Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin and Characterization of Sprayed Nanoparticles Applied on Maize
2.2. Plant Material
2.3. Experimental Location Description
2.4. Seasonal Fluctulation of Air Temperature and Precipitation during Vegetation Season 2021
2.5. Field Experiment
2.6. Evaluation of Yield, and Yield Components of Maize
2.7. Evaluation and Nutritional Parameters Profile of Maize with Potential Translocation of NPs or Their Residues
2.8. Evaluation of Phytoavailable Distribution of Nutrients from Soil
2.9. Statistical Operation
3. Results
3.1. Physicochemical Properties of Nanoparticles Applied to Maize
3.2. Phytoavailability of Selected Soil Nutrients
3.3. Effect of Foliar Application of Metal-Based Nanoparticles on Yield Components and Grain Yield of Maize
3.4. Evaluation of Quality and Nutritional Parameters of Maize Kernels Based on Starch Content, Mineral Nutrient Profile, and Potential Hazardous Translocation of Nanoparticles, or Their Residues
4. Discussion
4.1. Assessment of Phytoavailability of Selected Nutrients from the Soil Environment for Maize Production Purposes
4.2. Effects of Micronutrient-Based and Non-Essential Nano-Fertilizers on Yield Components and Grain Yield for Maize
4.3. Assessment of Maize Grain Quality Based on the Content of Mineral Nutrients Profile and Starch
4.4. Assessment of the Potential Risk of Translocation of Applied Metallic Nanoparticles or Their Residues Affecting the Final Quality of Maize Grains
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, R.; Kumar, P.; Agrawal, S.; Singh, K.; Singh, N.; Singh, S.; Vishwakarma, J.; Rajput, V.D.; Singh, A.K.; Minkina, T.M.; et al. Nanoparticles for crop improvement and management. In Sustainable Agriculture; Vishnu, D.R., Abhishek, S., Karen, G., Tatiana, M.M., Abdel Rahman, M.A.-T., Eds.; De Gruyter: Berlin, Germany, 2024; pp. 69–84. [Google Scholar]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res. Lett. 2016, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- Šebesta, M.; Ďurišová, Ľ.; Ernst, D.; Kšiňan, S.; Illa, R.; Sunil, B.R.; Ingle, A.P.; Qian, Y.; Urík, M.; Kolenčík, M. Foliar application of metallic nanoparticles on crops under field conditions. In Plant and Nanoparticles; Chen, J.-T., Ed.; Springer Nature: Singapore, 2022; pp. 171–215. [Google Scholar]
- Yadav, A.; Yadav, K.; Abd-Elsalam, K.A. Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals 2023, 2, 296–336. [Google Scholar] [CrossRef]
- Kolenčík, M.; Šebesta, M.; Ďurišová, Ľ.; Ďúranová, H.; Ernst, D.; Kšiňan, S.; Kósa, P.; Illa, R.; Baby, M.K.; Zapletalová, A.; et al. Complex Study of Foliar Application of Inorganic Nanofertilizers in Field Conditions: Impact on Crop Production and Environmental–Ecological Assessment. In Nanofertilizers for Sustainable Agroecosystems: Recent Advances and Future Trends; Abd-Elsalam, K.A., Alghuthaymi, M.A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 507–560. [Google Scholar]
- Ernst, D.; Kolenčík, M.; Šebesta, M.; Ďurišová, Ľ.; Ďúranová, H.; Kšiňan, S.; Illa, R.; Safarik, I.; Černý, I.; Kratošová, G.; et al. Agronomic Investigation of spray dispersion of metal-based nanoparticles on sunflowers in real-world environments. Plants 2023, 12, 1789. [Google Scholar] [CrossRef] [PubMed]
- Kolenčík, M.; Ernst, D.; Urík, M.; Ďurišová, Ľ.; Bujdoš, M.; Šebesta, M.; Dobročka, E.; Kšiňan, S.; Illa, R.; Qian, Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 2020, 10, 1619. [Google Scholar] [CrossRef]
- Gao, F.; Hong, F.; Liu, C.; Zheng, L.; Su, M.; Wu, X.; Yang, F.; Wu, C.; Yang, P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol. Trace Elem. Res. 2006, 111, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Kolenčík, M.; Ernst, D.; Komár, M.; Urík, M.; Šebesta, M.; Dobročka, E.; Černý, I.; Illa, R.; Kanike, R.; Qian, Y.; et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials 2019, 9, 1559. [Google Scholar] [CrossRef] [PubMed]
- Kolenčík, M.; Ernst, D.; Komár, M.; Urík, M.; Šebesta, M.; Ďurišová, Ľ.; Bujdoš, M.; Černý, I.; Juriga, M.; Illa, R.; et al. Effect of foliar application of ZnO nanoparticles to lentil production, physiology, and nutrients seed quality at field conditions. Nanomaterials 2022, 12, 310. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, G.; Zhao, W.; Jiang, Y.; Wang, Q.; Wang, Q.; Rui, Y.; Zhang, P.; Gao, L. Engineered nanomaterials for improving the nutritional quality of agricultural products: A Review. Nanomaterials 2022, 12, 4219. [Google Scholar] [CrossRef]
- Obadi, M.; Qi, Y.J.; Xu, B. High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr. Polym. 2023, 299, 120185. [Google Scholar] [CrossRef]
- Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprabha, R.; Karunakaran, G.; Kavitha, K.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol. 2014, 8, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res. 2012, 14, 1294. [Google Scholar] [CrossRef]
- Liu, J.Y.; Sayes, C.M. A toxicological profile of silica nanoparticles. Toxicol. Res. 2022, 11, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Morton, J.; Smith, I.; Jurkschat, K.; Harding, A.-H.; Evans, G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015, 233, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.S.; Hossain, F.; Nepolean, T.; Vignesh, M.; Mallikarjuna, M.G. Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient-enriched maize. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Singh, H.B., Sen, A., Eds.; Springer: New Delhi, India, 2015; pp. 255–282. [Google Scholar]
- Badu-Apraku, B.; Fakorede, M.A.B. Morphology and physiology of maize. In Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa; Badu-Apraku, B., Fakorede, M.A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 33–53. [Google Scholar]
- Maitra, S.; Singh, V. Invited review on ‘maize in the 21st century’ Emerging trends of maize biorefineries in the 21st century: Scientific and technological advancements in biofuel and bio-sustainable market. J. Cereal Sci. 2021, 101, 103272. [Google Scholar] [CrossRef]
- Penafiel, D.; Lachat, C.; Espinel, R.; Van Damme, P.; Kolsteren, P. A systematic review on the contributions of edible plant and animal biodiversity to human diets. EcoHealth 2011, 8, 381–399. [Google Scholar] [CrossRef]
- Song, H.Y.; El Sheikha, A.F.; Hu, D.M. The positive impacts of microbial phytase on its nutritional applications. Trends Food Sci. Technol. 2019, 86, 553–562. [Google Scholar] [CrossRef]
- Suarez-Martinez, S.E.; Ferriz-Martinez, R.A.; Campos-Vega, R.; Elton-Puente, J.E.; Carbot, K.D.; Garcia-Gasca, T. Bean seeds: Leading nutraceutical source for human health. Cyta-J. Food 2016, 14, 131–137. [Google Scholar] [CrossRef]
- Uusi-Rasi, K.; Karkkainen, M.U.M.; Lamberg-Allardt, C.J.E. Calcium intake in health maintenance—A systematic review. Food Nutr. Res. 2013, 57, 21082. [Google Scholar] [CrossRef] [PubMed]
- Suganya, A.; Saravanan, A.; Manivannan, N. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. 2020, 51, 2001–2021. [Google Scholar]
- Sturikova, H.; Krystofova, O.; Huska, D.; Adam, V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018, 349, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Osthoff, G.; Mashingaidze, K.; Labuschagne, M. Iron and zinc in maize in the developing world: Deficiency, availability, and breeding. Crop Sci. 2018, 58, 2200–2213. [Google Scholar] [CrossRef]
- National Institute of Health—Zinc: Fact Sheet for Consumers. Available online: https://ods.od.nih.gov/factsheets/Zinc-Consumer/ (accessed on 4 May 2022).
- Yu, B.-G.; Chen, X.-X.; Zhou, C.-X.; Ding, T.-B.; Wang, Z.-H.; Zou, C.-Q. Nutritional composition of maize grain associated with phosphorus and zinc fertilization. J. Food Compos. Anal. 2022, 114, 104775. [Google Scholar] [CrossRef]
- Mason, S.C.; D’Croz-Mason, N.E. Agronomic practices influence maize grain quality. J. Crop Prod. 2002, 5, 75–91. [Google Scholar] [CrossRef]
- Shah, M.; Badwaik, V.; Kherde, Y.; Waghwani, H.; Modi, T.; Aguilar, Z.P.; Rodgers, H.; Hamilton, W.; Marutharaj, T.; Webb, C.; et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications. Front. Biosci. 2014, 19, 1320–1344. [Google Scholar] [CrossRef] [PubMed]
- Sidambe, A.T. Biocompatibility of advanced manufactured titanium implants—A review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef]
- Raliya, R.; Franke, C.; Chavalmane, S.; Nair, R.; Reed, N.; Biswas, P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front. Plant Sci. 2016, 7, 1288. [Google Scholar] [CrossRef]
- Kolenčík, M.; Nemček, L.; Šebesta, M.; Urík, M.; Ernst, D.; Kratošová, G.; Konvičková, Z. Effect of TiO2 as plant-growth stimulating nanomaterial on crop production. In Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences; Tripathi, D.K., Prasad, S.M., Chauhan, D.K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 129–144. [Google Scholar]
- Holišová, V.; Urban, M.; Kolenčík, M.; Nemcová, Y.; Schrofel, A.; Peikertová, P.; Slabotinský, J.; Kratošová, G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019, 12, 262–271. [Google Scholar] [CrossRef]
- Saatbau—Magazín pre Lepšiu Úrodu: Osivá jar 2024. Available online: https://www.saatbau.com/sk/wp-content/uploads/sites/9/2023/11/saatbau-osiva-2024-jar-26-web.pdf (accessed on 11 September 2023).
- Tobiašová, E.; Šimanský, V. Kvantifikácia Pôdnych Vlastností a ich Vzájomných vzťahov Ovplyvnených Antropickou Činnosťou, 1st ed.; Slovenská Poľnohospodárska Univerzita: Nitra, Slovakia, 2009. [Google Scholar]
- Harčár, J.; Priechodská, Z.; Karolus, K.; Karolusová, E.; Remšík, K.; Šucha, P. Vysvetlivky ku Geologickej Mape Severovýchodnej Časti Podunajskej Nižiny, 1st ed.; Geologický Ústav Dionýza Štúra: Bratislava, Slovakia, 1988. [Google Scholar]
- Šimanský, V.; Kováčik, P. Long-term effects of tillage and fertilization on pH and sorption parameters of haplic Luvisol. J. Elem. 2015, 20, 1033–1040. [Google Scholar] [CrossRef]
- Hrivňáková, K.; Makovníková, J.; Barančíková, G.; Bezák, P.; Bezáková, Z.; Dodok, R.; Grečo, V.; Chlpík, J.; Kobza, J.; Lištjak, M.; et al. The Uniform Methods of Soil Analysis; VÚPOP: Bratislava, Slovakia, 2011; p. 136. [Google Scholar]
- Kononova, M.; Bělčikova, N. Uskorennyje metody opredelenija sostava gumusa mineralnych počv. Počvovedenie 1961, 10, 75–87. [Google Scholar]
- Duflo, E.; Banerjee, A. Handbook of Field Experiments, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- MPSR Vyhláška MP SR č. 338/2005 Z.z. Available online: https://www.mpsr.sk/vyhlaska-mp-sr-c-338-2005-z-z/29-23-29-1845/ (accessed on 18 September 2009).
- Vicianová, M.; Ducsay, L.; Hric, P. Effect of increasing doses of nitrogen on nutrient uptake by oilseed rape (Brassica napus L.) in years with different weather conditions. Bulg. J. Agric. Sci. 2024, 30, 250–254. [Google Scholar]
- Losak, T.; Hlusek, J.; Martinec, J.; Jandak, J.; Szostkova, M.; Filipcik, R.; Manasek, J.; Prokes, K.; Peterka, J.; Varga, L.; et al. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.). Acta Agric. Scand. B Soil Plant. Sci. 2011, 61, 543–550. [Google Scholar]
- Cade-Menun, B.J.; Elkin, K.R.; Liu, C.W.; Bryant, R.B.; Kleinman, P.J.A.; Moore, P.A. Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. Geochem. Trans. 2018, 19, 7. [Google Scholar] [CrossRef]
- TIBCO Software Inc. (Data Analysis Software System), Version 14.0. Available online: https://www.tibco.com/ (accessed on 6 June 2024).
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Shi, Z.; Tong, R.; Shi, X. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J. Nanopart. Res. 2015, 17, 175. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R.; Gregory, P.J. Managing the nutrition of plants and people. Appl. Environ. Soil Sci. 2012, 2012, 104826. [Google Scholar] [CrossRef]
- Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem. 2013, 57, 1048–1060. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Camberato, J.J.; Murrell, S.T.; Vyn, T.J. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agron. J. 2013, 105, 783–795. [Google Scholar] [CrossRef]
- White, P.J. Ion uptake mechanisms of individual cells and roots: Short-distance transport. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 7–47. [Google Scholar]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. [Google Scholar]
- Falade, J.A. Interrelationships between potassium, calcium, and magnesium nutrition of Zea mays L. Ann. Bot. 1973, 37, 345–353. [Google Scholar] [CrossRef]
- Kirkby, E.A. Introduction, definition, and classification of nutrients. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Academic Press: San Diego, CA, USA, 2023; pp. 3–9. [Google Scholar]
- Reitemeier, R.F. Soil Potassium. In Advances in Agronomy; Norman, A.G., Ed.; Academic Press: San Diego, CA, USA, 1951; pp. 113–164. [Google Scholar]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Sutar, R.K.; Pujar, A.M.; Kumar, B.A.; Hebsur, N. Sulphur nutrition in maize—A critical review. Int. J. Pure. App. Biosci. 2017, 5, 1582–1596. [Google Scholar] [CrossRef]
- Fixen, P.E.; Bruulsema, T.W.; Jensen, T.L.; Mikkelsen, R.; Murrell, T.S.; Phillips, S.B.; Rund, Q.; Stewart, W.M. The fertility of North American soils, 2010. Better Crops Plant Food 2010, 94, 6–8. [Google Scholar]
- Warnock, R.E. Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation to phosphorus-induced zinc deficiency. Soil Sci. Soc. Am. J. 1970, 34, 765–769. [Google Scholar] [CrossRef]
- Srivastav, A.; Ganjewala, D.; Singhal, R.K.; Rajput, V.D.; Minkina, T.; Voloshina, M.; Srivastava, S.; Shrivastava, M. Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants 2021, 10, 2556. [Google Scholar] [CrossRef] [PubMed]
- Umar, W.; Hameed, M.K.; Aziz, T.; Maqsood, M.A.; Bilal, H.M.; Rasheed, N. Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Arch. Agron. Soil Sci. 2021, 67, 1164–1176. [Google Scholar] [CrossRef]
- Ernst, D.; Kolenčík, M.; Šebesta, M.; Ďurišová, Ľ.; Kšiňan, S.; Tomovičová, L.; Kotlárová, N.; Kalúzová, M.; Černý, I.; Kratošová, G.; et al. Significance of phosphate nano-fertilizers foliar application: A brief real-field study of quantitative, physiological parameters, and agro-ecological diversity in sunflower. Agronomy 2023, 13, 2606. [Google Scholar] [CrossRef]
- Kraemer, S.M.; Crowley, D.E.; Kretzschmar, R. Geochemical Aspects of Phytosiderophore-Promoted Iron Acquisition by Plants. In Advances in Agronomy; Academic Press: San Diego, CA, USA, 2006; pp. 1–46. [Google Scholar]
- Ehsanullah; Tariq, A.; Randhawa, M.A.; Anjum, S.A.; Nadeem, M.A.; Naeem, M. Exploring the role of zinc in maize (Zea mays L.) through soil and foliar application. Univers. J. Agric. Res. 2015, 3, 69–75. [Google Scholar] [CrossRef]
- Rangaraj, S.; Gopalu, K.; Rathinam, Y.; Periasamy, P.; Venkatachalam, R.; Narayanasamy, K. Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere. Biotechnol. Appl. Biochem. 2014, 61, 668–675. [Google Scholar] [CrossRef]
- Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Syn. React. Inorg. Metalorg. Nanometal. Chem. 2014, 44, 1128–1131. [Google Scholar] [CrossRef]
- Dumon, J.C.; Ernst, W.H.O. Titanium in plants. J. Plant Physiol. 1988, 133, 203–209. [Google Scholar] [CrossRef]
- Hussain, S.; Shafiq, I.; Chattha, M.S.; Mumtaz, M.; Brestic, M.; Rastogi, A.; Chen, G.; Allakhverdiev, S.I.; Liu, W.; Yang, W. Effect of Ti treatments on growth, photosynthesis, phosphorus uptake and yield of soybean (Glycine max L.) in maize-soybean relay strip intercropping. Environ. Exp. Bot. 2021, 187, 104476. [Google Scholar] [CrossRef]
- Ji, Y.; Seetharaman, K.; White, P.J. Optimizing a small-scale corn-starch extraction method for use in the laboratory. Cereal Chem. 2004, 81, 55–58. [Google Scholar] [CrossRef]
- Huang, S.; Sun, G.; Jin, J.; Zuo, Y.-B.; He, P. Effect of nitrogen, phosphorus and potassium application on grain yield and qualities of high-oil and high-starch corn. Plant Nutr. Fert. Sci 2004, 10, 225. [Google Scholar]
- Chaudhary, D.P.; Kumar, S.; Yadav, O.P. Nutritive value of maize: Improvements, applications and constraints. In Maize: Nutrition Dynamics and Novel Uses; Chaudhary, D.P., Kumar, S., Langyan, S., Eds.; Springer: New Delhi, India, 2014; pp. 3–17. [Google Scholar]
- Zhang, X.; Guo, D.; Blennow, A.; Zörb, C. Mineral nutrients and crop starch quality. Trends Food Sci. Technol. 2021, 114, 148–157. [Google Scholar] [CrossRef]
- National Institute of Health—Iron: Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/ (accessed on 15 June 2023).
- Imran, M.; Rehim, A.; Sarwar, N.; Hussain, S. Zinc bioavailability in maize grains in response of phosphorous–zinc interaction. J. Plant Nutr. Soil Sci. 2016, 179, 60–66. [Google Scholar] [CrossRef]
- Li, Y.; Schluesener, H.J.; Xu, S. Gold nanoparticle-based biosensors. Gold Bull. 2010, 43, 29–41. [Google Scholar] [CrossRef]
- Enea, M.; Pereira, E.; Silva, D.D.; Costa, J.; Soares, M.E.; de Lourdes Bastos, M.; Carmo, H. Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches. Nanotechnology 2020, 31, 195102. [Google Scholar] [CrossRef]
- Committee on Toxicity: Safe Upper Levels for Vitamins and Minerals, Expert Group on Vitamins and Minerals. Available online: https://cot.food.gov.uk/sites/default/files/vitmin2003.pdf (accessed on 1 May 2003).
- Shahhoseini, R.; Daneshvar, H. Phytochemical and physiological reactions of feverfew (Tanacetum parthenium (L.) Schultz Bip) to TiO2 nanoparticles. Plant Physiol. Biochem. 2023, 194, 674–684. [Google Scholar] [CrossRef]
Soil Parameters | Average Value with Standard Deviation |
---|---|
pH H2O | 6.118 ± 0.44 |
pH KCl | 5.341 ± 0.36 |
Hydrolytic acidity (mmol·kg−1) | 18.296 ± 5.18 |
Exchanable basic cations (mmol·kg−1) | 172.07 ± 23.80 |
Total sorption capacity (mmol·kg−1) | 190.37 ± 18.63 |
Sorption saturation level of basic cations (%) | 90.21 ± 3.68 |
Total organic carbon (TOC) (%) | 1.381 ± 0.10 |
Humic substances (HS) (%) | 0.493 ± 0.005 |
Humic acid (HA) (%) | 0.232 ± 0.02 |
Fulvic acids (FA) (%) | 0.261 ± 0.02 |
Ratio of HA/FA | 0.93 ± 0.17 |
Carbonate content, CaCO32− (%) | 0.19 ± 0.01 |
Electrical conductivity, (EC) (μS·cm−1) | 174.67 ± 9.90 |
Soil texture | |
Clay (%) | 15 |
Silt (%) | 49 |
Sand (%) | 36 |
Mg | Ca | K | P | S | Zn | Fe |
---|---|---|---|---|---|---|
278.45 ± 6.93 | 1600 ± 70.71 | 212.5 ± 3.54 | 25 ± 0.04 | 3.75 ± 0.002 | 2.67 ± 0.05 | 13.51 ± 0.03 |
Control | ZnO-NPs | Au-NP-bioSi | TiO2-NPs | |
---|---|---|---|---|
Quantitative Parameters | ||||
Number of plants per hectare (thousand per ha−1) | 73.24 ± 0.11 | 73.27 ± 0.07 ns | 73.16 ± 0.19 ns | 73.29 ± 0.13 ns |
Number of ear (thousand per ha−1) | 109.87 ± 0.16 | 109.95 ± 0.67 ns | 109.76 ± 0.46 ns | 109.99 ± 0.36 ns |
Ear length (mm) | 185 ± 18 | 208 ± 6 ns | 213 ± 9 * | 199 ± 17 ns |
Ear diameter (mm) | 47 ± 3 | 50 ± 5 ns | 51 ± 3 ns | 47 ± 5 ns |
Kernel row number (pcs) | 19 ± 1 | 19 ± 3 ns | 21 ± 1 ns | 19 ± 3 ns |
Kernel number per row (pcs) | 39 ± 3 | 39 ± 3 ns | 36 ± 4 ns | 36 ± 4 ns |
Weight of grain per ear (g) | 185.67 ± 12.36 | 218.60 ± 49.32 ns | 238.50 ± 17.37 ns | 201.17 ± 47.92 ns |
Weight of thousand seeds (WTS) (g) | 248.82 ± 14.25 | 291.43 ± 20.22 ** | 308.70 ± 11.80 ** | 262.93 ± 17.64 ns |
Cob weight (g) | 20.93 ± 2.26 | 26.57 ± 5.77 ns | 29.83 ± 1.16 * | 21.80 ± 6.20 ns |
Cob diameter (mm) | 23 ± 1 | 27 ± 3 * | 26 ± 1 ns | 22 ± 2 ns |
Total number of kernels per ear (pcs) | 748 ± 82 | 745 ± 119 ns | 751 ± 97 ns | 705 ± 157 ns |
Grain yield (t·ha−1) | 7.86 ± 0.31 | 8.31 ± 0.19 * | 9.15 ± 0.27 ** | 8.13 ± 0.14 ns |
Control | ZnO-NPs | Au-NP-bioSi | TiO2-NPs | |
---|---|---|---|---|
Mineral Nutrients (mg kg−1) | ||||
Nitrogen | 9054 ± 108.2 | 12,084 ± 219.2 ** | 12,439 ± 439.8 ** | 10,679 ± 219.2 ** |
Phosphorus | 2192 ± 14.5 | 2697 ± 97.6 ns | 3193 ± 196.6 ** | 2375 ± 353.6 ns |
Potassium | 3288 ± 29.4 | 3651 ± 156.3 ns | 3859.5 ± 195.9 * | 3648 ± 77.8 ns |
Calcium | 259.5 ± 20.5 | 249 ± 39.59 ns | 180.5 ± 19.1 ns | 193.5 ± 38.89 ns |
Sulphur | 925 ± 145.7 | 1521.5 ± 195.87 ** | 1701 ± 49.5 ** | 829 ± 12.9 ns |
Iron | 49.7 ± 2.26 | 40.7 ± 2.4 * | 42.6 ± 2.26 ns | 43.4 ± 3.39 ns |
Nutritional Parameter (%) | ||||
Starch content | 65.29 ± 0.13 | 62.94 ± 0.26 ** | 65.57 ± 0.05 ns | 66.42 ± 0.13 ** |
Potential Translocated Elements (mg kg−1) | ||||
Zinc | 30.4 ± 0.42 | 23.7 ± 1.98 ** | 25.4 ± 2.54 ** | 23.25 ± 1.63 ** |
Gold | >0.5 | >0.5 ns | >0.5 ns | >0.5 ns |
Silica | 24.92 ± 1.25 | 20.89 ± 1.05 * | 16.98 ± 0.85 ** | 22.86 ± 1.14 ns |
Titanium | >0.03 | 0.04 ± 0.001 ns | >0.03 ns | >0.03 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernst, D.; Kolenčík, M.; Šebesta, M.; Žitniak Čurná, V.; Qian, Y.; Straka, V.; Ducsay, L.; Kratošová, G.; Ďurišová, Ľ.; Gažo, J.; et al. Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study. Plants 2024, 13, 1936. https://doi.org/10.3390/plants13141936
Ernst D, Kolenčík M, Šebesta M, Žitniak Čurná V, Qian Y, Straka V, Ducsay L, Kratošová G, Ďurišová Ľ, Gažo J, et al. Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study. Plants. 2024; 13(14):1936. https://doi.org/10.3390/plants13141936
Chicago/Turabian StyleErnst, Dávid, Marek Kolenčík, Martin Šebesta, Veronika Žitniak Čurná, Yu Qian, Viktor Straka, Ladislav Ducsay, Gabriela Kratošová, Ľuba Ďurišová, Ján Gažo, and et al. 2024. "Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study" Plants 13, no. 14: 1936. https://doi.org/10.3390/plants13141936
APA StyleErnst, D., Kolenčík, M., Šebesta, M., Žitniak Čurná, V., Qian, Y., Straka, V., Ducsay, L., Kratošová, G., Ďurišová, Ľ., Gažo, J., & Baláži, J. (2024). Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study. Plants, 13(14), 1936. https://doi.org/10.3390/plants13141936