Characterization of Lithuanian Tomato Varieties and Hybrids Using Phenotypic Traits and Molecular Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phenotypic Traits Evaluation
2.3. DNA Extraction
2.4. SSR Analysis
2.5. Genetical Data Analysis
No. | Name of Primer | Reference | Annealing Temp. °C | DNA Sequence |
---|---|---|---|---|
1. | SSR-47 | [26] | 56 | NED-TCCTCAAGAAATGAAGCT CTG A |
CCTTGGAGATAACAACCACAA | ||||
2. | Tom236-237 | [26] | 56 | NED-GTTTTTTCAACATCAAAGAGCT |
GGATAGGTTTCGTTAGTGAACT | ||||
3. | LEat014 | [26] | n.a. | VIC-TGTGTTGCGTCATTACCACTAAAC |
CCCAACCACCAATACTTTCC | ||||
4. | Tom-59-60 | [27] | 48 | VIC-CACGTAAAATAAAGAAGGAAT |
TAACACATGAACATTAGTTTGA | ||||
5. | TMS52 | [28] | 55 | FAM-TTCTATCTCATTTGGCTTCTT C |
TTACCTTGAGAATGGCCTTG | ||||
6. | SSR248 | [11] | 57 | NED-GCATTCGCTGTAGCTCGTTT |
GGGAGCTTCATCATAGTAACG | ||||
7. | LEMDDNa | [29] | 53.5 | VIC-ATTCAAGGAACTTTTAGCTCC |
TGCATTAAGGTTCATAAATGA | ||||
8. | TGS0007 | [30] | 51.5 | FAM-GTGGATTCACTTACCGTTACAAGTT |
52.4 | CATTCGTGGCATGAGATCAA |
3. Results
3.1. Phenotypic Trait Evaluation
3.2. Genetic Analysis
3.2.1. Molecular Fingerprints of Tomato Genotypes
3.2.2. SSR Primer Informativeness
3.2.3. Genetic Diversity and Relationships of Tomato Varieties and Hybrids
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Phan, N.T.; Kim, M.; Sim, S. Scientia Horticulturae Genetic variations of F 1 tomato cultivars revealed by a core set of SSR and InDel markers. Sci. Hortic. 2016, 212, 155–161. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Ansari, N.A. Comparison in quantity characters (flowering and fruit set) of ten selected tomato (Solanum lycopersicum L.) genotypes under subtropical climate conditions (Ahvaz). Int. Res. J. Appl. Basic Sci. 2012, 3, 1192–1197. [Google Scholar]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Foolad, M.R. Genome Mapping and Molecular Breeding of Tomato. Int. J. Plant Genom. 2007, 52, 064358. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.M.; Yang, R.Y. Genetic improvement of tomato (Solanum lycopersicum L.) for phytonutrient content at AVRDC—The World Vegetable Center. Ekin J. Crop Breed. Genet. 2016, 2, 1–10. [Google Scholar]
- Sun, Y.L.; Kang, H.M.; Kim, Y.S. Tomato (Solanum lycopersicum) variety discrimination and hybridization analysis based on the 5S rRNA region. Biotechnol. Biotechnol. Equip. 2014, 28, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Uphoff, N.; Fasoula, V.; Iswandi, A.; Kassam, A.; Thakur, A.K. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding. Crop J. 2015, 3, 174–189. [Google Scholar] [CrossRef]
- Radzevičius, A.; Viškelis, P.; Viškelis, J.; Karklelienė, R.; Juškevičienė, D.; Duchovskis, P. Tomato biochemical composition and quality attributes in different maturity fruits. Acta Sci. Polonorum. Hortorum Cultus 2016, 15, 221–231. [Google Scholar]
- Singh, M.; Singh, N.P.; Arya, S.; Singh Vaishali, B. Diversity analysis of tomato germplasm (Lycopersicom Esculentum markers) using SSR. Int. J. Agric. Sci. Res. (IJASR) 2014, 4, 41–48. [Google Scholar]
- Korir, N.K.; Diao, W.; Tao, R.; Li, X.; Kayesh, E.; Li, A.; Zhen, W.; Wang, S. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genet. Mol. Res. 2014, 13, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Sardaro, M.L.S.; Marmiroli, M.; Maestri, E.; Marmiroli, N. Genetic characterization of Italian tomato varieties and their traceability in tomato food products. Food Sci. Nutr. 2012, 1, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Parmar, P.; Sudhir, A.; Preethi, R.; Dave, B.; Panchal, K.; Subramanian, R.B.; Patel, A.; Kathiria, K.B. Identification of a SSR marker (TOM-144) linked to Fusarium wilt resistance in Solanum lycopersicum. Am. J. Mol. Biol. 2013, 3, 241–247. [Google Scholar] [CrossRef]
- De Almeida, G.Q.; Silva, J.D.O.; Gonçalves, M.; Copati, F.; Dias, F.D.O.; Coelho, M. Tomato breeding for disease resistance. Multi-Sci. J. 2020, 3, 8–16. [Google Scholar] [CrossRef]
- Gharsallah, C.; Abdelkrim, A.B.; Fakhfakh, H.; Salhi-Hannachi, A.; Gorsane, F. SSR marker-assisted screening of commercial tomato genotypes under salt stress. Breed. Sci. 2016, 66, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Makhadmeh, I.M.; Thabet, S.G.; Ali, M.; Alabbadi, B.; Albalasmeh, A.; Alqudah, A.M. Exploring genetic variation among Jordanian Solanum lycopersicon L. landraces and their performance under salt stress using SSR markers. J. Genet. Eng. Biotechnol. 2022, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Scarano, D.; Rao, R.; Masi, P.; Corrado, G. SSR fingerprint reveals mislabeling in commercial processed tomato products. Food Control 2015, 51, 397–401. [Google Scholar] [CrossRef]
- Villanueva-Gutierrez, E.E.; Johansson, E.; Prieto-Linde, M.L.; Centellas Quezada, A.; Olsson, M.E.; Geleta, M. Simple Sequence Repeat Markers Reveal Genetic Diversity and Population Structure of Bolivian Wild and Cultivated Tomatoes (Solanum lycopersicum L.). Genes 2022, 13, 1505. [Google Scholar] [CrossRef] [PubMed]
- Brake, M.; Al-Qadumii, L.; Hamasha, H.; Migdadi, H.; Awad, A.; Haddad, N.; Sadder, M.T. Development of SSR Markers Linked to Stress Responsive Genes along Tomato Chromosome 3 (Solanum lycopersicum L.). BioTech 2022, 11, 34. [Google Scholar] [CrossRef]
- Karklelienė, R.; Radzevičius, A. Scientific Methods for Agriculture and Forestry Research Investigations, 2nd ed.; Lithuanian Research Centre for Agriculture and Forestry: Akademija, Lithuania, 2013; pp. 157–259. [Google Scholar]
- Jankauskiene, J.; Surviliene, E. Vegetables Growing in a Greenhouse; Lithuanian Institute of Horticulture: Babtai, Lithuania, 2003; pp. 43–49. [Google Scholar]
- UPOV Guidelines. Available online: https://www.upov.int/test_guidelines/en (accessed on 31 July 2024).
- Stanys, V.; Baniulis, D.; Morkunaite-Haimi, S.; Siksnianiene, J.B.; Frercks, B.; Gelvonauskiene, D.; Stepulaitiene, I.; Staniene, G.; Siksnianas, T. Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers. Sci. Hortic. 2012, 142, 136–142. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Liu, K.; Muse, S.V. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.; White, R.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar] [PubMed]
- Perrier, X.; Jacquemoud-Collet, J.P. DARwin Software. 2006. Available online: https://darwin.cirad.fr/ (accessed on 31 July 2024).
- Benor, S.; Zhang, M.; Wang, Z.; Zhang, H. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J. Genet. Genom. 2008, 35, 373–379. [Google Scholar] [CrossRef] [PubMed]
- El-Awady, M.A.M.; El-Tarras, A.E.A.; Hassan, M.M. Genetic diversity and DNA fingerprint study in tomato (Solanum lycopersicum L.) cultivars grown in Egypt using simple sequence repeats (SSR) markers. Afr. J. Biotechnol. 2012, 11, 16233–16240. [Google Scholar]
- Areshchenkova, T.; Ganal, M.W. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor. Appl. Genet. 2002, 104, 229–235. [Google Scholar]
- Smulders, M.J.M.; Bredemeijer, G.M.M.; Rus-Kortekaas, W.; Arens, P.F.P.; Vosman, B. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species Use of short microsatellites from database sequences to generate polymorphisms among Lycope. Theor. Appl. Genet. 1997, 97, 264–272. [Google Scholar] [CrossRef]
- Ho, L.C. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J. Exp. Bot. 1995, 47, 1239–1243. [Google Scholar]
- Zsogon, A.; Cermak, T.; Voytas, D.; Peres, L.E.P. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Sci. 2017, 256, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Azzi, L.; Deluche, C.; Gevaudant, F.; Frangne, N.; Delmas, F.; Hernould, M.; Chevalier, C. Fruit growth-related genes in tomato. J. Exp. Bot. 2016, 66, 1075–1086. [Google Scholar]
- Ruggieri, V.; Francese, G.; Sacco, A.; D’Alessandro, A.; Rigano, M.M.; Parisi, M.; Marco Milone, M.; Cardi, T.; Mennella, G.; Barone, A. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014, 14, 337. [Google Scholar]
- Zhang, R.; Tao, J.; Song, L.; Zhang, J.; Liu, H.; Zhu, W. Identification of Genes of Molecular Marker TGS0892 on Chromosome 6 and Its Mechanism of Soluble Solids Metabolism in Tomato. Horticulturae 2023, 9, 52. [Google Scholar] [CrossRef]
- Khan, R.T.; Abbas, S.R.; Ahmed, S.D.; Javed, G.; Mehmood, A. Assessment of genetic diversity of tomato genotypes by using molecular markers. Pure Appl. Biol. 2020, 9, 1532–1540. [Google Scholar] [CrossRef]
- Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; Bruedigam, C.; Kopka, J.; et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotechnol. 2006, 24, 447–454. [Google Scholar] [CrossRef]
- Okumus, A.; Dagidir, S. Assessment of genetic diversity on tomato (Lycopersicon esculentum Mill.) landraces using SSR molecular markers in Turkey. Front. Life Sci. Relat. Technol. 2021, 2, 51–59. [Google Scholar] [CrossRef]
- Wu, S.; Clevenger, J.P.; Sun, L.; Visa, S.; Kamiya, Y.; Jikumaru, Y.; Blakeslee, J.; Knaap, E. The control of tomato fruit elongation orchestrated by sun, ovate and fs8.1 in a wild relative of tomato. Plant Sci. 2015, 238, 95–104. [Google Scholar] [CrossRef]
- Visockienė, G. Advances of tomato breeding in Lithuania. Sodininkystė ir daržininkystė 1998, 17, 18–27. [Google Scholar]
- Gregersen, P.L.; Culetic, A.; Boschian, L. Plant senescence and crop productivity. Plant Mol. Biol. 2013, 82, 603. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-S.; Park, S.-G.; Yi, S.-I. Assessment of Genetic Variation among Commercial Tomato (Solanum lycopersicum L.) Varieties Using SSR Markerks and Morphological Characteristics. Genes Genom. 2009, 31, 1–10. [Google Scholar] [CrossRef]
- Al-shammari, A.M.A.; Hamdi, G.J. Genetic diversity analysis and DNA fingerprinting of tomato breeding lines using SSR markers. J. Agric. Sci. 2021, 32, 1–7. [Google Scholar]
- Aziz, S.; Kantoglu, Y.; Tomlekova, N.; Staykova, T.; Ganeva, D.; Sarsu, F. Characterization of tomato genotypes by simple sequence repeats (SSR) molecular markers. Biharean Biol. 2021, 15, 142–148. [Google Scholar]
- Popescu, C.F.; Bădulescu, A.; Manolescu, A.E.; Dumitru, A.M.; Sumedrea, D.I. Morphological characterization and genetic variability assessment with ssr markers in several tomato genotypes. Horticulture 2022, 66, 513–519. [Google Scholar]
- Radzevičius, A.; Sakalauskienė, S.; Dagys, M.; Simniškis, R.; Karklelienė, R.; Juškevičienė, D.; Račkienė, R.; Brazaitytė, A. Differential Physiological Response and Antioxidant Activity Relative to High-Power Micro-Waves Irradiation and Temperature of Tomato Sprouts. Agriculture 2022, 12, 422. [Google Scholar] [CrossRef]
- Clarke, J.B.; Tobutt, K.R. A standard set of accessions, microsatellites and genotypes for harmonising the fingerprinting of cherry collections for the ECPGR. Horticulture 2009, 814, 615–618. [Google Scholar] [CrossRef]
- Nybom, H.; Giovannini, D.; Ordidge, M.; Hjeltnes, S.H.; Grahić, J.; Gaši, F. ECPGR recommended SSR loci for analyses of European plum (Prunus domestica) collections. Genet. Resour. 2020, 1, 40–48. [Google Scholar] [CrossRef]
No. | Varieties | Parental Forms of Varieties |
---|---|---|
1. | ‘Dručiai’ | Nr. 1404/79 × ‘Nina’ |
2. | ‘Vytėnų didieji’ | ‘Patriot’ × ‘Talaliehin 186’ |
3. | ‘Neris’ | ‘Dotnuvos tobulybė’ × ‘Grosse fleischige’ |
4. | ‘Milžinai’ | Nr. 478/7 × unknown |
5. | ‘Jurgiai’ | Nr.13 × ‘Gribovo gruntiniai’ 1180 |
6. | ‘Aušriai’ | ‘Jurgiai’ × Nr. 1154 |
7. | ‘Slapukai’ | ‘Jurgiai’ × ‘Daltona |
8. | ‘Laukiai’ | ‘Marcanto’ × ‘Viltis’ |
9. | ‘Svara’ | ‘Grif’ × ‘Silvana’ |
10. | ‘Balčiai’ | ‘Grif’ × ‘Silvana’ |
11. | ‘Rutuliai’ | ‘Šagane’ × ‘Aušriai’ |
12. | ‘Skariai’ | ‘Everest’ × unknown |
13. | ‘Viltis’ | ‘Roma’ × ‘Alpatjevo štambiniai’ |
Hybrids | Parental forms of hybrids | |
1. | ‘Sveikutis’ | 5622 × 300 |
2. | ‘Pirmutis’ | 5628 × ‘Viltis’ |
3. | ‘Ainiai’ | ‘Vilina’ × SM-01 |
4. | ‘Adas’ | 1156 × S-09 |
5. | ‘Auksiai’ | BO-01 × S-09 |
6. | ‘Arvaisa’ | 322 × 300 |
Average Fruit Mass, g | Average Fruit Number on Plant | Plant Growth Type a | Leaf Division of Blade b | Peduncle Abscission Layer | Fruit Shape in Longitudinal Section c | Time of Maturity d | Fruit Colour at Maturity | Green Shoulder | Number of Locules | Fruit Firmness e | |
---|---|---|---|---|---|---|---|---|---|---|---|
Varieties | |||||||||||
‘Dručiai’ | 90 ± 8.6 | 40 ± 4.6 | Ind. | Pin. | Yes | S.F | AE | Red | No | ≥6 | H |
‘Vytėnų didieji’ | 74 ± 7.4 | 36 ± 4.5 | Det. | Pin. | Yes | S.F | AE | Red | Yes | 3–4 | H |
‘Neris’ | 75 ± 4.6 | 42 ± 3.7 | Det. | Pin. | No | S.F | AE | Red | No | 3–4 | M |
‘Milžinai’ | 160 ± 9.6 | 24 ± 3.2 | Ind. | Bip. | Yes | S.F | AE | Red | Yes | ≥6 | M |
‘Jurgiai’ | 84 ± 6.1 | 32 ± 3.6 | Det. | Bip. | Yes | C | AE | Red | No | 2–3 | S |
‘Aušriai’ | 92 ± 12.3 | 30 ± 3.8 | Det. | Pin. | Yes | S.F | E | Red | No | 4–6 | M |
‘Slapukai’ | 90 ± 7.3 | 33 ± 4.9 | Det. | Pin. | Yes | S.F | AE | Red | Yes | 3–4 | M |
‘Laukiai’ | 60 ± 6.7 | 39 ± 4.1 | Det. | Pin. | Yes | S.F | E | Red | Yes | 2–3 | S |
‘Svara’ | 60 ± 10.2 | 65 ± 8.1 | Det. | Pin. | Yes | R | L | Red | No | 3–4 | M |
‘Balčiai’ | 60 ± 6.7 | 43 ± 4.5 | Det. | Bip. | Yes | S.F | AE | Red | No | 3–4 | H |
‘Rutuliai’ | 101 ± 5.4 | 37 ± 3.1 | Ind. | Pin. | Yes | S.F | AE | Red | No | 3–4 | M |
‘Skariai’ | 142 ± 14.7 | 25 ± 5.8 | Ind. | Pin. | Yes | O | AE | Red | Yes | 2–3 | M |
‘Viltis’ | 115 ± 21.2 | 20 ± 4.1 | Det. | Pin. | Yes | S.F | E | Red | Yes | 4–5 | M |
Hybrids | |||||||||||
‘Sveikutis’ | 78 ± 6.4 | 23 ± 4.1 | Ind. | Pin. | Yes | S.F | AE | Red | No | 3–4 | M |
‘Pirmutis’ | 74 ± 7.0 | 24 ± 3.9 | Det. | Pin. | Yes | S.F | E | Red | Yes | 3–4 | M |
‘Ainiai’ | 67 ± 5.9 | 65 ± 6.1 | Det. | Pin. | Yes | O | AE | Red | Yes | 2–3 | H |
‘Adas’ | 35 ± 4.7 | 120 ± 9.6 | Ind. | Pin. | Yes | R | E | Red | No | 3–4 | M |
‘Auksiai’ | 38 ± 3.6 | 111 ± 9.4 | Ind. | Pin. | Yes | R | E | Orange | No | 2–3 | S |
‘Arvaisa’ | 77 ± 5.7 | 21 ± 4.4 | Ind. | Pin. | Yes | S.F | AE | Red | Yes | 4–6 | M |
Varieties | SSR-47 | Tom 236-237 | LEat014 | TMS52 | SSR248 | LEMDDNa | TGS0007 |
---|---|---|---|---|---|---|---|
‘Dručiai’ | 192 | 176 | 209 | 158 | 247 | 228 | 276 |
‘Vytėnų didieji’ | 192 | 190 | 209 | 147 | 245 | 228 | 278 |
‘Neris’ | 192 | 190 | 209 | 147 | 247 | 228 | 280 |
‘Milžinai’ | 192 | 176 | 209 | 158 | 247 | 210 | 276 |
‘Jurgiai’ | 192 | 190 | 209 | 147 | 247 | 228 | 278 |
‘Aušriai’ | 192 | 192 | 209 | 150 | 250 | 228 | 278 |
‘Slapukai’ | 192 | 190 | 233 | 150 | 245 | 210 | 287 |
‘Skariai’ | 192 | 176 | 209 | 158 | 250 | 212 | 276 |
‘Rutuliai’ | 192 | 190 | 233 | 161 | 247 | 212 | 278 |
‘Laukiai’ | 192 | 176 | 209 | 147 | 247 | 215 | 285 |
‘Svara’ | 194 | 190 | 209 | 158 | 247 | 213 | 287 |
‘Balčiai’ | 192 | 190 | 209 | 158 | 247 | 210 | 285 |
‘Viltis’ | 192 | 180 | 209 | 154 | 247 | 228 | - * |
Hybrids | SSR-47 | Tom236-237 | LEat014 | TMS52 | SSR248 | LEMDDNa | TGS0007 |
---|---|---|---|---|---|---|---|
‘Sveikutis’ | 176:192; 176; 192 | 176:192; 176; 192 | 233 | 150 | 255 | 213 | 276:285; 276 |
‘Pirmutis’ | 192 | 180:192; | 209:233 | 154:158 | 247 | 213:228; 228 | 278:285 |
‘Ainiai’ | 192 | 176 | 209 | 154:158; 158 | 247:255 | 210 | 276:283 |
‘Adas’ | 192:194 | 176 | 209 | 150 | 247:255 | 213 | 276:288 |
‘Auksiai’ | 192:194 | 176 | 209 | 154 | 245:252 | 213 | 276 |
‘Arvaisa’ | 192 | 176 | 209:233; 209; 233 | 150:154; 150; 154 | 250:255; 255; 250 | 213:228; 213; 228 | 276:285; 276 |
Parental Forms | SSR-47 | Tom236-237 | LEat014 | TMS52 | SSR248 | LEMDDNa | TGS0007 |
5622 | 192 | 176 | 233 | 150 | 255 | 213 | 285 |
300 | 192 | 176 | 233 | 150 | 255 | 213 | 276 |
5628 | 176 | 192 | 233 | 158 | 247 | 228 | 285 |
‘Viltis’ | 192 | 180 | 209 | 154 | 247 | 228 | - * |
‘Vilina’ | 192 | 213 | 209 | 158 | 255 | 213 | 276 |
SM-01 | 192 | 176 | 209 | 158 | 245 | 210 | 283 |
1156 | 192 | 176 | 209 | 150 | 255 | 213 | 288 |
S-09 | 194 | 176 | 209 | 161 | 247 | 213 | 276 |
BO-01 | 192 | 176 | 209 | 154 | 252 | 213 | 276 |
322 | 192 | 176 | 233 | 154 | 250 | 228 | 276 |
Varieties | Hybrids | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SSR Primers | Allele Size Range (bp) | No of Allele | He * | Ho * | PIC * | Allele Size Range (bp) | No of Allele | He | Ho | PIC |
Tom236-237 | 176–192 | 4 | 0.60 | 0 | 0.54 | 176–213 | 4 | 0.33 | 0.31 | 0.31 |
SSR-47 | 192–194 | 2 | 0.14 | 0 | 0.13 | 176–194 | 3 | 0.38 | 0.46 | 0.34 |
LEMDDNa | 210–228 | 4 | 0.67 | 0 | 0.62 | 210–228 | 3 | 0.54 | 0.15 | 0.48 |
LEat014 | 209–233 | 2 | 0.26 | 0 | 0.23 | 209–233 | 2 | 0.50 | 0.15 | 0.37 |
TMS52 | 147–161 | 5 | 0.72 | 0 | 0.68 | 150–161 | 4 | 0.63 | 0.23 | 0.55 |
SSR248 | 245–250 | 3 | 0.47 | 0 | 0.43 | 245–255 | 5 | 0.66 | 0.46 | 0.61 |
TGS0007 | 276–287 | 4 | 0.71 | 0 | 0.66 | 276–288 | 5 | 0.53 | 0.62 | 0.49 |
Mean | - | 3 | 0.51 | 0 | 0.47 | - | 3.71 | 0.51 | 0.34 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzevičius, A.; Šikšnianienė, J.B.; Karklelienė, R.; Juškevičienė, D.; Antanynienė, R.; Misiukevičius, E.; Starkus, A.; Stanys, V.; Frercks, B. Characterization of Lithuanian Tomato Varieties and Hybrids Using Phenotypic Traits and Molecular Markers. Plants 2024, 13, 2143. https://doi.org/10.3390/plants13152143
Radzevičius A, Šikšnianienė JB, Karklelienė R, Juškevičienė D, Antanynienė R, Misiukevičius E, Starkus A, Stanys V, Frercks B. Characterization of Lithuanian Tomato Varieties and Hybrids Using Phenotypic Traits and Molecular Markers. Plants. 2024; 13(15):2143. https://doi.org/10.3390/plants13152143
Chicago/Turabian StyleRadzevičius, Audrius, Jūratė Bronė Šikšnianienė, Rasa Karklelienė, Danguolė Juškevičienė, Raminta Antanynienė, Edvinas Misiukevičius, Aurelijus Starkus, Vidmantas Stanys, and Birutė Frercks. 2024. "Characterization of Lithuanian Tomato Varieties and Hybrids Using Phenotypic Traits and Molecular Markers" Plants 13, no. 15: 2143. https://doi.org/10.3390/plants13152143
APA StyleRadzevičius, A., Šikšnianienė, J. B., Karklelienė, R., Juškevičienė, D., Antanynienė, R., Misiukevičius, E., Starkus, A., Stanys, V., & Frercks, B. (2024). Characterization of Lithuanian Tomato Varieties and Hybrids Using Phenotypic Traits and Molecular Markers. Plants, 13(15), 2143. https://doi.org/10.3390/plants13152143