Regulation of Microalgal Photosynthetic Electron Transfer
Abstract
:1. Introduction
1.1. The Diversity of Microalgal Oxygenic Photosynthesis
1.2. The Oxygenic Photosynthetic Apparatus
2. Maintaining Proper Water Splitting
2.1. Spatial Separation of the Thylakoid Membrane
2.2. Intrinsic PSII Regulation
2.3. Rapid Adjustments of Light-Harvesting Capacity
2.4. State Transitions Redistribute Energy Conversion Efficiencies
3. Regulations Revolving around Cytochrome b6f
3.1. Photosynthetic Control Diminishes Cytochrome b6f Activity to Protect PSI
3.2. Cyclic Electron Flow Maintains ATP Levels in Relation to NADPH Production
3.3. Ferredoxin-Plastoquinone-Reductase-Dependent Cyclic Electron Flow
4. PSI Acceptor Side Downstream Processes
4.1. Algal Response to Excess Light Bursts
4.2. Oxygen Coupled Scavengers Avert Excessive Reduction and Serve as Electron Sink
5. Inter-Organellar Interaction
5.1. Photorespiration and Dealing with a Nondiscriminatory RuBisCO
5.2. Malate Shuttle Dissipates Plastidial Redox Pressure and Is Auxiliary to Photorespiration
6. Ion Conductivity Regulation to Optimize ATP Yields
6.1. ATP Synthase Regulation
6.2. Ion Channels for pmf Parsing
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rasmussen, B.; Bekker, A.; Fletcher, I.R. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 2013, 382, 173–180. [Google Scholar] [CrossRef]
- Hofmann, H.J. Precambrian microflora, Belcher islands, Canada: Significance and systematics. J. Paleontol. 1976, 50, 1040–1073. [Google Scholar]
- Fischer, W.W.; Hemp, J.; Johnson, J.E. Evolution of Oxygenic Photosynthesis. Annu. Rev. Earth Planet. Sci. 2016, 44, 647–683. [Google Scholar] [CrossRef]
- Cardona, T.; Sánchez-Baracaldo, P.; Rutherford, A.W.; Larkum, A.W. Early Archean origin of Photosystem II. Geobiology 2019, 17, 127–150. [Google Scholar] [CrossRef]
- Oliver, T.; Sánchez-Baracaldo, P.; Larkum, A.W.; Rutherford, A.W.; Cardona, T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochim. Biophys. Acta—Bioenerg. 2021, 1862, 148400. [Google Scholar] [CrossRef]
- Archibald, J.M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 2015, 25, R911–R921. [Google Scholar] [CrossRef]
- Sato, N. Are cyanobacteria an ancestor of chloroplasts or just one of the gene donors for plants and algae? Genes 2021, 12, 823. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Medlin, L.K. Complex Plastids and the Evolution of the Marine Phytoplankton. J. Mar. Sci. Eng. 2023, 11, 1903. [Google Scholar] [CrossRef]
- Sibbald, S.J.; Archibald, J.M. Genomic Insights into Plastid Evolution. Genome Biol. Evol. 2020, 12, 978–990. [Google Scholar] [CrossRef]
- Blaby-Haas, C.E.; Merchant, S.S. Comparative and Functional Algal Genomics. Annu. Rev. Plant Biol. 2019, 70, 605–638. [Google Scholar] [CrossRef]
- Bachy, C.; Wittmers, F.; Muschiol, J.; Hamilton, M.; Henrissat, B.; Worden, A.Z. The Land-Sea Connection: Insights Into the Plant Lineage from a Green Algal Perspective. Annu. Rev. Plant Biol. 2022, 73, 585–616. [Google Scholar] [CrossRef]
- Hu, H.; Li, H.; Xu, X. Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 2008, 47, 28–34. [Google Scholar] [CrossRef]
- Morgan-Kiss, R.M.; Ivanov, A.G.; Modla, S.; Czymmek, K.; Hüner, N.P.A.; Priscu, J.C.; Lisle, J.T.; Hanson, T.E. Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 2008, 12, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Treves, H.; Raanan, H.; Finkel, O.M.; Berkowicz, S.M.; Keren, N.; Shotland, Y.; Kaplan, A. A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol. Ecol. 2013, 86, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Barati, B.; Lim, P.E.; Gan, S.Y.; Poong, S.W.; Phang, S.M. Gene expression profile of marine Chlorella strains from different latitudes: Stress and recovery under elevated temperatures. J. Appl. Phycol. 2018, 30, 3121–3130. [Google Scholar] [CrossRef]
- Krienitz, L.; Bock, C. Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 2012, 698, 295–326. [Google Scholar] [CrossRef]
- Risarri, I.; Trassert, J.F.H.S.; BUrki, F. Phylogenomic Insights into the Origin of Primary Plastids. Syst. Biol. 2022, 71, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, Z.; Xu, C.; Shi, X.; Yang, L.; Lewis, L.A.; Zhong, B. Large Phylogenomic Data sets Reveal Deep Relationships and Trait Evolution in Chlorophyte Green Algae. Genome Biol. Evol. 2021, 13, evab101. [Google Scholar] [CrossRef] [PubMed]
- Malone, L.A.; Proctor, M.S.; Hitchcock, A.; Hunter, C.N.; Johnson, M.P. Cytochrome b6f—Orchestrator of photosynthetic electron transfer. Biochim. Biophys. Acta—Bioenerg. 2021, 1862, 148380. [Google Scholar] [CrossRef] [PubMed]
- Sarewicz, M.; Szwalec, M.; Pintscher, S.; Indyka, P.; Rawski, M.; Pietras, R.; Mielecki, B.; Koziej, Ł.; Jaciuk, M.; Glatt, S.; et al. High-resolution cryo-EM structures of plant cytochrome b6f at work. Sci. Adv. 2023, 9, eadd9688. [Google Scholar] [CrossRef] [PubMed]
- Merchant, S.S.; Allen, M.D.; Kropat, J.; Moseley, J.L.; Long, J.C.; Tottey, S.; Terauchi, A.M. Between a rock and a hard place: Trace element nutrition in Chlamydomonas. Biochim. Biophys. Acta—Mol. Cell Res. 2006, 1763, 578–594. [Google Scholar] [CrossRef] [PubMed]
- Slater, B.; Kosmu, D.; Nisbet, R.E.R.; Howe, C.J. The Evolution of the Cytochrome c6 Family of Photosynthetic Electron Transfer Proteins. Genome Biol. Evol. 2021, 13, evab146. [Google Scholar] [CrossRef] [PubMed]
- Naschberger, A.; Mosebach, L.; Tobiasson, V.; Kuhlgert, S.; Scholz, M.; Perez-Boerema, A.; Ho, T.T.H.; Vidal-Meireles, A.; Takahashi, Y.; Hippler, M.; et al. Algal photosystem I dimer and high resolution model of PSI:plastocyanin complex. Nat. Plants 2022, 8, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Antoshvili, M.; Caspy, I.; Hippler, M.; Nelson, N. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth. Res. 2019, 139, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, P.; Li, K.; Zhang, Q.; He, F.; Li, C.; Su, H.; Chen, X.; Liu, L.; Zhang, Y. Structural basis and evolution of the photosystem I—Light-harvesting supercomplex of cryptophyte algae Research Article. Plant Cell 2023, 35, 2449–2463. [Google Scholar] [CrossRef]
- Castell, C.; Rodríguez-Lumbreras, L.A.; Hervás, M.; Fernández-Recio, J.; Navarro, J.A. New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes. Plant Cell Physiol. 2021, 62, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Hemschemeier, A.; Happe, T. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim. Biophys. Acta 2011, 1807, 919–926. [Google Scholar] [CrossRef]
- Terauchi, A.M.; Lu, S.; Zaffagnini, M.; Tappa, S.; Hirasawa, M.; Tripathy, J.N.; Knaff, D.B.; Farmer, P.J.; Lemaire, S.D.; Hase, T.; et al. Pattern of Expression and Substrate Specificity of Chloroplast Ferredoxins from Chlamydomonas reinhardtii. J. Biol. Chem. 2009, 284, 25867–25878. [Google Scholar] [CrossRef]
- Hanke, G.; Mulo, P. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 2013, 36, 1071–1084. [Google Scholar] [CrossRef]
- Goss, T.; Hanke, G. The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons? Curr. Protein Pept. Sci. 2014, 15, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Zaffagnini, M.; Fermani, S.; Marchand, C.H.; Costa, A. Redox homoestasis in photosynthetic organisms: Novel and established thiol-based molecular mechanisms. Antioxid. Redox Signal. 2018, 31, 155–210. [Google Scholar] [CrossRef]
- Junge, W.; Nelson, N. ATP synthase. Annu. Rev. Biochem. 2015, 84, 631–657. [Google Scholar] [CrossRef] [PubMed]
- Wietrzynski, W.; Schaffer, M.; Tegunov, D.; Albert, S.; Kanazawa, A.; Plitzko, J.M.; Baumeister, W.; Engel, B.D. Charting the native architecture of chlamydomonas thylakoid membranes with single-molecule precision. Elife 2020, 9, e53740. [Google Scholar] [CrossRef] [PubMed]
- Engel, B.D.; Schaffer, M.; Cuellar, L.K.; Villa, E.; Plitzko, J.M.; Baumeister, W. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. Elife 2015, 4, e04889. [Google Scholar] [CrossRef]
- Uwizeye, C.; Decelle, J.; Jouneau, P.; Flori, S.; Gallet, B.; Keck, J.; Bo, D.D.; Moriscot, C.; Seydoux, C.; Chevalier, F.; et al. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat. Commun. 2021, 12, 1049. [Google Scholar] [CrossRef]
- Goodenough, U.W.; Staehelin, L.A. Structural differentiation of stacked and unstacked chloroplastmembranes: Freeze-etch electron microscopy of wild-type and mutant strains of Chlamydomonas. J. Cell Biol. 1971, 48, 594–619. [Google Scholar] [CrossRef]
- Mazur, R.; Mostowska, A.; Kowalewska, Ł. How to Measure Grana—Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts. Front. Plant Sci. 2021, 12, 756009. [Google Scholar] [CrossRef]
- Ruibal, C.; Castro, A.; Fleitas, A.L.; Quezada, J.; Quero, G.; Vidal, S. A Chloroplast COR413 Protein from Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. Front. Plant Sci. 2020, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Perez-boerema, A.; Engel, B.D.; Wietrzynski, W. Evolution of Thylakoid Structural Diversity. Annu. Rev. Cell Dev. Biol. 2024, 40, 1–25. [Google Scholar] [CrossRef]
- Wollman, F.-A.; Olive, J.; Bennoun, P.; Recouvreur, M. Organization of the photosystem II centers and their associated antennae in the thylakoid membranes: A comparative ultrastructural, biochemical, and biophysical study of Chlamydomonas wild type and mutants lacking in photosystem II reaction centers. J. Cell Biol. 1980, 87, 728–735. [Google Scholar] [CrossRef]
- Vallon, O.; Bulte, L.; Dainese, P.; Olive, J.; Bassi, R.; Wollman, F.-A. Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc. Natl. Acad. Sci. USA 1991, 88, 8262–8266. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, H.; Li, M.; Puthiyaveetil, S. Sublocalization of Cytochrome b6f Complexes in Photosynthetic Membranes. Trends Plant Sci. 2017, 22, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Trissl, H.-W.; Wilhelm, C. Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem. Sci. 1993, 18, 415–419. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Zhang, X.; Cheng, J.; Xiao, Y.; Ma, J.; Sun, S.; Zhang, X.; Wang, H.; Sui, S. In situ structure of the red algal phycobilisome- PSII-PSI-LHC megacomplex. Nature 2023, 616, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Caspy, I.; Fadeeva, M.; Mazor, Y.; Nelson, N. Structure of Dunaliella photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes. Elife 2023, 12, e81150. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Iwano, M.; Shikanai, T.; Sakamoto, W. FZL, a dynamin-like protein localized to curved grana edges, is required for ef fi cient photosynthetic electron transfer in Arabidopsis. Front. Plant Sci. 2023, 14, 1279699. [Google Scholar] [CrossRef]
- Kirchhoff, H.; Hall, C.; Wood, M.; Herbstová, M.; Tsabari, O.; Nevo, R.; Charuvi, D.; Shimoni, E.; Reich, Z. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. USA 2011, 108, 20248–20253. [Google Scholar] [CrossRef] [PubMed]
- Puthiyaveetil, S.; Van Oort, B.; Kirchhoff, H. Surface charge dynamics in photosynthetic membranes and the structural consequences. Nat. Plants 2017, 3, 17020. [Google Scholar] [CrossRef]
- Kirchhoff, H.; Horstmann, S.; Weis, E. Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim. Biophys. Acta—Bioenerg. 2000, 1459, 148–168. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, W.J.; Liu, X.; Raber, B.; Hu, C.; De Vitry, C.; Bennett, D.I.G.; Croce, R. Molecular origins of induction and loss of photoinhibition-related energy dissipation qI. Sci. Adv. 2021, 7, eabj0055. [Google Scholar] [CrossRef]
- Lyon, B.R.; Mock, T. Polar microalgae: New approaches towards understanding adaptations to an extreme and changing environment. Biology 2014, 3, 56–80. [Google Scholar] [CrossRef]
- Dolhi, J.M.; Maxwell, D.P.; Morgan-Kiss, R.M. Review: The Antarctic Chlamydomonas raudensis: An emerging model for cold adaptation of photosynthesis. Extremophiles 2013, 17, 711–722. [Google Scholar] [CrossRef]
- Kugler, A.; Kumari, P.; Kokabi, K.; Itkin, M.; Malitsky, S.; Khozin-Goldberg, I. Resilence to freezing in the vegetative cells of the microala Lobisphaera incisa (Terbouxiophyceae, Chlorophyta). J. Phycol. 2020, 345, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Kiss, R.M.; Priscu, J.C.; Pocock, T.; Gudynaite-Savitch, L.; Huner, N.P.A. Adaptation and Acclimation of Photosynthetic Microorganisms to Permanently Cold Environments. Microbiol. Mol. Biol. Rev. 2006, 70, 222–252. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.Y.; Jouhet, J.; Maréchal, E.; Falkowski, P.G. The redox state of the plastoquinone (PQ) pool is connected to thylakoid lipid saturation in a marine diatom. Photosynth. Res. 2022, 153, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Govindjee; Krogmann, D.W. Discoveries in oxygenic photosynthesis (1727-2003): A perspective. Photosynth. Res. 2004, 80, 15–57. [Google Scholar] [CrossRef]
- Lubitz, W.; Chrysina, M.; Cox, N. Water oxidation in photosystem II. Photosynth. Res. 2019, 142, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Cardona, T.; Sedoud, A.; Cox, N.; Rutherford, A.W. Charge separation in Photosystem II: A comparative and evolutionary overview. Biochim. Biophys. Acta—Bioenerg. 2012, 1817, 26–43. [Google Scholar] [CrossRef]
- Rutherford, A.W.; Osyczka, A.; Rappaport, F. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O2. Fed. Eur. Biochem. Soc. Lett. 2012, 586, 603–616. [Google Scholar] [CrossRef]
- Kozuleva, M.A. Recent advances in the understanding of superoxide anion radical formation in the photosynthetic electron transport chain. Acta Physiol. Plant. 2022, 44, 92. [Google Scholar] [CrossRef]
- Theis, J.; Schroda, M. Revisiting the photosystem II repair cycle. Plant Signal. Behav. 2016, 11, e1218587. [Google Scholar] [CrossRef]
- Shevela, D.; Do, H.N.; Fantuzzi, A.; Rutherford, A.W.; Messinger, J. Bicarbonate-Mediated CO2 Formation on Both Sides of Photosystem II. Biochemistry 2020, 59, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Meireles, A.; Neupert, J.; Zsigmond, L.; Rosado-Souza, L.; Kovacs, L.; Nagy, V.; Aniko, G.; Fernie, A.R.; Bock, R.; Tóth, S.Z. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP- L -galactose phosphorylase. New Phytol. 2017, 214, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Podmaniczki, A.; Nagy, V.; Vidal-Meireles, A.; Tóth, D.; Patai, R.; Kovács, L.; Tóth, S.Z. Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. Physiol. Plant. 2020, 171, 232–245. [Google Scholar] [CrossRef]
- Krieger-Liszkay, A.; Fufezan, C.; Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 2008, 98, 551–564. [Google Scholar] [CrossRef]
- Tóth, S.Z.; Schansker, G.; Strasser, R.J. A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth. Res. 2007, 93, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Brinkert, K.; De Causmaecker, S.; Krieger-Liszkay, A.; Fantuzzi, A.; Rutherford, A.W. Bicarbonate-induced redox tuning in Photosystem II for regulation and protection. Proc. Natl. Acad. Sci. USA 2016, 113, 12144–12149. [Google Scholar] [CrossRef] [PubMed]
- Fadeeva, M.; Klaiman, D.; Caspy, I.; Nelson, N. Structure of Chlorella ohadii Photosystem II Reveals Protective Mechanisms against Environmental Stress. Cells 2023, 12, 1971. [Google Scholar] [CrossRef]
- Tikhonov, K.; Shevela, D.; Klimov, V.V.; Messinger, J. Quantification of bound bicarbonate in photosystem II. Photosynthetica 2018, 56, 210–216. [Google Scholar] [CrossRef]
- Zabret, J.; Bohn, S.; Schuller, S.K.; Arnolds, O.; Möller, M.; Meier-credo, J.; Liauw, P.; Chan, A.; Tajkhorshid, E.; Langer, J.D.; et al. Structural insights into photosystem II assembly. Nat. Plants 2021, 7, 524–538. [Google Scholar] [CrossRef]
- Messant, M.; Timm, S.; Fantuzzi, A.; Weckwerth, W.; Bauwe, H.; Rutherford, A.W.; Krieger-liszkay, A. Glycolate Induces Redox Tuning Of Photosystem II in Vivo: Study of a Photorespiration Mutant 1. Plant Physiol. 2018, 177, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Milrad, Y.; Nagy, V.; Elman, T.; Fadeeva, M.; Tóth, S.Z.; Yacoby, I. A PSII photosynthetic control is activated in anoxic cultures of green algae following illumination. Commun. Biol. 2023, 6, 514. [Google Scholar] [CrossRef] [PubMed]
- Shevela, D.; Eaton-Rye, J.J.; Shen, J.R. Govindjee Photosystem II and the unique role of bicarbonate: A historical perspective. Biochim. Biophys. Acta—Bioenerg. 2012, 1817, 1134–1151. [Google Scholar] [CrossRef] [PubMed]
- Ananyev, G.M.; Gates, C.; Kaplan, A.; Dismukes, G.C. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochim. Biophys. Acta—Bioenerg. 2017, 1858, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Mani, K.; Zournas, A.; Dismukes, G.C. Bridging the gap between Kok-type and kinetic models of photosynthetic electron transport within Photosystem II. Photosynth. Res. 2021, 151, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Miyake, C.; Yokota, A. Cyclic flow of electrons within PSII in thylakoid membranes. Plant Cell Physiol. 2001, 42, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Zournas, A.; Mani, K.; Dismukes, G.C. Cyclic electron flow around photosystem II in silico: How it works and functions in vivo. Photosynth. Res. 2023, 48, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Gates, C.; Ananyev, G.M.; Roy-Chowdhury, S.; Fromme, P.; Dismukes, G.C. Regulation of light energy conversion between linear and cyclic electron flow within photosystem II controlled by the plastoquinone/quinol redox poise. Photosynth. Res. 2023, 156, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Noguchi, T. Molecular interactions of the quinone electron acceptors QA, QB, and QC in photosystem II as studied by the fragment molecular orbital method. Photosynth. Res. 2014, 120, 113–123. [Google Scholar] [CrossRef]
- Kaminskaya, O.P.; Shuvalov, V.A. New interpretation of the redox properties of cytochrome b559 in photosystem II. Dokl. Biochem. Biophys. 2016, 466, 39–42. [Google Scholar] [CrossRef]
- Shinopoulos, K.E.; Brudvig, G.W. Cytochrome b559 and cyclic electron transfer within photosystem II. Biochim. Biophys. Acta—Bioenerg. 2012, 1817, 66–75. [Google Scholar] [CrossRef]
- Takagi, D.; Ifuku, K.; Nishimura, T.; Miyake, C. Antimycin A inhibits cytochrome b559 -mediated cyclic electron flow within photosystem II. Photosynth. Res. 2019, 139, 487–498. [Google Scholar] [CrossRef]
- Peers, G.; Truong, T.B.; Ostendorf, E.; Busch, A.; Elrad, D.; Grossman, A.R.; Hippler, M.; Niyogi, K.K. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 2009, 462, 518–521. [Google Scholar] [CrossRef]
- Dinc, E.; Tian, L.; Roy, L.M.; Roth, R.; Goodenough, U.; Croce, R. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc. Natl. Acad. Sci. USA 2016, 113, 7673–7678. [Google Scholar] [CrossRef]
- Li, X.; Björkman, O.; Shih, C.; Grossman, A.R.; Rosenquist, M.; Jansson, S.; Niyogi, K.K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 2000, 403, 391–395. [Google Scholar] [CrossRef]
- Allorent, G.; Lefebvre-legendre, L.; Chappuis, R.; Kuntz, M.; Truong, T.B.; Niyogi, K.K.; Ulm, R.; Goldschmidt-Clermont, M. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2016, 113, 14864–14869. [Google Scholar] [CrossRef]
- Correa-Galvis, V.; Poschmann, G.; Melzer, M.; Stühler, K.; Jahns, P. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat. Plants 2016, 2, 15225. [Google Scholar] [CrossRef]
- Tibiletti, T.; Auroy, P.; Peltier, G.; Caffarri, S. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light. Plant Physiol. 2016, 171, 2717–2730. [Google Scholar] [CrossRef]
- Redekop, P.; Rothhausen, N.N.; Rothhausen, N.N.; Melzer, M.; Mosebach, L.; Dülger, E.; Bovdilova, A.; Caffarri, S.; Hippler, M.; Jahns, P.; et al. PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. Biochim. Biophys. Acta—Bioenerg. 2020, 1861, 148183. [Google Scholar] [CrossRef]
- Chekanov, K.; Schastnaya, E.; Neverov, K.; Leu, S.; Boussiba, S.; Zarka, A.; Solovchenko, A. Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable condition and under stress. BBA—Gen. Subj. 2019, 1863, 1429–1442. [Google Scholar] [CrossRef]
- Xue, H.; Tokutsu, R.; Bergner, S.V.; Scholz, M.; Minagawa, J.; Hippler, M. PHOTOSYSTEM II SUBUNIT R is required for Ef fi cient Binding of LIGHT-HARVESTING COMPLEX STRESS- RELATED PROTEIN3 to Photosystem II-Light-Harvesting Supercomplexes in Chlamydomonas reinhardtii. Plant Physiol. 2015, 167, 1566–1578. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Bergner, S.V.; Scholz, M.; Hippler, M.; Xue, H. Chlamydomonas reinhardtii Novel insights into the function of LHCSR3 in Chlamydomonas reinhardtii. Plant Signal. Behav. 2016, 10, e1058462. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, S.; Lee, S.; Kim, M.; Bellamoli, F.; Pompa, A.; Perozeni, F.; Jin, E.; Ballottari, M.; Biotecnologie, D. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. Plant Cell Environ. 2020, 43, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, S.; Kim, M.; Pivato, M.; Perozeni, F.; Sardar, S.; D’Andrea, C.; Jin, E.; Ballottari, M. Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas. Plant Physiol. 2023, 193, 1365–1380. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Nawrocki, W.J. The role of the pigment—Protein complex LHCBM1 in nonphotochemical quenching in Chlamydomonas reinhardtii. Plant Physiol. 2024, 194, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Bonente, G.; Ballottari, M.; Truong, T.B.; Morosinotto, T.; Ahn, T.K.; Fleming, G.R.; Niyogi, K.K.; Bassi, R. Analysis of LhcSR3, a Protein Essential for Feedback De- Excitation in the Green Alga Chlamydomonas reinhardtii. PLoS Biol. 2010, 9, e1000577. [Google Scholar] [CrossRef] [PubMed]
- Ballottari, M.; Truong, T.B.; De Re, E.; Erickson, E.; Stella, G.R.; Fleming, G.R.; Bassi, R.; Niyogi, K.K. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas. J. Biol. Chem. 2016, 291, 7334–7346. [Google Scholar] [CrossRef] [PubMed]
- Troiano, J.M.; Perozeni, F.; Moya, R.; Zuliani, L.; Baek, K.; Jin, E.; Cazzaniga, S.; Ballottari, M.; Schlau-Cohen, G.S. Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii. Elife 2021, 10, e60383. [Google Scholar] [CrossRef] [PubMed]
- Liguori, N.; Roy, L.M.; Opacic, M.; Croce, R. Regulation of Light Harvesting in the Green Alga Chlamydomonas reinhardtii: The C—Terminus of LHCSR Is the Knob of a Dimmer Switch. J. Am. Chem. Soc. 2013, 135, 18339–18342. [Google Scholar] [CrossRef]
- Tokutsu, R.; Minagawa, J. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2013, 110, 10016–10021. [Google Scholar] [CrossRef]
- Allorent, G.; Tokutsu, R.; Roach, T.; Peers, G.; Cardol, P.; Girard-bascou, J.; Petroutsos, D.; Kuntz, M.; Franck, F.; Niyogi, K.K.; et al. A Dual Strategy to Cope with High Light in Chlamydomonas reinhardtii. Plant Cell 2013, 25, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Kosuge, K.; Tokutsu, R.; Kim, E.; Akimoto, S.; Yokono, M.; Ueno, Y. LHCSR1-dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2018, 115, 3722–3727. [Google Scholar] [CrossRef] [PubMed]
- Tokutsu, R.; Fujimura-kamada, K.; Minagawa, J.; Yamasaki, T.; Okajima, K. UV-A/B radiation rapidly activates photoprotective mechanisms in Chlamydomonas reinhardtii. Plant Physiol. 2021, 185, 1894–1902. [Google Scholar] [CrossRef]
- Redekop, P.; Sanz-luque, E.; Yuan, Y.; Villain, G.; Petroutsos, D.; Grossman, A.R. Transcriptional regulation of photoprotection in dark-to-light transition—More than just a matter of excess light energy. Sci. Adv. 2022, 8, eabn1832. [Google Scholar] [CrossRef]
- Marcolungo, L.; Bellamoli, F.; Cecchin, M.; Lopatriello, G.; Rossato, M.; Cosentino, E.; Rombauts, S.; Delledonne, M.; Ballottari, M. Haematococcus lacustris genome assembly and annotation reveal diploid genetic traits and stress-induced gene expression patterns. Algal Res. 2024, 80, 103567. [Google Scholar] [CrossRef]
- Yamano, T.; Miura, K.; Fukuzawa, H. Expression Analysis of Genes Associated with the Induction of the Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii. Plant Physiol. 2008, 147, 340–354. [Google Scholar] [CrossRef]
- Maruyama, S.; Tokutsu, R.; Minagawa, J. Transcriptional Regulation of the Stress-Responsive Light Harvesting Complex Genes in Chlamydomonas Reinhardtii Special Focus Issue—Regular Paper. Plant Cell Physiol. 2014, 55, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Fukuzawa, H.; Miura, K.; Ishizaki, K.; Kucho, K.; Saito, T.; Kohinata, T.; Ohyama, K. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc. Natl. Acad. Sci. USA 2001, 98, 5347–5352. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, J.; Weeks, D.P. The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2001, 98, 5341–5346. [Google Scholar] [CrossRef]
- Ruiz-Sola, M.Á.; Flori, S.; Yuan, Y.; Villain, G.; Sanz-luque, E.; Redekop, P.; Tokutsu, R.; Küken, A.; Tsichla, A.; Kepesidis, G.; et al. Light-independent regulation of algal pho- toprotection by CO2 availability. Nat. Commun. 2023, 14, 1977. [Google Scholar] [CrossRef]
- Polukhina, I.; Fristedt, R.; Dinc, E.; Cardol, P.; Croce, R. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii. Plant Physiol. 2016, 172, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Arend, M.; Yuan, Y.; Ruiz-Sola, M.Á.; Omranian, N.; Nikoloski, Z.; Petroutsos, D. Widening the landscape of transcriptional regulation of green algal photoprotection. Nat. Commun. 2023, 14, 2687. [Google Scholar] [CrossRef] [PubMed]
- Perozeni, F.; Beghini, G.; Cazzaniga, S.; Ballottari, M. Chlamydomonas reinhardtii LHCSR1 and LHCSR3 proteins involved in photoprotective non—Photochemical quenching have different quenching efficiency and different carotenoid affinity. Sci. Rep. 2020, 10, 21957. [Google Scholar] [CrossRef] [PubMed]
- Arnoux, P.; Morosinotto, T.; Saga, G.; Bassi, R.; Pignol, D. A Structural Basis for the pH-Dependent Xanthophyll Cycle in Arabidopsis thaliana. Plant Cell 2009, 21, 2036–2044. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Nawrocki, W.J.; Liu, X.; Polukhina, I.; Van Stokkum, I.H.M.; Croce, R. PH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc. Natl. Acad. Sci. USA 2019, 116, 8320–8325. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kawakami, K.; Sato, R.; Ishii, A.; Minagawa, J. Photoprotective Capabilities of Light-Harvesting Complex II Trimers in the Green Alga Chlamydomonas reinhardtii. J. Phys. Chem. Lett. 2020, 8, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kubota-kawai, H.; Kawai, F.; Yokono, M.; Minagawa, J. Conformation of Light-Harvesting Complex II Trimer Depends upon Its Binding Site. J. Phys. Chem. B 2022, 126, 5855–5865. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Peers, G.; Dent, R.M.; Bai, Y.; Yang, S.Y.; Apel, W.; Leonelli, L.; Niyogi, K.K. Evolution of an atypical de-epoxidase for photoprotection in the green lineage. Nat. Plants 2016, 2, 16140. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Meireles, A.; Tóth, D.; Kovács, L.; Neupert, J.; Tóth, S.Z. Ascorbate deficiency does not limit nonphotochemical quenching in chlamydomonas reinhardtii. Plant Physiol. 2020, 182, 597–611. [Google Scholar] [CrossRef]
- Girolomoni, L.; Andrea, C.D.; Bellamoli, F.; De, G.; Valbuena, C.; Perozeni, F.; Cerullo, G.; Cazzaniga, S.; Ballottari, M. Evolutionary divergence of photoprotection in the green algal lineage: A plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga Chlorella vulgaris modulating photoprotection. New Phytol. 2020, 228, 136–150. [Google Scholar] [CrossRef]
- van den Berg, T.E.; Croce, R. The Loroxanthin Cycle: A New Type of Xanthophyll Cycle in Green Algae (Chlorophyta). Front. Plant Sci. 2022, 13, 797294. [Google Scholar] [CrossRef]
- Kotabová, E.; Kan, R.; Jarešová, J.; Prášil, O. Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. Fed. Eur. Biochem. Soc. Lett. 2011, 585, 1941–1945. [Google Scholar] [CrossRef] [PubMed]
- Chukhutsina, V.U.; Fristedt, R.; Morosinotto, T.; Croce, R. Photoprotection strategies of the alga Nannochloropsis gaditana. BBA—Bioenerg. 2017, 1858, 544–552. [Google Scholar] [CrossRef]
- Park, S.; Steen, C.J.; Lyska, D.; Fischer, A.L.; Endelman, B.; Iwaib, M.; Niyogi, K.K.; Fleming, G.R. Chlorophyll—Carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proc. Natl. Acad. Sci. USA 2018, 116, 3385–3390. [Google Scholar] [CrossRef]
- Short, A.; Fay, T.P.; Crisanto, T.; Mangal, R.; Niyogi, K.K.; Limmer, D.T.; Fleming, G.R. Kinetics of the xanthophyll cycle and its role in photoprotective memory and response. Nat. Commun. 2023, 14, 6621. [Google Scholar] [CrossRef] [PubMed]
- Bailleul, B.; Rogato, A.; De Martino, A.; Coesel, S.; Cardol, P.; Bowler, C.; Falciatore, A.; Finazzi, G. An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc. Natl. Acad. Sci. USA 2010, 107, 18214–18219. [Google Scholar] [CrossRef] [PubMed]
- Taddei, L.; Stella, G.R.; Rogato, A.; Bailleul, B.; Fortunato, A.E.; Annunziata, R.; Sanges, R.; Thaler, M.; Lepetit, B.; Lavaud, J.; et al. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. J. Exp. Bot. 2016, 67, 3939–3951. [Google Scholar] [CrossRef]
- Taddei, L.; Chukhutsina, V.U.; Lepetit, B.; Stella, G.R.; Bassi, R.; van Amerongen, H.; Bouly, J.-P.; Jaubert, M.; Finazzi, G.; Falciatore, A. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Plant Physiol. 2018, 177, 953–965. [Google Scholar] [CrossRef]
- Buck, J.M.; Sherman, J.; Bártulos, C.R.; Serif, M.; Halder, M.; Henkel, J.; Falciatore, A.; Lavaud, J.; Gorbunov, M.Y.; Kroth, P.G.; et al. Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nat. Commun. 2019, 10, 4167. [Google Scholar] [CrossRef]
- Buck, J.M.; Wünsch, M.; Schober, A.F.; Kroth, P.G.; Lepetit, B. Impact of Lhcx2 on Acclimation to Low Iron Conditions in the Diatom Phaeodactylum tricornutum. Front. Plant Sci. 2022, 13, 841058. [Google Scholar] [CrossRef]
- Buck, J.M.; Kroth, P.G.; Lepetit, B. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum. Plant J. 2021, 108, 1721–1734. [Google Scholar] [CrossRef] [PubMed]
- Giovagnetti, V.; Jaubert, M.; Bouly, J.; Falciatore, A.; Shukla, M.K.; Ungerer, P.; Ruban, A.V. Biochemical and molecular properties of LHCX1, the essential regulator of dynamic photoprotection in diatoms. Plant Physiol. 2022, 188, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Kuczynska, P.; Jemiola-rzeminska, M.; Nowicka, B.; Jakubowska, A.; Strzalka, W.; Burda, K.; Strzalka, K. Plant Physiology and Biochemistry The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress. Plant Physiol. Biochem. 2020, 152, 125–137. [Google Scholar] [CrossRef]
- Blommaert, L.; Chafai, L.; Bailleul, B. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Sci. Rep. 2021, 11, 12750. [Google Scholar] [CrossRef]
- Stadnichuk, I.N.; Kusnetsov, V. V Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis. Int. J. Mol. Sci. 2023, 24, 2290. [Google Scholar] [CrossRef]
- Liu, R.; Zhen, Z.; Li, W.; Ge, B.; Qin, S. How can Phycobilisome, the unique light harvesting system in certain algae working highly efficiently: The connection in between structures and functions. Prog. Biophys. Mol. Biol. 2024, 186, 39–52. [Google Scholar] [CrossRef]
- Li, X.; Hou, W.; Lei, J.; Chen, H.; Wang, Q. The Unique Light-Harvesting System of the Algal Phycobilisome: Structure, Assembly Components, and Functions. Int. J. Mol. Sci. 2023, 24, 9733. [Google Scholar] [CrossRef] [PubMed]
- Kaňa, R.; Kotabova, E.; Sobotka, R.; Prášil, O. Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae. PLoS ONE 2012, 7, e29700. [Google Scholar] [CrossRef] [PubMed]
- Fattore, N.; Savio, S.; Moro, I.; La, N.; Tomas, R. Acclimation of photosynthetic apparatus in the mesophilic red alga Dixoniella giordanoi. Physiol. Plant. 2021, 173, 805–817. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, D.; Jiang, J.; He, A.; Zhu, R.; Tian, L. Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center. J. Biol. Chem. 2022, 298, 101783. [Google Scholar] [CrossRef]
- Petroutsos, D.; Tokutsu, R.; Maruyama, S.; Flori, S.; Greiner, A.; Magneschi, L.; Cusant, L.; Kottke, T.; Mittag, M.; Hegemann, P.; et al. A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature 2016, 537, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, T.; Tokutsu, R.; Sawa, H.; Razalic, N.N.; Hayashic, M.; Minagawa, J. Small RNA-mediated silencing of phototropin suppresses the induction of photoprotection in the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2023, 120, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Aihara, Y.; Fujimura-Kamada, K.; Yamasaki, T.; Minagawa, J. Algal photoprotection is regulated by the E3 ligase CUL4–DDB1 DET1. Nat. Plants 2018, 5, 34–40. [Google Scholar] [CrossRef]
- Gabilly, S.T.; Baker, C.R.; Wakao, S.; Crisanto, T.; Guan, K.; Bi, K.; Guiet, E.; Guadagno, C.R.; Niyogi, K.K. Regulation of photoprotection gene expression in Chlamydomonas by a putative E3 ubiquitin ligase complex and a homolog of CONSTANS. Proc. Natl. Acad. Sci. USA 2019, 116, 17556–17562. [Google Scholar] [CrossRef] [PubMed]
- Tokutsu, R.; Fujimura-kamada, K.; Matsuo, T.; Yamasaki, T.; Minagawa, J. The CONSTANS flowering complex controls the protective response of photosynthesis in the green alga Chlamydomonas. Nat. Commun. 2019, 10, 4099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiong, X.; Guo, K.; Zheng, M.; Cao, T.; Yang, Y.; Song, J.; Cen, J.; Zhang, J.; Jiang, Y.; et al. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nat. Commun. 2024, 15, 5578. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.F.; Bennett, J.; Steinback, K.E.; Arntzen, C.J. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 1981, 291, 25–29. [Google Scholar] [CrossRef]
- Horton, P. Control of chloroplast electron transport by phosphorylation of thylakoid proteins. Fed. Eur. Biochem. Soc. Lett. 1983, 152, 47–52. [Google Scholar] [CrossRef]
- Delepelaire, P.; Wollman, F.-A. Correlations between fluorescence and phosphorylation changes in thylakoid membranes of Chlamydomonas reinhardtii in vivo: A kinetic analysis. Biochim. Biophys. Acta 1985, 809, 277–283. [Google Scholar] [CrossRef]
- Delosme, R.; Olive, J.; Wollman, F.-A. Changes in light energy distribution upon state transitions: An in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1996, 1273, 150–158. [Google Scholar] [CrossRef]
- Cardol, P.; Alric, J.; Girard-bascou, J.; Franck, F.; Wollman, F.-A.; Finazzi, G. Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc. Natl. Acad. Sci. USA 2009, 106, 15979–15984. [Google Scholar] [CrossRef]
- Nawrocki, W.J.; Santabarbara, S.; Mosebach, L.; Wollman, F.-A.; Rappaport, F. State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. Nat. Plants 2016, 2, 16031. [Google Scholar] [CrossRef]
- Depage, N.; Bellafiore, S.; Rochaix, J. Role of Chloroplast Protein Kinase Stt7 in LHCII Phosphorylation and State Transition in Chlamydomonas. Science 2003, 299, 1572–1576. [Google Scholar] [CrossRef]
- Cariti, F.; Chazaux, M.; Lefebvre-Legendre, L.; Longoni, P.; Ghysels, B.; Johnson, X.; Goldschmidt-Clermont, M. Regulation of light harvesting in chlamydomonas reinhardtii two protein phosphatases are involved in state transitions. Plant Physiol. 2020, 183, 1749–1764. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, L.; Wang, W.; Mao, Z.; Yi, X.; Kuang, T.; Shen, J.R.; Zhang, X.; Han, G. Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2. Nat. Commun. 2021, 12, 1100. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Tokutsu, R.; Li, A.; Takizawa, K.; Song, C.; Murata, K.; Yamasaki, T.; Liu, Z.; Minagawa, J.; Li, M. Structural basis of LhcbM5-mediated state transitions in green algae. Nat. Plants 2021, 7, 1119–1131. [Google Scholar] [CrossRef]
- Ishii, A.; Shan, J.; Sheng, X.; Kim, E.; Watanabe, A.; Yokono, M.; Noda, C.; Song, C.; Murata, K.; Liu, Z.; et al. The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers. Elife 2023, 12, e84488. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, A.N.; Khomutov, G.B.; Ruuge, E.K.; Blumenfeld, L.A. Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim. Biophys. Acta—Bioenerg. 1981, 637, 321–333. [Google Scholar] [CrossRef]
- Nishio, J.N.; Whitmarsh, J. Dissipation of the Proton Electrochemical Potential in lntact Chloroplasts. Plant Physiol. 1993, 101, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Stiehl, H.H.; Witt, H.T. Quantitative Treatment of the Function of Plastoquinone in Photosynthesis. Z. Naturforsch. B 1969, 24, 1588–1598. [Google Scholar] [CrossRef]
- Finazzi, G.; Rappaport, F. In Vivo Characterization of the Electrochemical Proton Gradient Generated in Darkness in Green Algae and Its Kinetic Effects on Cytochrome b6f Turnover. Biochemistry 1998, 37, 9999–10005. [Google Scholar] [CrossRef]
- Rott, M.; Martins, N.F.; Thiele, W.; Lein, W.; Bock, R.; Kramer, D.M.; Schöttlera, M.A. ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. Plant Cell 2011, 23, 304–321. [Google Scholar] [CrossRef] [PubMed]
- Schöttler, M.A.; Tóth, S.Z.; Boulouis, A.; Kahlau, S. Photosynthetic complex stoichiometry dynamics in higher plants: Biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J. Exp. Bot. 2015, 66, 2373–2400. [Google Scholar] [CrossRef]
- Zu, Y.; Couture, M.M.-J.; Kolling, D.R.J.; Crofts, A.R.; Eltis, L.D.; Fee, J.A.; Hirst, J. Reduction Potentials of Rieske Clusters: Importance of the Coupling between Oxidation State and Histidine Protonation State. Biochemistry 2003, 42, 12400–12408. [Google Scholar] [CrossRef]
- Hald, S.; Nandha, B.; Gallois, P.; Johnson, G.N. Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim. Biophys. Acta—Bioenerg. 2008, 1777, 433–440. [Google Scholar] [CrossRef]
- Zu, Y.; Fee, J.A.; Hirst, J. Breaking and Re-Forming the Disulfide Bond at the High-Potential, Respiratory-Type Rieske [2Fe-2S] Center of Thermus thermophilus: Characterization of the Sulfhydryl State by Protein-Film Voltammetry. Biochemistry 2002, 41, 14054–14065. [Google Scholar] [CrossRef] [PubMed]
- Merbitz-Zahradnik, T.; Zwicker, K.; Nett, J.H.; Link, T.A.; Trumpower, B. Elimination of the Disulfide Bridge in the Rieske Iron—Sulfur Protein Allows Assembly of the [2Fe-2S] Cluster into the Rieske Protein but Damages the Ubiquinol Oxidation Site in the Cytochrome bc 1 Complex †. Biochemistry 2003, 42, 13637–13645. [Google Scholar] [CrossRef] [PubMed]
- Karamoko, M.; Cline, S.; Redding, K.E.; Ruiz, N.; Hamel, P.P. Lumen Thiol Oxidoreductase1, a Disulfide Bond-Forming Catalyst, Is Required for the Assembly of Photosystem II in Arabidopsis. Plant Cell 2011, 23, 4462–4475. [Google Scholar] [CrossRef]
- Page, M.L.D.; Hamel, P.P.; Gabilly, S.T.; Zegzouti, H.; Perea, J.V.; Alonso, J.M.; Ecker, J.R.; Theg, S.M.; Christensen, S.K.; Merchant, S.S. A Homolog of Prokaryotic Thiol Disulfide Transporter CcdA Is Required for the Assembly of the Cytochrome b 6 f Complex in Arabidopsis Chloroplasts. J. Biol. Chem. 2004, 279, 32474–32482. [Google Scholar] [CrossRef]
- Munekage, Y.; Takeda, S.; Endo, T.; Jahns, P.; Hashimoto, T.; Shikanai, T. Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J. 2001, 28, 351–359. [Google Scholar] [CrossRef]
- Jahns, P.; Graf, M.; Munekage, Y.; Shikanai, T. Single point mutation in the Rieske iron-sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis. Fed. Eur. Biochem. Soc. Lett. 2002, 519, 99–102. [Google Scholar] [CrossRef]
- Ozawa, S.; Buchert, F.; Reuys, R.; Hippler, M.; Takahashi, Y. Algal PETC-Pro171-Leu suppresses electron transfer in cytochrome b6f under acidic lumenal conditions. Plant Physiol. 2022, 191, 1803–1817. [Google Scholar] [CrossRef]
- Finazzi, G. Redox-coupled proton pumping activity in cytochrome b6f, as evidenced by the pH dependence of electron transfer in whole cells of Chlamydomonas reinhardtii. Biochemistry 2002, 41, 7475–7482. [Google Scholar] [CrossRef] [PubMed]
- Seydoux, C.; Storti, M.; Giovagnetti, V.; Matuszyńska, A.; Guglielmino, E.; Zhao, X.; Giustini, C.; Pan, Y.; Blommaert, L.; Angulo, J.; et al. Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation. New Phytol. 2022, 234, 578–591. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I.; Allen, M.B.; Whatley, F.R. Photosynthesis by isolated chloroplasts. Nature 1954, 174, 394–396. [Google Scholar] [CrossRef]
- Allen, J.F. Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the chain. Trends Plant Sci. 2003, 8, 15–19. [Google Scholar] [CrossRef]
- Lucker, B.; Kramer, D.M. Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth. Res. 2013, 117, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Strand, D.D.; Kramer, D.M.; Cousins, A.B. The Response of Cyclic Electron Flow around Photosystem I to Changes in Photorespiration and. Plant Physiol. 2014, 165, 453–462. [Google Scholar] [CrossRef]
- Chaux, F.; Peltier, G.; Johnson, X. A security network in PSI photoprotection: Regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow. Front. Plant Sci. 2015, 6, 875. [Google Scholar] [CrossRef]
- Maione, T.E.; Gibbs, M. Association of the Chloroplastic Respiratory and Photosynthetic Electron Transport Chains of Chlamydomonas reinhardii with Photoreduction and the Oxyhydrogen Reaction. Plant Physiol. 1986, 80, 364–368. [Google Scholar] [CrossRef]
- Moss, D.A.; Bendall, D.S. Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim. Biophys. Acta—Bioenerg. 1984, 767, 767. [Google Scholar] [CrossRef]
- Mus, F.; Cournac, L.; Caruana, A.; Peltier, G. Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 2005, 1708, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Jans, F.; Mignolet, E.; Houyoux, P.; Cardol, P.; Ghysels, B.; Cuine, S.; Cournac, L.; Peltier, G.; Remacle, C.; Franck, F. A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc. Natl. Acad. Sci. USA 2008, 105, 20546–20551. [Google Scholar] [CrossRef]
- Peltier, G.; Aro, E.; Shikanai, T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. Annu. Rev. Plant Biol. 2016, 67, 55–80. [Google Scholar] [CrossRef]
- Desplats, C.; Mus, F.; Billon, E.; Cournac, L.; Peltier, G. Characterization of Nda2, a Plastoquinone-reducing Type II NAD (P) H Dehydrogenase in Chlamydomonas Chloroplasts. J. Biol. Chem. 2009, 284, 4148–4157. [Google Scholar] [CrossRef] [PubMed]
- Terashima, M.; Specht, M.; Naumann, B.; Hippler, M. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics. Mol. Cell. Proteom. 2010, 9, 1514–1532. [Google Scholar] [CrossRef]
- Hochmal, A.K.; Zinzius, K.; Charoenwattanasatien, R.; Gabelen, P.; Mutoh, R.; Tanaka, H.; Schulze, S.; Liu, G.; Scholz, M.; Nordhues, A.; et al. Calredoxin represents a novel type of calcium-dependent sensor-responder connected to redox regulation in the chloroplast. Nat. Commun. 2016, 7, 11847. [Google Scholar] [CrossRef]
- Bergner, S.V.; Scholz, M.; Trompelt, K.; Barth, J.; Gäbelein, P.; Steinbeck, J.; Xue, H.; Clowez, S.; Fucile, G.; Goldschmidt-Clermont, M.; et al. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes. Plant Physiol. 2015, 168, 615–634. [Google Scholar] [CrossRef]
- Nawrocki, W.J.; Bailleul, B.; Cardol, P.; Rappaport, F.; Wollman, F.-A.; Joliot, P. Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas. Biochim. Biophys. Acta—Bioenerg. 2019, 1860, 425–432. [Google Scholar] [CrossRef]
- Mignolet, E.; Lecler, R.; Ghysels, B.; Remacle, C.; Franck, F. Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H2 photoproduction in sulphur-deprived Chlamydomonas reinhardtii. J. Biotechnol. 2012, 162, 81–88. [Google Scholar] [CrossRef]
- Baltz, A.; Dang, K.; Beyly-Adriano, A.; Auroy, P.; Richaud, P.; Cournac, L.; Peltier, G. Plastidial Expression of Type II NAD (P) H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii. Plant Physiol. 2014, 165, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Saroussi, S.I.; Wittkopp, T.M.; Grossman, A.R. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation. Plant Physiol. 2016, 170, 1975–1988. [Google Scholar] [CrossRef]
- Nawrocki, W.J.; Buchert, F.; Joliot, P.; Rappaport, F.; Bailleul, B.; Wollman, F.-A. Chlororespiration Controls Growth Under Intermittent Light. Plant Physiol. 2019, 179, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Bennoun, P. Evidence for a respiratory chain in the chloroplast. Proc. Natl. Acad. Sci. USA 1982, 79, 4352–4356. [Google Scholar] [CrossRef]
- Houille-Vernes, L.; Rappaport, F.; Wollman, F.-A.; Alric, J.; Johnson, X. Plastid terminal oxidase 2 (PTOX2) is the majr oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl. Acad. Sci. USA 2011, 2, 20820–20825. [Google Scholar] [CrossRef]
- Trouillard, M.; Shahbazi, M.; Moyet, L.; Rappaport, F.; Joliot, P.; Kuntz, M.; Finazzi, G. Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochim. Biophys. Acta 2012, 1817, 2140–2148. [Google Scholar] [CrossRef]
- Nawrocki, W.J.; Tourasse, N.J.; Taly, A.; Rappaport, F.; Wollman, F.-A. The Plastid Terminal Oxidase: Its Elusive Function Points to Multiple Contributions to Plastid Physiology. Annu. Rev. Plant Biol. 2015, 66, 49–74. [Google Scholar] [CrossRef]
- Mcdonald, A.E.; Ivanov, A.G.; Bode, R.; Maxwell, D.P.; Rodermel, S.R.; Hüner, N.P.A. Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX). Biochim. Biophys. Acta 2011, 1807, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Saroussi, S.I.; Redekop, P.; Karns, D.A.J.; Thomas, D.C.; Wittkopp, T.M.; Posewitz, M.C.; Grossman, A.R. Restricting electron flow at cytochrome b6f when downstream electron acceptors are severely limited. Plant Physiol. 2023, 192, 789–804. [Google Scholar] [CrossRef]
- Cardol, P.; Bailleul, B.; Rappaport, F.; Derelle, E.; Beal, D.; Breyton, C.; Bailey, S.; Wollman, F.-A.; Grossman, A.R.; Moreau, H.; et al. An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc. Natl. Acad. Sci. USA 2008, 105, 7881–7886. [Google Scholar] [CrossRef]
- Treves, H.; Siemiatkowska, B.; Luzarowska, U.; Murik, O.; Fernandez-Pozo, N.; Moraes, T.A.; Erban, A.; Armbruster, U.; Brotman, Y.; Kopka, J.; et al. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nat. Plants 2020, 6, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Treves, H.; Raanan, H.; Kedem, I.; Murik, O.; Keren, N.; Zer, H.; Berkowicz, S.M.; Giordano, M.; Norici, A.; Shotland, Y.; et al. The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol. 2016, 210, 1229–1243. [Google Scholar] [CrossRef] [PubMed]
- Kedem, I.; Milrad, Y.; Yacoby, I.; Kaplan, A. Juggling Lightning: How Chlorella ohadii handles extreme energy inputs without damage. Photosynth. Res. 2021, 147, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Alric, J. Redox and ATP control of photosynthetic cyclic electron fl ow in Chlamydomonas reinhardtii (II) Involvement of the PGR5—PGRL1 pathway under anaerobic conditions. Biochim. Biophys. Acta 2014, 1837, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, W.J.; Bailleul, B.; Picot, D.; Cardol, P.; Rappaport, F.; Wollman, F.-A.; Joliot, P. The mechanism of cyclic electron flow. Biochim. Biophys. Acta—Bioenerg. 2019, 1860, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, K.; Tsujimoto, H.Y.; Arnon, D.I. Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. Natl. Acad. Sci. USA 1963, 49, 567–572. [Google Scholar] [CrossRef]
- Arnon, D.I. Photosynthetic Activity of Isolated Chloroplasts. Physiol. Rev. 1967, 47, 317–358. [Google Scholar] [CrossRef]
- Slovacek, R.E.; Crowther, D.; Hind, G. Cytochrome function in the cyclic electron transport pathway of chloroplasts. Biochem. Biophys. Acta 1979, 547, 138–148. [Google Scholar] [CrossRef]
- Mills, J.; Crowther, D.; Slovacek, R.; Hind, G.; McCarthy, R. Electron Transport Pathways in Spinach Chloroplasts. Biochim. Biophys. Acta 1979, 547, 127–137. [Google Scholar] [CrossRef]
- Shahak, Y.; Crowther, D.; Hind, G. The involvement of ferredoxin-NADP+ reductase in cyclic electron transport in chloroplasts. Biochem. Biophys. Acta 1981, 636, 234–243. [Google Scholar] [CrossRef]
- Cleland, R.E.; Bendall, D.S. Photosystem I cyclic electron transport: Measurement of ferredoxin-plastoquinone reductase activity. Photosynth. Res. 1992, 34, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Munekage, Y.; Hojo, M.; Meurer, J.; Endo, T.; Tasaka, M.; Shikanai, T. PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is Essential for Photoprotection in Arabidopsis. Cell 2002, 110, 361–371. [Google Scholar] [CrossRef]
- Dalcorso, G.; Pesaresi, P.; Masiero, S.; Aseeva, E.; Schunemann, D.; Finazzi, G.; Joliot, P.; Barbato, R.; Leister, D. A Complex Containing PGRL1 and PGR5 Is Involved in the Switch between Linear and Cyclic Electron Flow in Arabidopsis. Cell 2008, 132, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Tolleter, D.; Ghysels, B.; Alric, J.; Petroutsos, D.; Tolstygina, I.; Krawietz, D.; Happe, T.; Auroy, P.; Adriano, J.-M.; Beyly-Adriano, A.; et al. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii. Plant Cell 2011, 23, 2619–2630. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Plet, J.; Tolleter, D.; Jokel, M.; Carrier, P.; Auroy, P.; Richaud, P.; Johnson, X.; Alric, J.; Allahverdiyeva, Y.; et al. Combined Increases in Mitochondrial Cooperation and Oxygen Photoreduction Compensate for Deficiency in Cyclic Electron Flow in Chlamydomonas reinhardtii. Plant Cell 2014, 26, 3036–3050. [Google Scholar] [CrossRef]
- Johnson, X.; Steinbeck, J.; Dent, R.M.; Takahashi, H.; Richaud, P.; Ozawa, S.-I.; Houille-Vernes, L.; Petroutsos, D.; Rappaport, F.; Grossman, A.R.; et al. Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP- or Redox-Limited Conditions: A Study of ATPase pgr5 and rbcL pgr5 Mutants in the Green Alga Chlamydomonas reinhardtii. Plant Physiol. 2014, 165, 438–452. [Google Scholar] [CrossRef] [PubMed]
- Petroutsos, D.; Terauchi, A.M.; Busch, A.; Hirschmann, I.; Merchant, S.S.; Finazzi, G.; Hippler, M. PGRL1 Participates in Iron-induced Remodeling of the Photosynthetic Apparatus and in Energy Metabolism in. J. Biol. Chem. 2009, 284, 32770–32781. [Google Scholar] [CrossRef]
- Kukuczka, B.; Magneschi, L.; Petroutsos, D.; Steinbeck, J.; Bald, T.; Powikrowska, M.; Fufezan, C.; Finazzi, G.; Hippler, M. Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation. Plant Physiol. 2014, 165, 1604–1617. [Google Scholar] [CrossRef]
- Rühle, T.; Dann, M.; Reiter, B.; Schünemann, D.; Naranjo, B.; Penzler, J.; Kleine, T.; Leister, D. PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nat. Commun. 2021, 12, 3941. [Google Scholar] [CrossRef]
- Buchert, F.; Mosebach, L.; Gäbelein, P.; Hippler, M. PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow. Biochem. J. 2020, 477, 1631–1650. [Google Scholar] [CrossRef]
- Buchert, F.; Scholz, M.; Hippler, M. Electron transfer via cytochrome b6f complex displays sensitivity to antimycin A upon STT7 kinase activation. Biochem. J. 2022, 479, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Mosebach, L.; Heilmann, C.; Mutoh, R.; Gäbelein, P.; Steinbeck, J.; Happe, T.; Ikegami, T.; Hanke, G.T.; Kurisu, G.; Hippler, M. Association of Ferredoxin:NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosynth. Res. 2017, 134, 291–306. [Google Scholar] [CrossRef]
- Gain, G.; de Luna, F.V.; Cordoba, J.; Perez, E.; Degand, H.; Morsomme, P.; Thiry, M.; Baurain, D.; Pierangelini, M.; Cardol, P. Trophic state alters the mechanism whereby energetic coupling between photosynthesis and respiration occurs in Euglena gracilis. New Phytol. 2021, 232, 1603–1617. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, T.E.; Zoltner, M.; Burrell, A.; Nenarokova, A.; Vanclová, A.M.G.N.; Prasad, B.; Soukal, P.; Santana-molina, C.; Neill, E.O.; Nankissoor, N.N.; et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019, 17, 11. [Google Scholar] [CrossRef]
- Santillan Torres, J.L.; Atteia, A.; Claros, M.G.; Gonza, D. Cytochrome f and subunit IV, two essential components of the photosynthetic bf complex typically encoded in the chloroplast genome, are nucleus-encoded in Euglena gracilis. Biochem. Biophys. Acta 2003, 1604, 180–189. [Google Scholar] [CrossRef]
- Grouneva, I.; Rokka, A.; Aro, E. The Thylakoid Membrane Proteome of Two Marine Diatoms Outlines Both Diatom-Specific and Species-Specific Features of the Photosynthetic Machinery. J. Proteome Res. 2011, 10, 5338–5353. [Google Scholar] [CrossRef]
- Grouneva, I.; Muth-pawlak, D.; Battchikova, N.; Aro, E. Changes in Relative Thylakoid Protein Abundance Induced by Fluctuating Light in the Diatom Thalassiosira pseudonana. J. Proteome Res. 2016, 15, 1649–1658. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Yamamoto, H. PTOX-dependent safety valve does not oxidize P700 during photosynthetic induction in the Arabidopsis pgr5 mutant. Plant Physiol. 2021, 188, 1264–1276. [Google Scholar] [CrossRef]
- Bailleul, B.; Berne, N.; Murik, O.; Petroutsos, D.; Prihoda, J.; Tanaka, A.; Villanova, V.; Bligny, R.; Flori, S.; Falconet, D.; et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 2015, 524, 366–369. [Google Scholar] [CrossRef]
- Thamatrakoln, K.; Bailleul, B.; Brown, C.M.; Gorbunov, M.Y.; Kustka, A.B.; Frada, M.; Joliot, P.A.; Falkowski, P.G.; Bidle, K.D. Death-speci fi c protein in a marine diatom regulates photosynthetic responses to iron and light availability. Proc. Natl. Acad. Sci. USA 2013, 110, 20123–20128. [Google Scholar] [CrossRef]
- Iwai, M.; Takizawa, K.; Tokutsu, R.; Okamuro, A.; Takahashi, Y.; Minagawa, J. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nat. Lett. 2010, 464, 1210–1213. [Google Scholar] [CrossRef] [PubMed]
- Terashima, M.; Petroutsos, D.; Hüdig, M.; Tolstygina, I.; Trompelt, K.; Gäbelein, P.; Fufezan, C.; Kudla, J.; Weinl, S.; Finazzi, G.; et al. Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc. Natl. Acad. Sci. USA 2012, 109, 17717–17722. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Clowez, S.; Wollman, F.-A.; Vallon, O.; Rappaport, F. Cyclic electron flow is redox-controlled but independent of state transition. Nat. Commun. 2013, 4, 1954. [Google Scholar] [CrossRef] [PubMed]
- Steinbeck, J.; Ross, I.L.; Rothnagel, R.; Gäbelein, P.; Schulze, S.; Giles, N.; Ali, R.; Drysdale, R.; Sierecki, E.; Gambin, Y.; et al. Structure of a PSI–LHCI–cyt b 6 f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proc. Natl. Acad. Sci. USA 2018, 115, 201809973. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yamano, T.; Takane, S.; Niikawa, Y.; Toyokawa, C.; Ozawa, S. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2016, 113, 12586–12591. [Google Scholar] [CrossRef]
- Chen, H.; Hu, J.; Qiao, Y.; Chen, W.; Rong, J.; Zhang, Y.; He, C.; Wang, Q. Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Nat. Sci. Rep. 2015, 5, 15117. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Schmollinger, S.; Lee, J.H.; Schroda, M.; Rappaport, F.; Wollman, F.-A.; Vallon, O. PETO Interacts with Other Effectors of Cyclic Electron Flow in Chlamydomonas. Mol. Plant 2016, 9, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Buchert, F.; Hamon, M.; Gäbelein, P.; Scholz, M.; Hippler, M.; Wollman, F.-A. The labile interactions of cyclic electron flow effector proteins. J. Biol. Chem. 2018, 293, 17559–17573. [Google Scholar] [CrossRef]
- Younas, M.; Scholz, M.; Marchetti, G.M.; Hippler, M. Remodeling of algal photosystem I through phosphorylation. Biosci. Rep. 2023, 43, BSR20220369. [Google Scholar] [CrossRef]
- Zones, J.M.; Blaby, I.K.; Merchant, S.S.; Umen, J.G. High-resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation. Plant Cell 2015, 27, 2743–2769. [Google Scholar] [CrossRef]
- Tikkanen, M.; Mekala, N.R.; Aro, E. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochim. Biophys. Acta—Bioenerg. 2014, 1837, 210–215. [Google Scholar] [CrossRef]
- Järvi, S.; Suorsa, M.; Aro, E. Photosystem II repair in plant chloroplasts—Regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim. Biophys. Acta—Bioenerg. 2015, 1847, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Teicher, H.B.; Møller, B.L.; Scheller, H.V. Photoinhibition of Photosystem I in field-grown barley (Hordeum vulgare L.): Induction, recovery and acclimation. Photosynth. Res. 2000, 64, 53–61. [Google Scholar] [CrossRef]
- Kozuleva, M.A.; Petrova, A.A.; Mamedov, M.D.; Yu, A.; Ivanov, B.N. O2 reduction by photosystem I involves phylloquinone under steady-state illumination. Fed. Eur. Biochem. Soc. Lett. 2014, 588, 4364–4368. [Google Scholar] [CrossRef] [PubMed]
- Kozuleva, M.A.; Petrova, A.; Milrad, Y.; Semenov, A.; Ivanov, B.; Redding, K.E.; Yacoby, I. Phylloquinone is the principal Mehler reaction site within photosystem I in high light. Plant Physiol. 2021, 186, 1848–1858. [Google Scholar] [CrossRef]
- Alboresi, A.; Storti, M.; Morosinotto, T. Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution. New Phytol. 2019, 221, 105–109. [Google Scholar] [CrossRef]
- Roberty, S.; Bailleul, B.; Berne, N.; Franck, F.; Cardol, P. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol. 2014, 204, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Kozuleva, M.A.; Ivanov, B.N. Superoxide Anion Radical Generation in Photosynthetic Electron Transport Chain. Biochem. 2023, 88, 1045–1060. [Google Scholar]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Perry, J.J.P.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The structural biochemistry of the superoxide dismutases. BBA—Proteins Proteom. 2010, 1804, 245–262. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Life, C.S.B. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Mukai, K.; Shimasaki, Y.; Qiu, X.; Kato-unoki, Y.; Chen, K.; Khanam, M.R.M.; Oshima, Y. Effects of light and hydrogen peroxide on gene expression of newly identified antioxidant enzymes in the harmful algal bloom species Chattonella marina. Eur. J. Phycol. 2019, 54, 393–403. [Google Scholar] [CrossRef]
- Pokora, W.; Tułodziecki, S.; Dettlaff-pokora, A.; Aksmann, A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022, 11, 2425. [Google Scholar] [CrossRef] [PubMed]
- Asada, K. The Water-Water cycle in Chlorolasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu. Rev. Plant Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef] [PubMed]
- Kozuleva, M.A.; Ivanov, B.N. Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids. Photosynth. Res. 2010, 105, 51–61. [Google Scholar] [CrossRef]
- Chaux, F.; Burlacot, A.; Mekhalfi, M.; Auroy, P.; Blangy, S.; Richaud, P.; Peltier, G. Flavodiiron proteins promote fast and transient O2 photoreduction in chlamydomonas. Plant Physiol. 2017, 174, 1825–1836. [Google Scholar] [CrossRef]
- Jokel, M.; Nagy, V.; Tóth, S.Z.; Kosourov, S.N.; Allahverdiyeva, Y. Elimination of the flavodiiron electron sink facilitates long-term H2 photoproduction in green algae. Biotechnol. Biofuels 2019, 12, 280. [Google Scholar] [CrossRef]
- Burlacot, A.; Sawyer, A.L.; Cuiné, S.; Auroy, P.; Blangy, S.; Happe, T.; Peltier, G. Flavodiiron-mediated O2 photoreduction links H2 production with CO2 fixation during the anaerobic induction of photosynthesis. Plant Physiol. 2018, 177, 1639–1649. [Google Scholar] [CrossRef]
- Allahverdiyeva, Y.; Isojärvi, J.; Zhang, P.; Aro, E.M. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life 2015, 5, 716–743. [Google Scholar] [CrossRef]
- Santana-Sanchez, A.; Solymosi, D.; Mustila, H.; Bersanini, L.; Aro, E.M.; Allahverdiyeva, Y. Flavodiiron proteins 1–to-4 function in versatile combinations in O2 photoreduction in cyanobacteria. Elife 2019, 8, e45766. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.B.; Garg, S.G.; Handrich, M.; Gruenheit, N.; Tielens, A.G.M.; Martin, W.F. Adaptation to life on land at high O2 via transition from ferredoxin-to NADH-dependent redox balance. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191491. [Google Scholar]
- Ginger, M.L.; Fritz-laylin, L.K.; Fulton, C.; Cande, W.Z.; Dawson, S.C. Intermediary Metabolism in Protists: A Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes. Protist 2010, 161, 642–671. [Google Scholar] [CrossRef] [PubMed]
- Atteia, A.; Van Lis, R.; Tielens, A.G.M.; Martin, W.F. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim. Biophys. Acta—Bioenerg. 2013, 1827, 210–223. [Google Scholar] [CrossRef]
- Ghysels, B.; Godaux, D.; Matagne, F.R.; Cardol, P.; Franck, F. Function of the Chloroplast Hydrogenase in the Microalga Chlamydomonas: The Role of Hydrogenase and State Transitions during Photosynthetic Activation in Anaerobiosis. Public Libr. Sci. 2013, 8, e64161. [Google Scholar] [CrossRef]
- Winkler, M.; Esselborn, J.; Happe, T. Molecular basis of [FeFe]-hydrogenase function. An insight into the complex interplay between protein and catalytic cofactor. Biochim. Biophys. Acta—Bioenerg. 2013, 1827, 974–985. [Google Scholar] [CrossRef]
- Greening, C.; Biswas, A.; Carere, C.R.; Jackson, C.J.; Taylor, M.C.; Stott, M.B.; Cook, G.M.; Morales, S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016, 10, 761–777. [Google Scholar] [CrossRef]
- Land, H.; Senger, M.; Berggren, G.; Stripp, S.T. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal. 2020, 10, 7069–7086. [Google Scholar] [CrossRef]
- Martin, W. The hydrogen hypothesis for the first eukaryote. Nature 1998, 32, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Stripp, S.T.; Happe, T. How algae produce hydrogen- news from the photosynthetic hydrogenase. Dalton Trans. 2009, 45, 9960–9969. [Google Scholar] [CrossRef]
- Milrad, Y.; Schweitzer, S.; Feldman, Y.; Yacoby, I. Bi-directional electron transfer between H2 and NADPH mitigates light fluctuation responses in green algae. Plant Physiol. 2021, 186, 168–179. [Google Scholar] [CrossRef]
- Tóth, S.Z.; Yacoby, I. Paradigm Shift in Algal H2 Production: Bypassing Competitive Processes. Trends Biotechnol. 2019, 37, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Melis, A.; Seibert, M.; Happe, T. Genomics of green algal hydrogen research. Photosynth. Res. 2004, 82, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Milrad, Y.; Schweitzer, S.; Feldman, Y.; Yacoby, I. Green algal hydrogenase activity is outcompeted by carbon fixation before inactivation by oxygen takes place. Plant Physiol. 2018, 177, 918–926. [Google Scholar] [CrossRef]
- Thu Thi, H.H.; Schwier, C.; Elman, T.; Fleuter, V.; Zinzius, K.; Scholz, M.; Yacoby, I.; Buchert, F.; Hippler, M. Photosystem I light-harvesting proteins regulate photosynthetic electron transfer and hydrogen production. Plant Physiol. 2022, 189, 329–343. [Google Scholar]
- Godaux, D.; Bailleul, B.; Berne, N.; Cardol, P. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii 1. Plant Physiol. 2015, 168, 648–658. [Google Scholar] [CrossRef]
- Elman, T.; Thu Thi, H.H.; Milrad, Y.; Hippler, M.; Yacoby, I. Enhanced chloroplast-mitochondria crosstalk promotes ambient algal-H2 production. Cell Rep. Phys. Sci. 2022, 3, 100828. [Google Scholar] [CrossRef]
- Flügel, F.; Timm, S.; Arrivault, S.; Florian, A.; Stitt, M.; Fernie, A.R.; Bauwe, H. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 2017, 29, 2537–2551. [Google Scholar] [CrossRef] [PubMed]
- Bauwe, H. Photorespiration—Rubisco’s repair crew. J. Plant Physiol. 2023, 280, 153899. [Google Scholar] [CrossRef]
- Sharkey, T.D. Estimating the rate of photorespiration in leaves. Physiol. Plant. 1988, 73, 147–152. [Google Scholar] [CrossRef]
- Young, J.N.; Heureux, A.M.C.; Sharwood, R.E.; Rickaby, R.E.M.; Morel, F.M.M.; Whitney, S.M. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J. Exp. Bot. 2016, 67, 3445–3456. [Google Scholar] [CrossRef]
- Bender, M.L.; Zhu, X.G.; Falkowski, P.; Ma, F.; Griffin, K. On the rate of phytoplankton respiration in the light. Plant Physiol. 2022, 190, 267–279. [Google Scholar] [CrossRef]
- Hayashi, Y.; Sato, N.; Shinozaki, A.; Watanabe, M. Increase in peroxisome number and the gene expression of putative glyoxysomal enzymes in Chlamydomonas cells supplemented with acetate. J. Plant Res. 2015, 128, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Stabenau, H.; Winkler, U.; Saftel, W. Compartmentation of Peroxisomal Enzymes in Algae of the Group of Prasinophyceae. Plant Physiol. 1989, 90, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Winkler, U.; Stabenau, H. Isolation and characterization of peroxisomes from diatoms. Planta 1995, 195, 403–407. [Google Scholar] [CrossRef]
- Kong, F.; Liang, Y.; Bertrand, L.; Beyly-Adriano, A.; Blangy, S.; Haslam, R.P.; Napier, J.A.; Beisson, F.; Peltier, G.; Li-beisson, Y. Chlamydomonas carries out fatty acid b -oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. Plant J. 2017, 90, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Santhanagopalan, I.; Wong, R.; Mathur, T.; Griffiths, H. Orchestral manoeuvres in the light: Crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. J. Exp. Bot. 2021, 72, 4604–4624. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kanakagiri, S.; Van, K.; He, W.; Spalding, M.H. Disruption of the glycolate dehydrogenase gene in the high-CO 2-requiring mutant HCR89 of Chlamydomonas reinhardtii. Can. J. Bot. 2005, 83, 820–833. [Google Scholar] [CrossRef]
- Shi, M.; Zhao, L.; Wang, Y. Identification and Characterization of Genes Encoding the Hydroxypyruvate Reductases in Chlamydomonas Reveal Their Distinct Roles in Photorespiration. Front. Plant Sci. 2021, 12, 690296. [Google Scholar] [CrossRef] [PubMed]
- Timm, S.; Nunes-Nesi, A.; Pärnik, T.; Morgenthal, K.; Wienkoop, S.; Keerberg, O.; Weckwerth, W.; Kleczkowski, L.A.; Fernie, A.R.; Bauwe, H. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 2008, 20, 2848–2859. [Google Scholar] [CrossRef]
- Cousins, A.B.; Walker, B.J.; Pracharoenwattana, I.; Smith, S.M.; Badger, M.R. Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Photosynth. Res. 2011, 108, 91–100. [Google Scholar] [CrossRef]
- Scheibe, R. Malate valves to balance cellular energy supply. Physiol. Plant. 2004, 120, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Dao, O.; Kuhnert, F.; Weber, A.P.M.; Peltier, G.; Li-Beisson, Y. Physiological functions of malate shuttles in plants and algae. Trends Plant Sci. 2022, 27, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Ocheretina, O.; Haferkamp, I.; Tellioglu, H.; Scheibe, R. Light-modulated NADP-malate dehydrogenases from mossfern and green algae: Insights into evolution of the enzyme’s regulation. Gene 2000, 258, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Johnson, X.; Alric, J. Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil and Starch. Eukaryot. Cell 2013, 12, 776–793. [Google Scholar] [CrossRef]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-laylin, L.K.; Maréchal-drouard, L.; et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science 2007, 318, 245–252. [Google Scholar] [CrossRef]
- Taniguchi, M.; Taniguchi, Y.; Kawasaki, M.; Takeda, S.; Kato, T.; Sato, S.; Tabata, S.; Miyake, H.; Sugiyama, T. Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana. Plant Cell Physiol. 2002, 43, 706–717. [Google Scholar] [CrossRef]
- Burlacot, A.; Dao, O.; Auroy, P.; Cuiné, S.; Li-Beisson, Y.; Peltier, G. Alternative electron pathways of photosynthesis drive the algal CO2 concentrating mechanism. Nature 2021, 605, 366–371. [Google Scholar] [CrossRef]
- Hodges, M. Photorespiration and Improving Photosynthesis. In Progress in Botany; Lüttge, U., Cánovas, F.M., Risueño, M., Leuschner, C., Pretzsch, H., Eds.; Springer: Cham, Switzerland, 2022; Volume 84, pp. 171–220. [Google Scholar]
- Goldman, A.D.; Weber, J.M.; LaRowed, D.E.; Barge, L.M. Electron transport chains as a window into the earliest stages of evolution. Proc. Natl. Acad. Sci. USA 2023, 120, e2210924120. [Google Scholar] [CrossRef]
- Hahn, A.; Vonck, J.; Mills, D.J.; Meier, T.; Kühlbrandt, W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 2018, 360, eaat4318. [Google Scholar] [CrossRef]
- Arshad, R.; Calvaruso, C.; Boekema, E.J.; Buchel, C.; Kouril, R. Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. Plant Physiol. 2021, 186, 2124–2136. [Google Scholar] [CrossRef]
- Kühlbrandt, W. Structure and Mechanisms of F-Type ATP Synthases. Annu. Rev. Biochem. 2019, 88, 515–549. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.A.; Kramer, D.M. Optimization of ATP Synthase c–Rings for Oxygenic Photosynthesis. Front. Plant Sci. 2020, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Seelert, H.; Poetsch, A.; Dencher, N.A.; Engel, A.; Stahlberg, H.; Müller, D.J. Proton-powered turbine of a plant motor. Nature 2000, 405, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Meyer zu Tittingdorf, J.M.W.; Rexroth, S.; Schäfer, E.; Schlichting, R.; Giersch, C.; Dencher, N.A.; Seelert, H. The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state. Biochem. Biophys. Acta 2004, 1659, 92–99. [Google Scholar] [CrossRef]
- Huang, W.; Cai, Y.F.; Wang, J.H.; Zhang, S.B. Chloroplastic ATP synthase plays an important role in the regulation of proton motive force in fluctuating light. J. Plant Physiol. 2018, 226, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Buchert, F.; Bailleul, B.; Hisabori, T. A γ-subunit point mutation in Chlamydomonas reinhardtii chloroplast F1Fo-ATP synthase confers tolerance to reactive oxygen species. Biochim. Biophys. Acta—Bioenerg. 2017, 1858, 966–974. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhang, S.B.; Huang, W. Chloroplastic ATP synthase alleviates photoinhibition of photosystem i in tobacco illuminated at chilling temperature. Front. Plant Sci. 2018, 9, 1648. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, A.; Kramer, D.M. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc. Natl. Acad. Sci. USA 2002, 99, 12789–12794. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.A.; Kanazawa, A.; Treff, N.; Kramer, D.M. Storage of light-driven transthylakoid proton motive force as an electric field (Δψ) under steady-state conditions in intact cells of Chlamydomonas reinhardtii. Photosynth. Res. 2005, 85, 221–233. [Google Scholar] [CrossRef]
- Marchand, J.; Heydarizadeh, P.; Schoefs, B.; Spetea, C. Chloroplast Ion and Metabolite Transport in Algae BT—Photosynthesis in Algae: Biochemical and Physiological Mechanisms. In Photosynthesis in Algae: Biochemical and Physiological Mechanisms; Larkum, A.W.D., Grossman, A.R., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 107–139. ISBN 978-3-030-33397-3. [Google Scholar]
- Huang, W.; Krishnan, A.; Plett, A.; Meagher, M.; Linka, N.; Wang, Y.; Ren, B.; Findinier, J.; Redekop, P.; Fakhimi, N.; et al. Chlamydomonas mutants lacking chloroplast TRIOSE PHOSPHATE TRANSPORTER3 are metabolically compromised and light sensitive. Plant Cell 2023, 35, 2592–2614. [Google Scholar] [CrossRef]
- Armbruster, U.; Carrillo, L.R.; Venema, K.; Pavlovic, L.; Schmidtmann, E.; Kornfeld, A.; Jahns, P.; Berry, J.A.; Kramer, D.M.; Jonikas, M.C. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat. Commun. 2014, 5, 5439. [Google Scholar] [CrossRef]
- Kunz, H.H.; Gierth, M.; Herdean, A.; Satoh-Cruz, M.; Kramer, D.M.; Spetea, C.; Schroeder, J.I. Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2014, 111, 7480–7485. [Google Scholar] [CrossRef]
- Chanroj, S.; Wang, G.; Venema, K.; Zhang, M.W.; Delwiche, C.F.; Sze, H. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front. Plant Sci. 2012, 3, 25. [Google Scholar] [CrossRef]
- Uflewski, M.; Mielke, S.; Galvis, V.C.; von Bismarck, T.; Chen, X.; Tietz, E.; Ruß, J.; Luzarowski, M.; Sokolowska, E.; Skirycz, A.; et al. Functional characterization of proton antiport regulation in the thylakoid membrane. Plant Physiol. 2021, 187, 2209–2229. [Google Scholar] [CrossRef]
- Uflewski, M.; Rindfleisch, T.; Korkmaz, K.; Tietz, E.; Mielke, S.; Correa Galvis, V.; Dünschede, B.; Luzarowski, M.; Skirycz, A.; Schwarzländer, M.; et al. The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status. Nat. Commun. 2024, 15, 2792. [Google Scholar] [CrossRef]
- Marmagne, A.; Vinauger-Douard, M.; Monachello, D.; De Longevialle, A.F.; Charon, C.; Allot, M.; Rappaport, F.; Wollman, F.-A.; Barbier-Brygoo, H.; Ephritikhine, G. Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. J. Exp. Bot. 2007, 58, 3385–3393. [Google Scholar] [CrossRef]
- Herdean, A.; Nziengui, H.; Zsiros, O.; Solymosi, K.; Garab, G.; Lundin, B.; Spetea, C. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Front. Plant Sci. 2016, 7, 115. [Google Scholar] [CrossRef]
- Duan, Z.; Kong, F.; Zhang, L.; Li, W.; Zhang, J.; Peng, L. A bestrophin-like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis. J. Integr. Plant Biol. 2016, 58, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Herdean, A.; Teardo, E.; Nilsson, A.K.; Pfeil, B.E.; Johansson, O.N.; Ünnep, R.; Nagy, G.; Zsiros, O.; Dana, S.; Solymosi, K.; et al. A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat. Commun. 2016, 7, 11654. [Google Scholar] [CrossRef] [PubMed]
- Pfeil, B.E.; Schoefs, B.; Spetea, C. Function and evolution of channels and transporters in photosynthetic membranes. Cell. Mol. Life Sci. 2014, 71, 979–998. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Patena, W.; Fauser, F.; Jinkerson, R.E.; Saroussi, S.I.; Meyer, M.T.; Ivanova, N.; Robertson, J.M.; Yue, R.; Zhang, R.; et al. A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat. Genet. 2019, 51, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Fauser, F.; Vilarrasa-Blasi, J.; Onishi, M.; Ramundo, S.; Patena, W.; Millican, M.; Osaki, J.; Philp, C.; Nemeth, M.; Salomé, P.A.; et al. Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nat. Genet. 2022, 54, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Burlacot, A.; Peltier, G. Energy crosstalk between photosynthesis and the algal CO2-concentrating mechanisms. Trends Plant Sci. 2023, 28, 795–807. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milrad, Y.; Mosebach, L.; Buchert, F. Regulation of Microalgal Photosynthetic Electron Transfer. Plants 2024, 13, 2103. https://doi.org/10.3390/plants13152103
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. Plants. 2024; 13(15):2103. https://doi.org/10.3390/plants13152103
Chicago/Turabian StyleMilrad, Yuval, Laura Mosebach, and Felix Buchert. 2024. "Regulation of Microalgal Photosynthetic Electron Transfer" Plants 13, no. 15: 2103. https://doi.org/10.3390/plants13152103
APA StyleMilrad, Y., Mosebach, L., & Buchert, F. (2024). Regulation of Microalgal Photosynthetic Electron Transfer. Plants, 13(15), 2103. https://doi.org/10.3390/plants13152103