Photosynthetic Performance, Carbohydrate Partitioning, Growth, and Yield among Cassava Genotypes under Full Irrigation and Early Drought Treatment in a Tropical Savanna Climate
Abstract
:1. Introduction
2. Results
2.1. The Effect of Drought Stress on Photosynthetic Performance
2.1.1. Chlorophyll Fluorescence
2.1.2. Leaf Gas Exchange
2.2. The Effect of Drought Stress on Carbohydrate Partitioning
2.2.1. Reducing, Non-Reducing, and Total Sugar, and Starch Content of Cassava Leaves
2.2.2. Reducing, Non-Reducing, and Total Sugar, and Starch Content of Cassava Stem
2.2.3. Reducing, Non-Reducing, and Total Sugar, and Starch Content of Cassava Tuber
2.3. The Effect of Early Drought Stress on Biomass
2.3.1. Above-Ground Biomass
2.3.2. Below-Ground Biomass
2.4. Correlations among Physiological Parameters, Biomass, and Yield of Cassava
2.5. Hierarchical Cluster Analysis of Cassava Genotypes
3. Discussion
3.1. The Effect of Water Stress on Photosynthetic Performance, Carbohydrate Partitioning, Growth, and Yield of Cassava
3.1.1. Leaf Photosynthetic Capacity
3.1.2. Carbon Partitioning and Growth of Cassava
4. Materials and Methods
4.1. Study Site and Environmental Conditions
4.2. Plant Materials
4.3. Photosynthetic Performance
4.4. Reducing Sugar, Non-Reducing Sugar, Total Sugar, and Starch
4.5. Crop Biomass and Yields
4.6. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scaria, S.S.; Balasubramanian, B.; Meyyazhagan, A.; Gangwar, J.; Jaison, J.P.; Kurian, J.T.; Pushparaj, K.; Pappuswamy, M.; Park, S.; Joseph, K.S. Cassava (Manihot esculenta Crantz)—A potential source of phytochemicals, food and nutrition—An updated review. eFood 2024, 5, e127. [Google Scholar] [CrossRef]
- Sriroth, K.; Piyachomkwan, K.; Wanlapatit, S.; Oates, C.G. Cassava Starch Technology: The Thai Experience. Starch-Stärke 2000, 52, 439–449. [Google Scholar] [CrossRef]
- Lehmane, H.; Kohonou, A.N.; Tchogou, A.P.; Ba, R.; DahNouvlessounon, D.; Didagbé, O.; Sina, H.; Senou, M.; Adjanohoun, A.; Baba-Moussa, L. Antioxidant, anti-inflammatory, and anti-cancer properties of amygdalin extracted from three cassava varieties cultivated in Benin. Molecules 2023, 28, 4548. [Google Scholar] [CrossRef] [PubMed]
- Wholey, D.W.; Booth, R.H. A comparison of simple methods for estimating starch content of cassava roots. J. Sci. Food Agric. 1979, 30, 158–164. [Google Scholar] [CrossRef]
- Nuwamanya, E.; Baguma, Y.; Kawuki, R.S.; Rubaihayo, P.R. Quantification of starch physicochenical characteristics in a cassava segregating population. Afr. Crop Sci. J. 2009, 16, 191–202. [Google Scholar]
- Moorthy, S.S.; Padmaja, G. A rapid titrimetric method for the determination of starch content of cassava tubers. J. Root Crops 2002, 28, 30–37. [Google Scholar]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2003, 53, 621–641. [Google Scholar] [CrossRef]
- Akparobi, S.O.; Togun, A.O.; Ekanayake, I.J. Low temperature effects on sprouting and early establishment of cassava (Manihot esculenta Crantz) clones. Niger. J. Sci. 1999, 33, 277–285. [Google Scholar]
- Santanoo, S.; Vongcharoen, K.; Banterng, P.; Vorasoot, N.; Joyloy, S.; Roytrakul, S.; Theerakulpisut, P. Physiological and proteomic responses of cassava to short-term extreme cool and hot temperature. Plants 2022, 11, 2307. [Google Scholar] [CrossRef]
- Hauser, S.; Wairegi, L.; Asadu, C.L.A.; Asawalam, D.O.; Jokthan, G.; Ugbe, U. Cassava System Cropping Guide; Africa Soil Health Consortium, CAB International: Nairobi, Kenya, 2014. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Drought effects on root and tuber production: A meta-analysis. Agric. Water Manag. 2016, 176, 121–131. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Sustain. Agric. 2009, 153–188. [Google Scholar] [CrossRef]
- Wongnoi, S.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P. Physiology, growth and yield of different cassava genotypes planted in upland with dry environment during high storage root accumulation stage. Agronomy 2020, 10, 576. [Google Scholar] [CrossRef]
- Vongcharoen, K.; Santanoo, S.; Banterng, P.; Joyloy, S.; Vorasoot, N.; Theerakulpisult, P. Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava ‘Rayong 9’ under irrigated and rainfed conditions. Photosynthetica 2019, 57, 268–285. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.A.; Clearwater, M.J.; Haines, D.F.; Klein, T.; Mencuccini, M.; Sevanto, S.; Turgeon, R.; Zhang, C. Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology? Plant Cell Environ. 2016, 39, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Komor, E. Source physiology and assimilate transport: The interaction of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem. Aust. J. Plant Physiol. 2000, 27, 497–505. [Google Scholar] [CrossRef]
- Yan, W.; Wu, X.; Li, Y.; Liu, G.; Cui, Z.; Jiang, T.; Ma, Q.; Luo, L.; Zhang, P. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Front. Plant Sci. 2019, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef]
- Ullah, A.; Manghwar, H.; Shaban, M.; Khan, A.H.; Akbar, A.; Ali, U.; Ali, E.; Fahad, S. Phytohormones enhanced drought tolerance in plants: A coping strategy. Environ. Sci. Pollut. Res. Int. 2018, 25, 33103–33118. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Menkir, A.; Badu-Apraku, B.; Ibikunle, O. The influence of drought stress on growth, yield and yield components of selected maize genotypes. J. Agric. Sci. 2003, 141, 43–50. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 2007, 19, 257–286. [Google Scholar] [CrossRef]
- Duque, L.O.; Setter, T.L. Partitioning index and non-structural carbohydrate dynamics among contrasting cassava genotypes under early terminal water stress. J. Exp. Bot. 2019, 163, 24–35. [Google Scholar] [CrossRef]
- Pipitpukdee, S.; Attavanich, W.; Bejranonda, S. Impact of climate change on land use, yield and production of cassava in Thailand Agriculture. J. Clim. Change 2020, 10, 2–14. [Google Scholar]
- Oliveira, C.R.S.; Borel, J.C.; Pereira, D.A.; Carvalho, B.P.; Medrada, E.S.; Ishikawa, F.H.; Oliveira, E.J. Genetic parameters and path analysis for root yield of cassava under drought and early harvest. Crop Breed. Appl. Biotechnol. 2021, 21, e36162137. [Google Scholar] [CrossRef]
- Sarakarn, S.; Limsila, A.; Watananonta, W.; Suparhan, D.; Suriyapan, P. Cassava breeding and varietal dissemination in Thailand—Major achievements during the past 25 years. In Cassava’s Potential in Asia in the 21st Century: Present Situation and Future Research and Development Needs, Proceedings of the Sixth Regional WorkShop, Ho Chi Minh City, Vietnam, 21–25 February 2000; Howeler, R.H., Tan, S.L., Eds.; Centro Internacional de Agricultura Tropical (CIAT), Cassava Office for Asia: Cali, Colombia, 2000; pp. 161–166. [Google Scholar]
- Tapioca Varieties. TTDI: Thai Tapioca Development Institute. Available online: https://tapiocathai.org/English/K2_e.html (accessed on 20 February 2024).
- Cassava Industry in Thailand—Statistics & Facts. Statista. Available online: https://www.statista.com/topics/11099/cassava-industry-in-thailand/#editorsPicks (accessed on 20 February 2024).
- Okogbenin, E.; Setter, T.L.; Ferguson, M.; Mutegi, R.; Ceballos, H.; Olasanmi, B.; Fregene, M. Phenotypic approaches to drought in cassava: Review. Front. Physiol. 2013, 4, 93. [Google Scholar] [CrossRef] [PubMed]
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Gerrit Hoogenboom, G. The impact of seasonal environments in a tropical savanna climate on forking, leaf area index, and biomass of cassava genotypes. Agronomy 2019, 9, 19. [Google Scholar] [CrossRef]
- Photangtham, A.; Phoncharoen, P.; Sawatraksa, N.; Jongrungklang, N.; Jogloy, S.; Vorasoot, N.; Banterng, P. Capability of cassava model to determine biomass of two branching types at different plant spacings. Agric. Nat. Resour. 2022, 56, 73–84. [Google Scholar]
- Status of Cassava in Thailand: Implications for Future Research and Development. Thailand Ministry of Agriculture and Cooperative. Available online: http://www.fao.org/3/y1177e/Y1177E04.htm (accessed on 24 February 2024).
- Climate of Thailand Report. TMD: Thai Meteorological Department. Available online: http://www.aws-observation.tmd.go.th/main/main?menuId=&pageId= (accessed on 20 February 2024).
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Gerrit Hoogenboom, G. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Sci. Agric. 2018, 76, 376–388. [Google Scholar] [CrossRef]
- Aluko, O.O.; Li, C.; Wang, Q.; Liu, H. Sucrose utilization for improved crop yields: A review article. Int. J. Mol. Sci. 2021, 22, 4704. [Google Scholar] [CrossRef] [PubMed]
- Santanoo, S.; Vongcharoen, K.; Banterng, P.; Vorasoot, N.; Joyloy, S.; Roytrakul, S.; Theerakulpisut, P. Canopy structure and photosynthetic performance of irrigated cassava genotypes growing in different seasons in a tropical savanna climate. Agronomy 2020, 10, 2018. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; De Tafur, S.M.D. Comparative photosynthesis, growth, productivity, and nutrient use efficiency among tall- and short-stemmed rain-fed cassava cultivars. Photosynthetica 2010, 48, 173–188. [Google Scholar] [CrossRef]
- De Souza, A.P.; Massenburg, L.N.; Jaiswal, D.; Cheng, S.; Shekar, R.; Long, S.P. Rooting for cassava: Insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytol. 2017, 213, 50–65. [Google Scholar] [CrossRef]
- De Tafur, S.M.; El-Sharkawy, M.A.; Calle, F. Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. Photosynthetica 1997, 33, 249–257. [Google Scholar] [CrossRef]
- Nair, R.S.; More, S.J.; Puthur, J.T.; Makasana, J.; Ravi, V. Assessment of photo-protection, photosynthetic efficiency and growth responses of cassava (Manihot esculenta Crantz) subjected to fluctuating actinic light condition. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Chen, M.; Zhu, F.; Song, T. Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review. Agric. Water Manag. 2023, 289, 108523. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Shikanai, T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant Biol. 2016, 29, 81–106. [Google Scholar] [CrossRef]
- Alric, J.; Johnson, X. Alternative electron transport pathways in photosynthesis: A confluence of regulation. Curr. Opin. Plant Biol. 2017, 37, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Cayón, M.G.; El-Sharkawy, M.A.; Cadavid, L.F. Leaf gas exchange of cassava as affected by quality of planting material and water stress. Photosynthetica 1997, 34, 409–418. [Google Scholar] [CrossRef]
- Patono, D.L.; Said-Pullicino, D.; Alcatrāo, L.E.; Firbus, A.; Ivaldi, G.; Chitarra, W.; Ferrandino, A.; Aimonino, D.R.; Celi, L.; Gambino, G.; et al. Photosynthetic recovery in drought-rehydrated grapevines is associated with high demand from the sinks, maximizing the fruit-oriented performance. Plant J. 2022, 112, 1098–1111. [Google Scholar] [CrossRef]
- Arend, M.; Gessler, A.; Schaub, M. The influence of the soil on spring and autumn phenology in European beech. Tree Physiol. 2016, 36, 78–85. [Google Scholar] [CrossRef]
- Gessler, A.; Bottero, A.; Marshall, J.; Arend, M. The way back: Recovery of trees from drought and its implication for acclimation. New Phytol. 2020, 228, 1704–1709. [Google Scholar] [CrossRef]
- Obata, T.; Klemens, P.A.W.; Rosado-Souza, L.; Schlereth, A.; Gisel, A.; Stavolone, L.; Zierer, W.; Morales, N.; Mueller, L.A.; Zeemanm, S.C.; et al. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield. Plant J. 2020, 102, 1202–1219. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 2006, 44, 481–512. [Google Scholar] [CrossRef]
- De Souza, A.P.; Wang, Y.; Orr, D.J.; Carmo-Silva, E.; Long, S.P. Photosynthesis across African cassava germplasm is limited by rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. New Phytol. 2020, 225, 2498–2512. [Google Scholar] [CrossRef]
- Santanoo, S.; Vongcharoen, K.; Banterng, P.; Vorasoot, N.; Joyloy, S.; Roytrakul, S.; Theerakulpisut, P. Seasonal variation in diurnal photosynthesis and chlorophyll fluorescence of four genotypes of cassava (Manihot esculenta Crantz) under irrigation conditions in a tropical savanna climate. Agronomy 2019, 9, 206. [Google Scholar] [CrossRef]
- Ruangyos, C.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Vongcharoen, K.; Hoogenboom, G. Variation in biomass of cassava genotypes grown under different irrigation levels during the early growth phase. Crop Sci. 2023, 64, 482–495. [Google Scholar] [CrossRef]
- Alves, A.A.C.; Setter, T.L. Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Ann. Bot. 2004, 94, 605–613. [Google Scholar] [CrossRef]
- Chiewchankaset, P.; Thaiprasit, J.; Kalapanulak, S.; Wojciechowski, T.; Boonjing, P.; Saithong, T. Effective metabolic carbon utilization and shoot-to-root partitioning modulate distinctive yield in high yielding cassava variety. Front. Plant Sci. 2022, 13, 832304. [Google Scholar] [CrossRef]
- Janket, A.; Vorasoot, N.; Toomsan, B.; Kaewpradit, W.; Theerakupisut, P.; Holbrook, C.C.; Kvien, C.K.; Jogloy, S.; Banterng, P. Accumulation dynamics of starch and its granule size distribution of cassava genotypes at different growing seasons. Agriculture 2020, 10, 380. [Google Scholar] [CrossRef]
- Duque, L.O.; Setter, T.L. Cassava response to water deficit in deep pots: Root and shoot growth, ABA, and carbohydrate reserves in stem, leaves and storage roots. Trop. Plant Biol. 2013, 6, 199–209. [Google Scholar] [CrossRef]
- Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Banterng, P.; Kesmala, T.; Holbrook, C.; Kvien, C. Seasonal variations in canopy size and yield of Rayong 9 cassava genotype under rainfed and irrigated conditions. Agronomy 2019, 9, 362. [Google Scholar] [CrossRef]
- Keating, B.A.; Evenson, J.P.; Fukai, S. Environment effects on growth and development of cassava (Manihot esculenta Crantz) III. Assimilate distribution and storage organ yield. Field Crops Res. 1982, 5, 293–303. [Google Scholar] [CrossRef]
- Hilker, M.; Schmülling, T. Stress priming, memory, and signalling in plants. Plant Cell Environ. 2019, 42, 753–761. [Google Scholar] [CrossRef]
- Jacques, C.; Salon, C.; Barnard, R.L.; Vernoud, V.; Prudent, M. Drought stress memory at the plant cycle level: A review. Plants 2021, 10, 1873. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Huang, B. Lipidomic reprogramming associated with drought stress priming enhanced heat tolerance in tall fescue (Festuca arundinacea). Plant Cell Environ. 2019, 42, 947–958. [Google Scholar] [CrossRef]
- Janket, A.; Vorasoot, N.; Toomsan, B.; Kaewpradit, W.; Jogloy, S.; Theerakupisut, P.; Holbrook, C.C.; Kvien, C.K.; Banterng, P. Starch accumulation and granule size distribution of cassava cv. Rayong 9 grown under irrigated and rainfed conditions using different growing seasons. Agronomy 2020, 10, 412. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 5, 259–263. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Baker, D.E.; Norman, A.G. Atomic absorption and flame emission spectrometry. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1983; pp. 13–27. [Google Scholar]
- Reynolds, S.G. The gravimetric method of soil moisture determination Part III An examination of factors influencing soil moisture variability. J. Hydrol. 1970, 11, 288–300. [Google Scholar] [CrossRef]
- Kittipadakul, P.; Kongsil, P.; Phumichai, C.; Jansky, S.H. Breeding cassava for higher yield. In Achieving Sustainable Cultivation of Cassava; Hershey, C., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; Volume 2, pp. 139–170. [Google Scholar]
- Malik, A.I.; Kongsil, P.; Nguyễn, V.A.; Ou, W.; Srean, P.; López-Lavalle, L.A.; Utsumi, Y.; Lu, C.; Kittipadakul, P.; Nguyễn, H.H.; et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed Sci. 2020, 70, 145–166. [Google Scholar] [CrossRef]
- Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Holbrook, C.; Kvien, C.; Banterng, P. Seasonal variation in canopy size, light penetration and photosynthesis of three cassava genotypes with different canopy architectures. Agronomy 2020, 10, 1554. [Google Scholar] [CrossRef]
- Howeler, R.H. Cassava mineral nutrition and fertilization. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Thresh, J.M., Bellotti, A., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 281–300. [Google Scholar]
- Luo, X.; Huang, Q. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in Cassava. J. Agric. Sci. 2011, 3, 64–72. [Google Scholar] [CrossRef]
- Numan, Z.N.; Ford, C.J. Effect of ethyl alcohol on the dinitrosalicylic acid assay for reducing sugars. J. Chem. 2015, 4, 31–34. [Google Scholar]
- Otache, M.A.; Agbajor, G.K.; Akpovona, A.E.; Ogoh, B. Quantitative determination of sugars in three varieties of cassava pulp. Asian J. Chem. Sci. 2017, 3, 1–8. [Google Scholar] [CrossRef]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 16 May 2024).
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2024. [Google Scholar]
Soil Physicochemical Properties | ||||
---|---|---|---|---|
0–30 cm Soil Depth | 30−60 cm Soil Depth | |||
Sand (%) | 74.99 | 70.97 | ||
Silt (%) | 17.99 | 16.97 | ||
Clay (%) | 7.02 | 12.06 | ||
Soil Texture | Sandy Loam | Sandy Loam | ||
Total N (%) | 0.03 | 0.02 | ||
Available P (mg kg−1) | 364.5 | 277.5 | ||
Exchangeable K (mg kg−1) | 54.71 | 21.31 | ||
OM (%) | 0.43 | 0.29 | ||
CEC (cmol kg−1) | 3.33 | 3.59 | ||
pH (1:1 H2O) | 6.37 | 6.34 | ||
EC (dS m−1) | 0.03 | 0.02 | ||
Crop Age | Soil Moisture (%) | |||
0−30 cm Soil Depth | 30−60 cm Soil Depth | |||
Control | Drought | Control | Drought | |
3MAP (0DAS) | 9.81 | 9.96 | 10.11 | 9.95 |
4MAP (30DAS) | 11.44 * | 6.19 | 9.83 * | 8.73 |
5MAP (60DAS) | 11.34 * | 3.96 | 9.76 * | 6.18 |
6MAP (30DAR) | 12.71 | 11.49 | 11.78 | 10.1 |
12MAP | 12.91 | 12.77 | 11.36 | 12.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santanoo, S.; Ittipong, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Vongcharoen, K.; Theerakulpisut, P. Photosynthetic Performance, Carbohydrate Partitioning, Growth, and Yield among Cassava Genotypes under Full Irrigation and Early Drought Treatment in a Tropical Savanna Climate. Plants 2024, 13, 2049. https://doi.org/10.3390/plants13152049
Santanoo S, Ittipong P, Banterng P, Vorasoot N, Jogloy S, Vongcharoen K, Theerakulpisut P. Photosynthetic Performance, Carbohydrate Partitioning, Growth, and Yield among Cassava Genotypes under Full Irrigation and Early Drought Treatment in a Tropical Savanna Climate. Plants. 2024; 13(15):2049. https://doi.org/10.3390/plants13152049
Chicago/Turabian StyleSantanoo, Supranee, Passamon Ittipong, Poramate Banterng, Nimitr Vorasoot, Sanun Jogloy, Kochaphan Vongcharoen, and Piyada Theerakulpisut. 2024. "Photosynthetic Performance, Carbohydrate Partitioning, Growth, and Yield among Cassava Genotypes under Full Irrigation and Early Drought Treatment in a Tropical Savanna Climate" Plants 13, no. 15: 2049. https://doi.org/10.3390/plants13152049
APA StyleSantanoo, S., Ittipong, P., Banterng, P., Vorasoot, N., Jogloy, S., Vongcharoen, K., & Theerakulpisut, P. (2024). Photosynthetic Performance, Carbohydrate Partitioning, Growth, and Yield among Cassava Genotypes under Full Irrigation and Early Drought Treatment in a Tropical Savanna Climate. Plants, 13(15), 2049. https://doi.org/10.3390/plants13152049