2022, 11, 2569. [Google Scholar] [CrossRef] [PubMed]
- Lata, H.; Chandra, S.; Techen, N.; Khan, I.; ElSohly, M. Assessment of the Genetic Stability of Micropropagated Plants of Cannabis sativa by ISSR Markers. Planta Med. 2010, 76, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Lata, H.; Chandra, S.; Techen, N.; Khan, I.A.; ElSohly, M.A. Molecular Analysis of Genetic Fidelity in Cannabis sativa L. Plants Grown from Synthetic (Encapsulated) Seeds Following in Vitro Storage. Biotechnol. Lett. 2011, 33, 2503–2508. [Google Scholar] [CrossRef]
- Braich, S.; Baillie, R.C.; Spangenberg, G.C.; Cogan, N.O.I. A New and Improved Genome Sequence of Cannabis sativa. GigaByte 2020, 2020, gigabyte10. [Google Scholar] [CrossRef]
- Pastelín Solano, M.C.; Salinas Ruíz, J.; González Arnao, M.T.; Castañeda Castro, O.; Galindo Tovar, M.E.; Bello Bello, J.J. Evaluation of in Vitro Shoot Multiplication and ISSR Marker Based Assessment of Somaclonal Variants at Different Subcultures of Vanilla (Vanilla planifolia Jacks). Physiol. Mol. Biol. Plants 2019, 25, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Mascher, M.; Schreiber, M.; Scholz, U.; Graner, A.; Reif, J.C.; Stein, N. Genebank Genomics Bridges the Gap between the Conservation of Crop Diversity and Plant Breeding. Nat. Genet. 2019, 51, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.; Bombarely, A.; Fornell, C.D.; Luque, F.; Fernández-Ocaña, A.M. Comparative Analysis of Genotyping by Sequencing and Whole-Genome Sequencing Methods in Diversity Studies of Olea europaea L. Plants 2021, 10, 2514. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. The Evolutionary Advantage of Recombination. Genetics 1974, 78, 737–756. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Sharma, K. Chapter 13—Technical Glitches in Micropropagation. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Bhatia, S., Sharma, K., Dahiya, R., Bera, T., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 393–404. [Google Scholar] [CrossRef]
- Callejas, S.; Álvarez, R.; Benguria, A.; Dopazo, A. AG-NGS: A Powerful and User-Friendly Computing Application for the Semi-Automated Preparation of next-Generation Sequencing Libraries Using Open Liquid Handling Platforms. BioTechniques 2014, 56, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Shieh, F.-S.; Jongeneel, P.; Steffen, J.D.; Lin, S.; Jain, S.; Song, W.; Su, Y.-H. ChimericSeq: An Open-Source, User-Friendly Interface for Analyzing NGS Data to Identify and Characterize Viral-Host Chimeric Sequences. PLoS ONE 2017, 12, e0182843. [Google Scholar] [CrossRef]
- Weiss, Z.; DasGupta, S. REVERSE: A User-Friendly Web Server for Analyzing next-Generation Sequencing Data from in Vitro Selection/Evolution Experiments. Nucleic Acids Res. 2022, 50, W639–W650. [Google Scholar] [CrossRef]
- Mestinsek-Mubi, S.; Svetik, S.; Flajšman, M.; Murovec, J. In Vitro Tissue Culture and Genetic Analysis of Two High-CBD Medical Cannabis (Cannabis sativa L.) Breeding Lines. Genetika 2020, 52, 925–941. [Google Scholar] [CrossRef]
- Puddephat, I.J.; Alderson, P.G.; Wright, N.A. Influence of Explant Source, Plant Growth Regulators and Culture Environment on Culture Initiation and Establishment of Quercus robur L. In Vitro. J. Exp. Bot. 1997, 48, 951–962. [Google Scholar] [CrossRef]
- Zulfiqar, B.; Abbasi, N.; Ahmad, T.; Hafiz, I. Effect of Explant Sources and Different Concentrations of Plant Growth Regulators on in Vitro Shoot Proliferation and Rooting of Avocado (Persea americana Mill.) Cv. “Fuerte”. Pak. J. Bot. 2009, 41, 2333–2346. [Google Scholar]
- Mora, L.Y.C.; Tarazona, D.Y.G.; Bohórquez Quintero, M.D.L.A.; Barrera, E.J.A.; Ruíz, J.S.U.; Moreno, D.M.A.; Pérez, Z.Z.O. Impact of Initial Explants on in Vitro Propagation of Native Potato (Solanum tuberosum, Andigena Group). Plant Cell Tissue Organ Cult. 2022, 150, 627–636. [Google Scholar] [CrossRef]
- Aguiar, T.; Negri, A.; Boff, P.; Dalla Costa, M.; Boff, M.; Rombolà, A. Effects of Explant Position and Orientation, Medium Ph and Nitrogen Sources on Micropropagation of Blackberry. Rev. Ibero-Am. Cienc. Ambient. 2021, 12, 84–92. [Google Scholar] [CrossRef]
- Shekafandeh, A.; Khosh-Khui, M. Effects of Bud Position and Culture Medium on Shoot Proliferation from Nodal Culture of Two Mature Guava Cultivars. Asian J. Plant Sci. 2008, 7, 177–182. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, S.H.; Chung, M.Y.; Park, S.K.; Kim, C.K. In Vitro Propagation Method for Production of Morphologically and Genetically Stable Plants of Different Strawberry Cultivars. Plant Methods 2019, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, T.; Zhang, J. Effect of Subculture Times on Genetic Fidelity, Endogenous Hormone Level and Pharmaceutical Potential of Tetrastigma Hemsleyanum Callus. Plant Cell Tissue Organ Cult. 2015, 122, 67–77. [Google Scholar] [CrossRef]
- Caplan, D.M. Propagation and Root Zone Management for Controlled Environment Cannabis Production. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2018. [Google Scholar]
- Page, S.R.G.; Monthony, A.S.; Jones, A.M.P. DKW Basal Salts Improve Micropropagation and Callogenesis Compared with MS Basal Salts in Multiple Commercial Cultivars of Cannabis sativa. Botany 2021, 99, 269–279. [Google Scholar] [CrossRef]
- Pray, L. DNA Replication and Causes of Mutation. Available online: http://www.nature.com/scitable/topicpage/dna-replication-and-causes-of-mutation-409 (accessed on 21 July 2023).
- Kaviani, B. Conservation of Plant Genetic Resources by Cryopreservation. Aust. J. Crop Sci. 2011, 5, 778–800. [Google Scholar]
- Withers, L.; Engelmann, F. In Vitro Conservation of Plant Genetic Resources. In Agricultural Biotechnology; Books in Soils, Plants, and the Environment; CRC Press: Rome, Italy, 1997; Volume 19972232, pp. 57–88. [Google Scholar]
- Withers, L.A. Biotechnology of perennial fruit crops. In In Vitro Conservation; Hammerschlag, F.A., Hammerschlag, F.A., Litz, R.E., Eds.; CAB International: Wallingford, UK, 1992; pp. 169–200. [Google Scholar]
- Aitken-Christie, J.; Singh, A.P. Cold Storage of Tissue Cultures. In Cell and Tissue Culture in Forestry: Specific Principles and Methods: Growth and Developments; Bonga, J.M., Durzan, D.J., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1987; pp. 285–304. [Google Scholar]
- Engelmann, F. In Vitro Conservation of Horticultural Species. Acta Hortic. 1991, 298, 327–334. [Google Scholar] [CrossRef]
- Engelmann, F. In Vitro Conservation of Tropical Plant Germplasm—A Review. Euphytica 1991, 57, 227–243. [Google Scholar] [CrossRef]
- Kartha, K.K.; Leung, N.L.; Pahl, K. Cryopreservation of Strawberry Meristems and Mass Propagation of Plantlets. J. Am. Soc. Hortic. Sci. 1980, 105, 481–484. [Google Scholar] [CrossRef]
- Bajaj, Y.P.S. Casava Plants from Meristem Cultures Freeze-Preserved for Three Years. Field Crops Res. 1983, 7, 161–167. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Rokka, V.-M.; Keller, E.R.J. Potato Shoot Tip Cryopreservation. A Review. Potato Res. 2011, 54, 45–79. [Google Scholar] [CrossRef]
- Piggin, C.M.; Wallis, E.S.; Hogarth, D.M. Sugarcane Germplasm Conservation and Exchange. Available online: https://www.aciar.gov.au/publication/technical-publications/sugarcane-germplasm-conservation-and-exchange (accessed on 20 July 2023).
- Benelli, C. Plant Cryopreservation: A Look at the Present and the Future. Plants 2021, 10, 2744. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.D.; Golenia, G.; Boudko, E.A.; Jones, A.M.P. Cryopreservation of 13 Commercial Cannabis sativa Genotypes Using In Vitro Nodal Explants. Plants 2021, 10, 1794. [Google Scholar] [CrossRef] [PubMed]
- Torkamaneh, D.; Laroche, J.; Belzile, F. Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies. PLoS ONE 2016, 11, e0161333. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, A.F.; Gregory, T.R. The Case for Junk DNA. PLoS Genet. 2014, 10, e1004351. [Google Scholar] [CrossRef] [PubMed]
- Perenthaler, E.; Yousefi, S.; Niggl, E.; Barakat, T.S. Beyond the Exome: The Non-Coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front. Cell Neurosci. 2019, 13, 352. [Google Scholar] [CrossRef]
- Monthony, A.S.; Kyne, S.T.; Grainger, C.M.; Jones, A.M.P. Recalcitrance of Cannabis sativa to de Novo Regeneration; a Multi-Genotype Replication Study. PLoS ONE 2021, 16, e0235525. [Google Scholar] [CrossRef]
- de Ronne, M.; Légaré, G.; Belzile, F.; Boyle, B.; Torkamaneh, D. 3D-GBS: A Universal Genotyping-by-Sequencing Approach for Genomic Selection and Other High-Throughput Low-Cost Applications in Species with Small to Medium-Sized Genomes. Plant Methods 2023, 19, 13. [Google Scholar] [CrossRef]
- Torkamaneh, D.; Laroche, J.; Belzile, F. Fast-GBS v2.0: An Analysis Toolkit for Genotyping-by-Sequencing Data. Genome 2020, 63, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Torkamaneh, D.; Belzile, F. Accurate Imputation of Untyped Variants from Deep Sequencing Data. In Deep Sequencing Data Analysis; Shomron, N., Ed.; Springer: New York, NY, USA, 2021; Volume 2243, pp. 271–281. [Google Scholar]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain w 1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 20 July 2023).
Total number of raw reads (M) | 377.7 |
Average number of reads per sample (M; after trimming) | 4.3 |
Average number of mapped reads per sample (M) | 4.3 (96%) |
Total number of polymorphic nucleotide variants | 9405 |
Proportion of heterozygous genotypes (%) | 25 |
Proportion of missing data (%) | 39 |
Average minor allele frequency | 0.25 |
Abbreviation | Name | Chromosome | Locus |
---|---|---|---|
CMK | CDP-ME kinase | 2 | LOC115721136 |
HDS | 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase | 2 | LOC115720893 |
GPPS.ssu1 | Geranyl pyrophosphate synthase small subunit 1 | 6 | LOC115725388 |
HMGS | Hydroxymethylglutaryl-CoA synthase | 5 | LOC115716237 |
PMK | Phosphomevalonate Kinase | 5 | LOC115716624 |
MPDC | mevalonate diphosphate decarboxylase | 1 | LOC115705753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamek, K.; Jones, A.M.P.; Torkamaneh, D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. Plants 2024, 13, 1910. https://doi.org/10.3390/plants13141910
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. Plants. 2024; 13(14):1910. https://doi.org/10.3390/plants13141910
Chicago/Turabian StyleAdamek, Kristian, Andrew Maxwell Phineas Jones, and Davoud Torkamaneh. 2024. "Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures" Plants 13, no. 14: 1910. https://doi.org/10.3390/plants13141910
APA StyleAdamek, K., Jones, A. M. P., & Torkamaneh, D. (2024). Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. Plants, 13(14), 1910. https://doi.org/10.3390/plants13141910