Past Fire and Vegetation Change in the Hyperdiverse Forests of the Ecuadorian Amazon
Abstract
:1. Introduction
2. Results
2.1. Fire History of the Ecuadorian Amazon
2.2. Local-Scale Patterns of Vegetation Change in the Ecuadorian Amazon
2.3. Regional Trends and Patterns of Vegetation Change in the Ecuadorian Amazon
3. Discussion
3.1. Were Fire Events Synchronous across Regions?
3.2. Past Cultivation and Forest Opening in the Ecuadorian Amazon
3.3. The Role of Humans in Shaping Palm Abundances and Vegetation Patterns in the Ecuadorian Amazon
4. Materials and Methods
4.1. Site Description and Data Collection
4.2. Laboratory Processing of Charcoal and Phytoliths from Soil Cores
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gentry, A.H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 1988, 75, 1–34. [Google Scholar] [CrossRef]
- Gentry, A.H. Tree species richness of upper Amazonian forests. Proc. Natl. Acad. Sci. USA 1988, 85, 156–159. [Google Scholar] [CrossRef]
- ter Steege, H.; Pitman, N.C.A.; Phillips, O.L.; Chave, J.; Sabatier, D.; Duque, A.; Molino, J.-F.; Prevost, M.-F.; Spichiger, R.; Castellanos, H.; et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 2006, 443, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Neves, D.M.; Dexter, K.G.; Baker, T.R.; Coelho de Souza, F.; Oliveira-Filho, A.T.; Queiroz, L.P.; Lima, H.C.; Simon, M.F.; Lewis, G.P.; Segovia, R.A. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 2020, 10, 1188. [Google Scholar] [CrossRef]
- Bass, M.S.; Finer, M.; Jenkins, C.N.; Kreft, H.; Cisneros-Heredia, D.F.; McCracken, S.F.; Pitman, N.C.A.; English, P.H.; Swing, K.; Villa, G. Global conservation significance of Ecuador’s Yasuní National Park. PLoS ONE 2010, 5, e8767. [Google Scholar] [CrossRef]
- Guevara Andino, J.E.; Pitman, N.C.; Ter Steege, H.; Mogollón, H.; Ceron, C.; Palacios, W.; Oleas, N.; Fine, P.V. Incorporating phylogenetic information for the definition of floristic districts in hyperdiverse Amazon forests: Implications for conservation. Ecol. Evol. 2017, 7, 9639–9650. [Google Scholar] [CrossRef] [PubMed]
- Pitman, N.C.; Terborgh, J.W.; Silman, M.R.; Núñez, P.; Neill, D.A.; Cerón, C.E.; Palacios, W.A.; Aulestia, M. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 2001, 82, 2101–2117. [Google Scholar] [CrossRef]
- ter Steege, H.; Pitman, N.C.A.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; Phillips, O.L.; Castilho, C.V.; Magnusson, W.E.; Molino, J.-F.; et al. Hyperdominance in the Amazonian Tree Flora. Science 2013, 342, 1243092. [Google Scholar] [CrossRef] [PubMed]
- ter Steege, H.; Prado, P.I.; de Lima, R.A.; Pos, E.; de Souza Coelho, L.; de Andrade Lima Filho, D.; Salomão, R.P.; Amaral, I.L.; de Almeida Matos, F.D.; Castilho, C.V. Biased-corrected richness estimates for the Amazonian tree flora. Sci. Rep. 2020, 10, 10130. [Google Scholar] [CrossRef]
- Cardoso, D.; Särkinen, T.; Alexander, S.; Amorim, A.M.; Bittrich, V.; Celis, M.; Daly, D.C.; Fiaschi, P.; Funk, V.A.; Giacomin, L.L.; et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. USA 2017, 114, 10695–10700. [Google Scholar] [CrossRef]
- Coelho, S.D.; Levis, C.; Baccaro, F.B.; Figueiredo, F.O.; Pinassi Antunes, A.; Ter Steege, H.; Peña-Claros, M.; Clement, C.R.; Schietti, J. Eighty-four per cent of all Amazonian arboreal plant individuals are useful to humans. PLoS ONE 2021, 16, e0257875. [Google Scholar] [CrossRef] [PubMed]
- Fauset, S.; Johnson, M.O.; Gloor, M.; Baker, T.R.; Monteagudo, M.A.; Brienen, R.J.W.; Feldpausch, T.R.; Lopez-Gonzalez, G.; Malhi, Y.; ter Steege, H.; et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 2015, 6, 6857. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.C.; Phillips, O.L.; del Castillo Torres, D.; Freitas, L.; Cortese, S.T.; Monteagudo, A.; Baker, T.R. Amazon palm biomass and allometry. For. Ecol. Manag. 2013, 310, 994–1004. [Google Scholar] [CrossRef]
- Muscarella, R.; Emilio, T.; Phillips, O.L.; Lewis, S.L.; Slik, F.; Baker, W.J.; Couvreur, T.L.; Eiserhardt, W.L.; Svenning, J.C.; Affum-Baffoe, K. The global abundance of tree palms. Glob. Ecol. Biogeogr. 2020, 29, 1495–1514. [Google Scholar] [CrossRef]
- Svenning, J.-C. Recruitment of tall arborescent palms in the Yasuni National Park, Amazonian Ecuador: Are large treefall gaps important? J. Trop. Ecol. 1999, 15, 355–366. [Google Scholar] [CrossRef]
- Svenning, J.-C. On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot. Rev. 2001, 67, 1–53. [Google Scholar] [CrossRef]
- Svenning, J.-C.; Harlev, D.; Sørensen, M.M.; Balslev, H. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador. Biodivers. Conserv. 2009, 18, 219–228. [Google Scholar] [CrossRef]
- Svenning, J.C. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. J. Ecol. 1999, 87, 55–65. [Google Scholar] [CrossRef]
- Svenning, J.C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J. The relative roles of environment, history and local dispersal in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama. J. Trop. Ecol. 2006, 22, 575–586. [Google Scholar] [CrossRef]
- Vormisto, J.; Tuomisto, H.; Oksanen, J. Palm distribution patterns in Amazonian rainforests: What is the role of topographic variation? J. Veg. Sci. 2004, 15, 485–494. [Google Scholar] [CrossRef]
- Balslev, H.; Copete, J.C.; Pedersen, D.; Bernal, R.; Galeano, G.; Duque, Á.; Berrio, J.C.; Sanchéz, M. Palm diversity and abundance in the Colombian Amazon. In Forest Structure, Function and Dynamics in Western Amazonia; Wiley & Sons: Oxford, UK, 2017; pp. 101–123. [Google Scholar]
- Wyatt, J.L.; Silman, M.R. Distance-dependence in two Amazonian palms: Effects of spatial and temporal variation in seed predator communities. Oecologia 2004, 140, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.J.; Duber, H.C. Poachers and Forest Fragmentation Alter Seed Dispersal, Seed Survival, and Seedling Recruitment in the Palm Attalea butyraceae, with Implications for Tropical Tree Diversity 1. Biotropica 2001, 33, 583–595. [Google Scholar] [CrossRef]
- Zuquim, G.; Jones, M.M.; Ovaskainen, O.; Trujillo, W.; Balslev, H. The legacy of human use in Amazonian palm communities along environmental and accessibility gradients. Glob. Ecol. Biogeogr. 2023, 32, 881–892. [Google Scholar] [CrossRef]
- Kahn, F.; De Granville, J.-J. Palms in Forest Ecosystems of Amazonia; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 95. [Google Scholar]
- Bernal, R.; Torres, C.; García, N.; Isaza, C.; Navarro, J.; Vallejo, M.I.; Galeano, G.; Balslev, H. Palm Management in South America. Bot. Rev. 2011, 77, 607–646. [Google Scholar] [CrossRef]
- Clark, D.A.; Clark, D.B.; Sandoval, R.M.; Castro, M.V.C. Edaphic and human effects on landscape-scale distributions of tropical rain forest palms. Ecology 1995, 76, 2581–2594. [Google Scholar] [CrossRef]
- Clement, C.R. Domestication of the pejibaye palm (Bactris gasipaes): Past and present. Adv. Econ. Bot. 1988, 6, 155–174. [Google Scholar]
- Clement, C.R. Fruit trees and the transition to food production in Amazonia. In Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands; Balee, W., Erickson, C.L., Eds.; Columbia University Press: New York, NY, USA, 2006; pp. 165–186. [Google Scholar]
- Couvreur, T.L.; Baker, W.J. Tropical rain forest evolution: Palms as a model group. BMC Biol. 2013, 11, 48. [Google Scholar] [CrossRef]
- Couvreur, T.L.; Forest, F.; Baker, W.J. Origin and global diversification patterns of tropical rain forests: Inferences from a complete genus-level phylogeny of palms. BMC Biol. 2011, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.B.; McMichael, C.N. Holocene variability of an Amazonian hyperdominant. J. Ecol. 2016, 104, 1370–1378. [Google Scholar] [CrossRef]
- Åkesson, C.M.; McMichael, C.N.; León-Yánez, S.; Bush, M.B. Late-Holocene maize cultivation, fire, and forest change at Lake Ayauchi, Amazonian Ecuador. Holocene 2023, 33, 550–561. [Google Scholar] [CrossRef]
- Åkesson, C.M.; McMichael, C.N.; Raczka, M.F.; Huisman, S.N.; Palmeira, M.; Vogel, J.; Neill, D.; Veizaj, J.; Bush, M.B. Long-term ecological legacies in western Amazonia. J. Ecol. 2021, 109, 432–446. [Google Scholar] [CrossRef]
- Gosling, W.D.; Maezumi, S.Y.; Heijink, B.M.; Nascimento, M.N.; Raczka, M.F.; van der Sande, M.T.; Bush, M.B.; McMichael, C.N. Scarce fire activity in north and north-western Amazonian forests during the last 10,000 years. Plant Ecol. Divers. 2021, 14, 143–156. [Google Scholar] [CrossRef]
- Nascimento, M.N.; Heijink, B.M.; Bush, M.B.; Gosling, W.D.; McMichael, C.N.H. Early to mid-Holocene human activity exerted gradual influences on Amazonian forest vegetation. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20200498. [Google Scholar] [CrossRef]
- Bush, M.; Nascimento, M.; Åkesson, C.; Cárdenes-Sandí, G.; Maezumi, S.; Behling, H.; Correa-Metrio, A.; Church, W.; Huisman, S.; Kelly, T.; et al. Widespread reforestation before European influence on Amazonia. Science 2021, 372, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.B.; Silman, M.R. Amazonian exploitation revisited: Ecological asymmetry and the policy pendulum. Front. Ecol. Environ. 2007, 5, 457–465. [Google Scholar] [CrossRef]
- Piperno, D.R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists; Alta Mira Press: Lanham, MD, USA, 2006; p. 304. [Google Scholar]
- Piperno, D.R. Phytolith Analysis: An Archaeological and Geological Perspective; Academic Press: San Diego, CA, USA, 1988. [Google Scholar]
- Piperno, D.R. Fitalitos, arquealogia y cambias prehistoricas el la historia vegetal de una parcela de cincuenta hectores en la Isla de Barro Colorado, Panama. In The Ecology of a Tropical Forest: Seasonal Rhythms and Long-Term Changes (Spanish Edition); Leigh, E., Rand, A.S., Windsor, D., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1990. [Google Scholar]
- McMichael, C.; Piperno, D.R.; Bush, M.B.; Silman, M.R.; Zimmerman, A.R.; Raczka, M.F.; Lobato, L.C. Sparse pre-Columbian human habitation in western Amazonia. Science 2012, 336, 1429–1431. [Google Scholar] [CrossRef] [PubMed]
- Ball, T.; Chandler-Ezell, K.; Dickau, R.; Duncan, N.; Hart, T.C.; Iriarte, J.; Lentfer, C.; Logan, A.; Lu, H.; Madella, M.; et al. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. J. Archaeol. Sci. 2016, 68, 32–45. [Google Scholar] [CrossRef]
- Hilbert, L.; Neves, E.G.; Pugliese, F.; Whitney, B.S.; Shock, M.; Veasey, E.; Zimpel, C.A.; Iriarte, J. Evidence for mid-Holocene rice domestication in the Americas. Nat. Ecol. Evol. 2017, 1, 1693–1698. [Google Scholar] [CrossRef]
- Witteveen, N.H.; White, C.; Sánchez-Martínez, B.A.; Philip, A.; Boyd, F.; Booij, R.; Christ, R.; Singh, S.; Gosling, W.D.; Piperno, D.R. Pre-contact and post-colonial ecological legacies shape Surinamese rainforests. Ecology 2024, 105, e4272. [Google Scholar] [CrossRef]
- Morcote-Ríos, G.; Giraldo-Cañas, D.; Raz, L. Catálogo Ilustrado de Fitolitos Contemporáneos con Énfasis Arqueológico y Paleoecológico I. Gramíneas Amazónicas de Colombia; Universidad Nacional de Colombia: Bogotá, Colombia, 2015; p. 290. [Google Scholar]
- Witteveen, N.; Hobus, C.; Philip, A.; Piperno, D.; McMichael, C. The variability of Amazonian palm phytoliths. Rev. Palaeobot. Palynol. 2022, 300, 104613. [Google Scholar] [CrossRef]
- Morcote-Ríos, G.; Bernal, R.; Raz, L. Phytoliths as a tool for archaeobotanical, palaeobotanical and palaeoecological studies in Amazonian palms. Bot. J. Linn. Soc. 2016, 182, 348–360. [Google Scholar] [CrossRef]
- Bush, M.B.; Piperno, D.R.; Colinvaux, P.A. A 6000 year history of Amazonian maize cultivation. Nature 1989, 340, 303–305. [Google Scholar] [CrossRef]
- Heijink, B.M.; Mattijs, Q.A.; Valencia, R.; Philip, A.L.; Piperno, D.R.; McMichael, C.N. Long-term fire and vegetation change in northwestern Amazonia. Biotropica 2022, 55, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Heijink, B.M.; McMichael, C.N.; Piperno, D.R.; Duivenvoorden, J.F.; Cárdenas, D.; Duque, Á. Holocene increases in palm abundances in north-western Amazonia. J. Biogeogr. 2020, 47, 698–711. [Google Scholar] [CrossRef]
- Blaauw, M. Package ‘IntCal’, R.; Ver. 4.3; R Studio: Vienna, Austria, 2021. [Google Scholar]
- Guevara Andino, J.E.; Pitman, N.C.A.; Ulloa Ulloa, C.; Romoleroux, K.; Fernández-Fernández, D.; Ceron, C.; Palacios, W.; Neill, D.A.; Oleas, N.; Altamirano, P.; et al. Trees of Amazonian Ecuador: A taxonomically verified species list with data on abundance and distribution. Ecology 2019, 100, e02894. [Google Scholar] [CrossRef] [PubMed]
- Pitman, N.C.; Terborgh, J.W.; Silman, M.R.; Núñez, V.P.; Neill, D.A.; Cerón, C.E.; Palacios, W.A.; Aulestia, M. A comparison of tree species diversity in two upper Amazonian forests. Ecology 2002, 83, 3210–3224. [Google Scholar] [CrossRef]
- Valencia, R.; Condit, R.; Foster, R.B.; Romoleroux, K.; Villa Munoz, G.; Svenning, J.-C.; Magard, E.; Bass, M.; Losos, E.; Balslev, H. Yasuni forest dynamics plot, Ecuador. In Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network; University of Chicago Press: Chicago, IL, USA, 2004; pp. 609–628. [Google Scholar]
- Valencia, R.; Foster, R.B.; Villa, G.; Condit, R.; Svenning, J.C.; Hernández, C.; Romoleroux, K.; Losos, E.; Magård, E.; Balslev, H. Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. J. Ecol. 2004, 92, 214–229. [Google Scholar] [CrossRef]
- Whitlock, C.; Larsen, C. Charcoal as a fire proxy. In Tracking Environmental Change Using Lake Sediments; Springer: Dordrecht, The Netherlands, 2002; pp. 75–97. [Google Scholar]
- McMichael, C.H.; Bush, M.B.; Piperno, D.R.; Silman, M.R.; Zimmerman, A.R.; Anderson, C. Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. Holocene 2012, 22, 131–141. [Google Scholar] [CrossRef]
- Piperno, D.R.; McMichael, C.H.; Pitman, N.C.; Andino, J.E.G.; Paredes, M.R.; Heijink, B.M.; Torres-Montenegro, L.A. A 5,000-year vegetation and fire history for tierra firme forests in the Medio Putumayo-Algodón watersheds, northeastern Peru. Proc. Natl. Acad. Sci. USA 2021, 118, e2022213118. [Google Scholar] [CrossRef]
- Piperno, D.R.; McMichael, C.N.; Pitman, N.C.; Paredes, M.R.; Torres-Montenegro, L.A.; Bush, M.B. Pre-Columbian vegetational and fire history in western Amazonia: Terrestrial soil phytolith and charcoal evidence from three regions. Quat. Int. 2024, 691, 40–56. [Google Scholar] [CrossRef]
- Arroyo-Kalin, M.; Riris, P. Did pre-Columbian populations of the Amazonian biome reach carrying capacity during the Late Holocene? Philos. Trans. R. Soc. B 2021, 376, 20190715. [Google Scholar] [CrossRef]
- Ledru, M.-P.; Jomelli, V.; Samaniego, P.; Vuille, M.; Hidalgo, S.; Herrera, M.; Ceron, C. The Medieval climate anomaly and the Little Ice Age in the eastern Ecuadorian Andes. Clim. Past 2013, 9, 307–321. [Google Scholar] [CrossRef]
- Medina, J. The Discovery of the Amazon According to the Account of Friar Caspar de Carvajal and Other Documents; American Geographical Society: New York, NY, USA, 1934. [Google Scholar]
- Rex, K.; Kelm, D.H.; Wiesner, K.; Kunz, T.H.; Voigt, C.C. Species richness and structure of three Neotropical bat assemblages. Biol. J. Linn. Soc. 2008, 94, 617–629. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef]
- Finer, M.; Vijay, V.; Ponce, F.; Jenkins, C.N.; Kahn, T.R. Ecuador’s Yasuni Biosphere Reserve: A brief modern history and conservation challenges. Environ. Res. Lett. 2009, 4, 034005. [Google Scholar] [CrossRef]
- Bush, M.B.; Silman, M.R.; McMichael, C.; Saatchi, S. Fire, climate change and biodiversity in Amazonia: A Late-Holocene perspective. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1795–1802. [Google Scholar] [CrossRef]
- Phillips, O.; Hall, P.; Gentry, A.H.; Sawyer, S.; Vasquez, R. Dynamics and species richness of tropical rain forests. Proc. Natl. Acad. Sci. USA 1994, 91, 2805–2809. [Google Scholar] [CrossRef]
- Espírito-Santo, F.D.; Gloor, M.; Keller, M.; Malhi, Y.; Saatchi, S.; Nelson, B.; Junior, R.C.O.; Pereira, C.; Lloyd, J.; Frolking, S. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef]
- Araujo, R.F.; Nelson, B.W.; Celes, C.H.S.; Chambers, J.Q. Regional distribution of large blowdown patches across Amazonia in 2005 caused by a single convective squall line. Geophys. Res. Lett. 2017, 44, 7793–7798. [Google Scholar] [CrossRef]
- Frost, I. A Holocene sedimentary record from Añangucocha in the Ecuadorian Amazon. Ecology 1988, 69, 66–73. [Google Scholar] [CrossRef]
- Piperno, D.R.; McMichael, C. Phytoliths in modern plants from amazonia and the neotropics at large: Implications for vegetation history reconstruction. Quat. Int. 2020, 565, 54–74. [Google Scholar] [CrossRef]
- Piperno, D.R.; McMichael, C. Phytoliths in modern plants from Amazonia and the Neotropics at large: II. Enhancement of eudicotyledon reference collections. Quat. Int. 2023, 655, 1–17. [Google Scholar] [CrossRef]
- Balslev, H.; Luteyn, J.; Ollgaard, B.; Holm-Nielsen, L.B. Composition and structure of adjacent unflooded and flooded forest in Amazonian Ecuador. Opera Bot. 1987, 92, 37–57. [Google Scholar]
- Huisman, S.N.; Raczka, M.F.; McMichael, C.N.H. Palm Phytoliths of Mid-Elevation Andean Forests. Front. Ecol. Evol. 2018, 6, 193. [Google Scholar] [CrossRef]
- McMichael, C.N.H.; Matthews-Bird, F.; Farfan-Rios, W.; Feeley, K.J. Ancient human disturbances may be skewing our understanding of Amazonian forests. Proc. Natl. Acad. Sci. USA 2017, 114, 522–527. [Google Scholar] [CrossRef]
- Zubieta, R.; Getirana, A.; Espinoza, J.C.; Lavado, W. Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon basin of Peru and Ecuador. J. Hydrol. 2015, 528, 599–612. [Google Scholar] [CrossRef]
- Malhi, Y.; Baker, T.R.; Phillips, O.L.; Almeida, S.; Alvarez, E.; Arroyo, L.; Chave, J.; Czimczik, C.I.; Di Fiore, A.; Higuchi, N.; et al. The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob. Change Biol. 2004, 10, 563–591. [Google Scholar] [CrossRef]
- Netherly, P. Loma y Ribera: Patrones de asentamiento prehistóricos en la Amazonía Ecuatoriana. Front. Investig. 1997, 1, 33–54. [Google Scholar]
- McMichael, C.H.; Correa Metrio, A.; Bush, M.B. Pre-Columbian fire regimes in lowland tropical rainforests of southeastern Peru. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 342–343, 73–83. [Google Scholar] [CrossRef]
- Scott, A.C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 11–39. [Google Scholar] [CrossRef]
- Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image Processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Aleman, J.C.; Canal-Subitani, S.; Favier, C.; Bremond, L. Influence of the local environment on lacustrine sedimentary phytolith records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 414, 273–283. [Google Scholar] [CrossRef]
- Aleman, J.C.; Saint-Jean, A.; Leys, B.; Carcaillet, C.; Favier, C.; Bremond, L. Estimating phytolith influx in lake sediments. Quat. Res. 2013, 80, 341–347. [Google Scholar] [CrossRef]
- Piperno, D.R.; McMichael, C.N.; Bush, M.B. Finding Forest Management in Prehistoric Amazonia. Anthropocene 2019, 26, 100211. [Google Scholar] [CrossRef]
- Parnell, A. Bchron: Radiocarbon Dating, Age-Depth Modelling, Relative Sea Level Rate Estimation, and Non-Parametric Phase Modelling; R Package Version 4.1. 1; R Studio: Vienna, Austria, 2016. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- McMichael, C.; Piperno, D.; Neves, E.; Bush, M.; Almeida, F.; Mongeló, G.; Eyjolfsdottir, M.B. Phytolith assemblages along a gradient of ancient human disturbance in western Amazonia. Front. Ecol. Evol. 2015, 3, 141. [Google Scholar] [CrossRef]
Region | Core | Depth (cm) | Uncalibrated Date ± Std Error | Calibrated Ages ± 2 Sigma Range (cal BP) |
---|---|---|---|---|
Anangucocha | G | 30–40 | 821 ± 20 | 714 ± 20 |
Anangucocha | G | 40–50 | 915 ± 21 | 838 ± 48 |
Anangucocha | I | 0 | * 103.91 ± 0.24 | −63 (AD 2013) |
Zancudococha | F | 20–30 | 1171 ± 22 | 1091 ± 50 |
Zancudococha | F | NA | 1211 ± 25 | 1128 ± 45 |
Zancudococha | 1 | 10–20 | * 110.85 ± 0.25 | −48 (AD 1998) |
Iamoe | A | 50 | 2572 ± 27 | 2701 ± 64 |
Iamoe | B | 20 | 2556 ± 25 | 2670 ± 77 |
Tiputini | A | 10–20 | 3709 ± 27 | 4046 ± 51 |
Tiputini | A | 20–30 | 4233 ± 33 | 4771 ± 67 |
Tiputini | A | 30–40 | 3695 ± 24 | 4033 ± 46 |
Tiputini | C | 20–30 | * 123.42 ± 0.30 | −10 (AD 1960) |
Tiputini | E | 10–20 | 3405 ± 26 | 3646 ± 50 |
Tiputini | 10 | 20–30 | 974 ± 23 | 860 ± 41 |
Yasuni | B | 0–10 | * 103.07 ± 0.29 | −64 (AD 2014) |
Yasuni | C | 30–40 | 821 ± 25 | 717 ± 24 |
Yasuni | J | 10–20 | 857 ± 21 | 754 ± 27 |
Region | Area (ha) | Num Cores (Charcoal) | Num Cores (Phytoliths) | Num Dated Fragments | TSLF (cal BP) | Prop Samples with Char | Prop Cores with Char |
---|---|---|---|---|---|---|---|
Añangucocha | >50 | 11 | 10 | 3 | −63 | 0.22 | 0.36 |
Zancudococha | >50 | 10 | 7 | 3 | −48 | 0.13 | 0.50 |
Iamoe | 2 | 2 | 2 | 2 | 2670 | 0.72 | 1.00 |
Tiputini | 1 | 10 | 8 | 6 | −10 | 0.52 | 1.00 |
Yasuní | 50 | 25 | 10 | 3 | −64 | 0.26 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heijink, B.M.; Zwarts, A.; Witteveen, N.H.; Watson, J.; Ebbenhorst, A.; Veenman, F.; Kessel, M.; León-Yánez, S.; Guevara-Andino, J.E.; Endara, M.-J.; et al. Past Fire and Vegetation Change in the Hyperdiverse Forests of the Ecuadorian Amazon. Plants 2024, 13, 2048. https://doi.org/10.3390/plants13152048
Heijink BM, Zwarts A, Witteveen NH, Watson J, Ebbenhorst A, Veenman F, Kessel M, León-Yánez S, Guevara-Andino JE, Endara M-J, et al. Past Fire and Vegetation Change in the Hyperdiverse Forests of the Ecuadorian Amazon. Plants. 2024; 13(15):2048. https://doi.org/10.3390/plants13152048
Chicago/Turabian StyleHeijink, Britte M., Annabel Zwarts, Nina H. Witteveen, Jessica Watson, Arie Ebbenhorst, Fedde Veenman, Mats Kessel, Susana León-Yánez, Juan Ernesto Guevara-Andino, María-José Endara, and et al. 2024. "Past Fire and Vegetation Change in the Hyperdiverse Forests of the Ecuadorian Amazon" Plants 13, no. 15: 2048. https://doi.org/10.3390/plants13152048
APA StyleHeijink, B. M., Zwarts, A., Witteveen, N. H., Watson, J., Ebbenhorst, A., Veenman, F., Kessel, M., León-Yánez, S., Guevara-Andino, J. E., Endara, M. -J., Rivas-Torres, G., Bush, M. B., & McMichael, C. N. H. (2024). Past Fire and Vegetation Change in the Hyperdiverse Forests of the Ecuadorian Amazon. Plants, 13(15), 2048. https://doi.org/10.3390/plants13152048