LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases
Abstract
:1. Introduction
2. Related Work
2.1. Attentional Mechanisms
2.2. Small Object Detection
2.3. Switchable Atrous Convolution
3. Materials and Methods
3.1. Data Acquisition and Processing
3.2. The Proposed LSD-YOLO Model
3.3. Evaluation Indicators for the Model
4. Results and Discussion
4.1. Comparison Experiment
4.2. Visualization
4.3. Ablation Study
4.4. Applicability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mamede, A.M.G.N.; de Souza Coelho, C.C.; Freitas-Silva, O.; Barboza, H.T.G.; Soares, A.G. Lemon. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 377–392. [Google Scholar]
- Rafique, S.; Hassan, S.M.; Mughal, S.S.; Hassan, S.K.; Shabbir, N.; Perveiz, S.; Mushtaq, M.; Farman, M. Biological attributes of lemon: A review. J. Addict. Med. Ther. Sci. 2020, 6, 030–034. [Google Scholar]
- Al-Qudah, T.S.; Zahra, U.; Rehman, R.; Majeed, M.I.; Sadique, S.; Nisar, S.; Tahtamouni, R.; Tahtamouni, R.W. Lemon as a source of functional and medicinal ingredient: A review. Int. J. Chem. Biochem. Sci 2018, 14, 55–61. [Google Scholar]
- Timmer, L.; Garnsey, S.; Broadbent, P. Diseases of citrus. In Diseases of Tropical Fruit Crops; CABI Publishing: Wallingford, UK, 2003; pp. 163–195. [Google Scholar]
- Dharmaraj, V.; Vijayanand, C. Artificial intelligence (AI) in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2122–2128. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. pp. 21–37. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. IEEE Int. Conf. Comput. Vis. 2018, 42, 318–327. [Google Scholar]
- Kundu, N.; Rani, G.; Dhaka, V.S.; Gupta, K.; Nayaka, S.C.; Vocaturo, E.; Zumpano, E. Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning. Artif. Intell. Agric. 2022, 6, 276–291. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. Cvt: Introducing convolutions to vision transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 22–31. [Google Scholar]
- Gangwar, A.; Dhaka, V.S.; Rani, G.; Khandelwal, S.; Zumpano, E.; Vocaturo, E. Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds. Comput. Mater. Contin. 2024, 79, 117–142. [Google Scholar] [CrossRef]
- Yin, Z.-B.; Liu, F.-Y.; Geng, H.; Xi, Y.-J.; Zeng, D.-B.; Si, C.-J.; Shi, M.-D. A high-precision jujube disease spot detection based on SSD during the sorting process. PLoS ONE 2024, 19, e0296314. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, X.; Ai, J.; Yi, Z.; Xie, W. Lemon-YOLO: An efficient object detection method for lemons in the natural environment. IET Image Process. 2021, 15, 1998–2009. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Zhang, X.; Xun, Y.; Chen, Y. Automated identification of citrus diseases in orchards using deep learning. Biosyst. Eng. 2022, 223, 249–258. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Vocaturo, E.; Rani, G.; Dhaka, V.S.; Zumpano, E. AI-Driven Agriculture: Opportunities and Challenges. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 3530–3537. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics Yolov8. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 24 July 2023).
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Qiao, S.; Chen, L.-C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10213–10224. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 78–83. [Google Scholar]
- Dhaka, V.S.; Kundu, N.; Rani, G.; Zumpano, E.; Vocaturo, E. Role of internet of things and deep learning techniques in plant disease detection and classification: A focused review. Sensors 2023, 23, 7877. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Ultralytics, P. Yolov5. Github Repository 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 20 May 2024).
- Imane. Detection1. Available online: https://universe.roboflow.com/imane-3b0n5/detection1-hu38n (accessed on 11 July 2024).
Name | Lemon Instances | Disease Instance | Total | |
---|---|---|---|---|
Split1 | Training set | 3542 | 591 | 4133 |
Validation set | 899 | 127 | 1026 | |
Split2 | Training set | 3525 | 599 | 4124 |
Validation set | 916 | 119 | 1035 | |
Split3 | Training set | 3530 | 562 | 4092 |
Validation set | 911 | 156 | 1067 | |
Split4 | Training set | 3595 | 577 | 4172 |
Validation set | 846 | 141 | 987 | |
Split5 | Training set | 3572 | 543 | 4115 |
Validation set | 869 | 175 | 1044 |
Model | Lemon (%) | Disease (%) | mAP@50 (%) | Parameter | |
---|---|---|---|---|---|
YOLOv5n | 91.47 | 85.32 | 88.40 | 0.73 | 1.77 M |
YOLOv5n6 | 90.30 | 84.26 | 87.28 | 1.93 | 3.10 M |
YOLOv7-tiny | 90.03 | 83.71 | 86.87 | 1.16 | 6.02 M |
YOLOv8n | 91.69 | 84.28 | 87.98 | 2.16 | 3.01 M |
LSD-YOLO | 92.89 | 88.36 | 90.62 | 1.73 | 3.35 M |
Model | Precision (%) | Recall (%) | Lemon (%) | Disease (%) | mAP@50–95 (%) | |
---|---|---|---|---|---|---|
YOLOv5n | 87.41 | 81.76 | 74.90 | 74.57 | 74.73 | 0.92 |
YOLOv5n6 | 85.26 | 80.14 | 74.10 | 73.20 | 73.65 | 1.85 |
YOLOv7-tiny | 85.02 | 80.66 | 72.57 | 72.16 | 72.36 | 1.02 |
YOLOv8n | 87.54 | 79.71 | 78.98 | 76.77 | 77.87 | 1.99 |
LSD-YOLO | 89.22 | 83.96 | 80.53 | 81.15 | 80.84 | 1.21 |
Method | mAP@50 (%) | mAP@50–95 (%) | Parameter | ||
---|---|---|---|---|---|
YOLOv8n | 87.98 | 2.16 | 77.87 | 1.99 | 3.01 M |
YOLOv8n + SAC | 89.65 | 1.60 | 79.46 | 1.36 | 3.35 M |
YOLOv8n + SOD | 87.98 | 1.88 | 77.69 | 1.50 | 2.93 M |
YOLOv8n + CBAM | 88.08 | 2.16 | 77.95 | 1.58 | 3.08 M |
YOLOv8n + SAC + SOD | 88.98 | 1.16 | 78.95 | 1.02 | 3.29 M |
YOLOv8n + SOD + CBAM | 88.25 | 2.03 | 78.18 | 1.76 | 2.99 M |
YOLOv8n + SAC + CBAM | 89.53 | 2.22 | 79.41 | 2.48 | 3.42 M |
YOLOv8n + SAC + SOD + CBAM | 90.62 | 1.73 | 80.84 | 1.21 | 3.35 M |
Classes | P (%) | R (%) | mAP@50 (%) |
---|---|---|---|
all | 87.92 | 86.37 | 92.69 |
orange fraiche | 88.03 | 78.84 | 88.57 |
orange pourrie | 87.81 | 93.89 | 96.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, Q.; Yang, T.; Li, Z.; Bai, D.; Tang, C.; Pu, H. LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases. Plants 2024, 13, 2069. https://doi.org/10.3390/plants13152069
Wang S, Li Q, Yang T, Li Z, Bai D, Tang C, Pu H. LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases. Plants. 2024; 13(15):2069. https://doi.org/10.3390/plants13152069
Chicago/Turabian StyleWang, Shuyang, Qianjun Li, Tao Yang, Zhenghao Li, Dan Bai, Chenwei Tang, and Haibo Pu. 2024. "LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases" Plants 13, no. 15: 2069. https://doi.org/10.3390/plants13152069
APA StyleWang, S., Li, Q., Yang, T., Li, Z., Bai, D., Tang, C., & Pu, H. (2024). LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases. Plants, 13(15), 2069. https://doi.org/10.3390/plants13152069