Enhancing Red Table Grape Coloration Using Tsikoudia: A Novel and Sustainable Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics of Grapes
2.2. Coloration of Grapes
2.3. Total Anthocyanin Content
3. Materials and Methods
3.1. Growing Conditions and Experimental Design
3.2. Evaluation of Physicochemical Characteristics of Grapes
3.3. Grape Coloring Evaluation
3.4. Determination of Total Anthocyanin Content
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; OIV. Table and Dried Grapes; Food and Agriculture Organization of the United Nations and the International Organisation of Vine and Wine: Rome, Italy, 2016. [Google Scholar]
- Rolle, L.; Giacosa, S.; Gerbi, V.; Bertolino, M.; Novello, V. Varietal Comparison of The Chemical, Physical, and Mechanical Properties of Five Colored Table Grapes. Int. J. Food Prop. 2013, 16, 598–612. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Cantín, C.M.; Fidelibus, M.W.; Crisosto, C.H. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biol. Technol. 2007, 46, 237–241. [Google Scholar] [CrossRef]
- Ovadia, R.; Oren-Shamir, M.; Kaplunov, T.; Zutahy, Y.; Lichter, A.; Lurie, S. Effects of plant growth regulators and high temperature on colour development in ‘Crimson Seedless’ grapes. J. Hortic. Sci. Biotechnol. 2013, 88, 387–392. [Google Scholar] [CrossRef]
- Leão, P.C.d.S.; Lima, M.A.C.; Dias Costa, J.P.; Gomes da Trindade, D.C. Abscisic Acid and Ethephon for Improving Red Color and Quality of Crimson Seedless Grapes Grown in a Tropical Region. Am. J. Enol. Vitic. 2014, 66, 37–45. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.-L.; Liang, N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef]
- Guidoni, S.; Ferrandino, A.; Novello, V. Effects of Seasonal and Agronomical Practices on Skin Anthocyanin Profile of Nebbiolo Grapes. Am. J. Enol. Vitic. 2008, 59, 22–29. [Google Scholar] [CrossRef]
- de Palma, L.; Tarricone, L.; Limosani, P.; De Michele, M.; Novello, V. Skin phenols in seedless grapes (Vitis vinifera L.) as influenced by genotype and irrigation. In Actes de Congrès: 35ème Congrès de la Vigne et du Vin, Izmir, Turquie; OIV: Dijon, France, 2012; pp. 1–8. [Google Scholar]
- Ortega-Regules, A.; Romero-Cascales, I.; López-Roca, J.M.; Ros-García, J.M.; Gómez-Plaza, E. Anthocyanin fingerprint of grapes: Environmental and genetic variations. J. Sci. Food Agric. 2006, 86, 1460–1467. [Google Scholar] [CrossRef]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of Temperature on Anthocyanin Biosynthesis in Grape Berry Skins. Am. J. Enol. Vitic. 2006, 57, 54–59. [Google Scholar] [CrossRef]
- Mori, K.; Sugaya, S.; Gemma, H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci. Hortic. 2005, 105, 319–330. [Google Scholar] [CrossRef]
- Koshita, Y.; Asakura, T.; Fukuda, H.; Tsuchida, Y. Nighttime temperature treatment of fruit clusters of ‘Aki Queen’grapes during maturation and its effect on the skin color and abscisic acid content. Vitis 2007, 46, 208–209. [Google Scholar]
- Shen, Y.-Y.; Rose, J.K.C. ABA Metabolism and Signaling in Fleshy Fruits. In Abscisic Acid: Metabolism, Transport and Signaling; Zhang, D.P., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 271–286. [Google Scholar]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among color development, anthocyanin and pigment-related gene expression in ‘Crimson Seedless’ grapes treated with abscisic acid and sucrose. Plant Physiol. Biochem. 2017, 115, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Roberto, S.R.; de Assis, A.M.; Yamamoto, L.Y.; Miotto, L.C.V.; Sato, A.J.; Koyama, R.; Genta, W. Application timing and concentration of abscisic acid improve color of ‘Benitaka’table grape. Sci. Hortic. 2012, 142, 44–48. [Google Scholar] [CrossRef]
- Neto, F.J.D.; Tecchio, M.A.; Pimentel, A.; Vedoato, B.T.F.; Lima, G.P.P.; Roberto, S.R. Effect of ABA on colour of berries, anthocyanin accumulation and total phenolic compounds of ‘Rubi’ table grape (‘Vitis vinifera’). Aust. J. Crop Sci. 2017, 11, 199. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N.K. Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J. Hortic. Sci. Biotechnol. 2007, 82, 304–310. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.; Pacucci, C.; Punzi, R.; Faccia, M.; Trani, A.; Gambacorta, G. Application of abscisic acid (S-ABA) and sucrose to improve colour, anthocyanin content and antioxidant activity of cv. Crimson Seedless grape berries. Aust. J. Grape Wine Res. 2015, 21, 18–29. [Google Scholar] [CrossRef]
- Roberts, T.R.; Hutson, D.H. Metabolic Pathways of Agrochemicals: Herbicides and Plant Growth Regulators; Royal Society of Chemistry: London, UK, 1998. [Google Scholar]
- Nikolaou, N.; Zioziou, E.; Stavrakas, D.; Patakas, A. Effects of ethephon, methanol, ethanol and girdling treatments on berry maturity and colour development in Cardinal table grapes. Aust. J. Grape Wine Res. 2003, 9, 12–14. [Google Scholar] [CrossRef]
- Roberto, S.R.; Assis, A.M.d.; Yamamoto, L.Y.; Miotto, L.C.V.; Koyama, R.; Sato, A.J.; Borges, R.d.S. Ethephon use and application timing of abscisic acid for improving color of ‘Rubi’ table grape. Pesqui. Agropecuária Bras. 2013, 48, 797–800. [Google Scholar] [CrossRef]
- Human, M.; Bindon, K. Interactive effect of ethephon and shading on the anthocyanin composition of Vitis vinifera L. cv. Crimson Seedless. S. Afr. J. Enol. Vitic. 2008, 29, 50–58. [Google Scholar] [CrossRef]
- European Food Safety Authority. Reasoned opinion on the modification of the existing MRLs for ethephon in table olive and table grape. EFSA J. 2014, 12, 3698. [Google Scholar] [CrossRef]
- Wu, L.; Li, P.; Jia, H.; Phillip, F.O.; Bao, X.; Zhao, F.; Zhao, B.; Feng, J.; Yu, K. The Effect of Foliar Application of K2SO4 or KH2PO4 on Skin Color of the ‘Kyoho’ Grape. Agronomy 2021, 11, 2361. [Google Scholar] [CrossRef]
- Kumar, A.R.; Kumar, N.; Kavino, M. Role of potassium in fruit crops-a review. Agric. Rev. 2006, 27, 284–291. [Google Scholar]
- Abd El-Razek, E.; Treutter, D.; Saleh, M.; El-Shammaa, M.; Abdel-Hamid, N.; Abou-Rawash, M. Effect of Nitrogen and Potassium Fertilization on Productivity and Fruit Quality of ’Crimson Seedless’ Grapes. Agric. Biol. J. N. Am. 2011, 2, 330–340. [Google Scholar] [CrossRef]
- Dokoozlian, N.; Luvisi, D.; Moriyama, M.; Schrader, P. Cultural practices improve color, size of ‘Crimson Seedless’. Calif. Agric. 1995, 49, 36–40. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture; University of California Press: Los Angeles, CA, USA, 1974; p. 710. [Google Scholar]
- Esperanza Valdés, M.; Moreno, D.; Gamero, E.; Uriarte, D.; del Henar Prieto, M.; Manzano, R.; Picón, J.; Intrigliolo, D.S. Effects of cluster thinning and irrigation amount on water relations, growth, yield and fruit and wine composition of Tempranillo grapes in Extemadura (Spain). OENO One 2009, 43, 67–76. [Google Scholar] [CrossRef]
- Díaz, G.A.; Latorre, B.A. Infection Caused by Phaeomoniella chlamydospora Associated with Esca-like Symptoms in Grapevine in Chile. Plant Dis. 2014, 98, 351–360. [Google Scholar] [CrossRef]
- Rooney-Latham, S.; Eskalen, A.; Gubler, W.D. Occurrence of Togninia minima Perithecia in Esca-Affected Vineyards in California. Plant Dis. 2005, 89, 867–871. [Google Scholar] [CrossRef]
- Gutter, W.D.; Baumgartner, K.; Browne, G.T.; Eskalen, A.; Latham, S.R.; Petit, E.; Bayramian, L.A. Root diseases of grapevines in California and their control. Australas. Plant Pathol. 2004, 33, 157–165. [Google Scholar] [CrossRef]
- Rodyoung, A.; Masuda, Y.; Tomiyama, H.; Saito, T.; Okawa, K.; Ohara, H.; Kondo, S. Effects of light emitting diode irradiation at night on abscisic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. Plant Growth Regul. 2016, 79, 39–46. [Google Scholar] [CrossRef]
- Kondo, S.; Tomiyama, H.; Rodyoung, A.; Okawa, K.; Ohara, H.; Sugaya, S.; Terahara, N.; Hirai, N. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. J. Plant Physiol. 2014, 171, 823–829. [Google Scholar] [CrossRef]
- Ramadan, T.; Omran, Y. The effect of foliar application of methanol on productivity and fruit quality of grapevine cv. Flame Seedless. Vitis 2005, 44, 11–16. [Google Scholar]
- El Kereamy, A.; Chervin, C.; Souquet, J.-M.; Moutounet, M.; Monje, M.-C.; Nepveu, F.; Mondies, H.; Ford, C.M.; van Heeswijck, R.; Roustan, J.-P. Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening. Plant Sci. 2002, 163, 449–454. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.M.S.; Pacucci, C.; Pacifico, A.; Gambacorta, G.; Faccia, M.; Trani, A.; Gallo, V.; Cafagna, I. Application of abscisic acid (S-ABA) to ‘Crimson Seedless’ grape berries in a Mediterranean climate: Effects on color, chemical characteristics, metabolic profile, and S-ABA concentration. J. Plant Growth Regul. 2013, 32, 491–505. [Google Scholar] [CrossRef]
- Cecilia Peppi, M.; Fidelibus, M.W.; Dokoozlian, N.K. Timing and concentration of abscisic acid applications affect the quality of ‘Crimson Seedless’ grapes. Int. J. Fruit Sci. 2008, 7, 71–83. [Google Scholar] [CrossRef]
- Lurie, S.; Ovadia, R.; Nissim-Levi, A.; Oren-Shamir, M.; Kaplunov, T.; Zutahy, Y.; Weksler, H.; Lichter, A. Abscisic acid improves colour development in ‘Crimson Seedless’ grapes in the vineyard and on detached berries. J. Hortic. Sci. Biotechnol. 2009, 84, 639–644. [Google Scholar] [CrossRef]
- Farag, K.M.; Haikal, A.M.; Nagy, N.M.; Hezema, Y.S. Enhancing colouration and quality of Crimson seedless grape berries cultivar using modified ethrel formulations. J. Agric. Environ. Sci. Dam. Univ. Egypt 2011, 10, 14–47. [Google Scholar]
- Salama, A.-M.; Abdelsalam, M.A.; Rehan, M.; Elansary, M.; El-Shereif, A. Anthocyanin Accumulation and Its Corresponding Gene Expression, Total Phenol, Antioxidant Capacity, and Fruit Quality of ‘Crimson Seedless’ Grapevine (Vitis vinifera L.) in Response to Grafting and Pre-Harvest Applications. Horticulturae 2023, 9, 1001. [Google Scholar] [CrossRef]
- Böttcher, C.; Harvey, K.E.; Boss, P.K.; Davies, C. Ripening of grape berries can be advanced or delayed by reagents that either reduce or increase ethylene levels. Funct. Plant Biol. 2013, 40, 566–581. [Google Scholar] [CrossRef]
- Costantini, L.; Battilana, J.; Lamaj, F.; Fanizza, G.; Grando, M.S. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biol. 2008, 8, 38. [Google Scholar] [CrossRef]
- Reynolds, A.; Robbins, N.; Lee, H.-S.; Kotsaki, E. Impacts and Interactions of Abscisic Acid and Gibberellic Acid on Sovereign Coronation and Skookum Seedless Table Grapes. Am. J. Enol. Vitic. 2016, 67, 327–338. [Google Scholar] [CrossRef]
- Fidelibus, M.; Peppi, C.; Cathline, K. Effects of Aba on Berry Physiology, Quality, and Postharvest Storage of Crimson Seedless Table Grapes. In Proceedings of the 38th Annual Meeting of the Plant Growth Regulation Society of America, Chicago, IL, USA, 24–28 July 2011; pp. 30–35. [Google Scholar]
- González, R.; González, M.; Uzquiza, L.; Martín, P. Improving the colour of ’Tempranillo’ grapes by spraying ethanol at veraison and pre-harvest. In Proceedings of the XI International Symposium on Plant Bioregulators in Fruit Production 884, Bologna, Italy, 20–23 September 2009; pp. 499–503. [Google Scholar]
- Dokoozlian, N.K.; Hirschfelt, D.J. The Influence of Cluster Thinning at Various Stages of Fruit Development on Flame Seedless Table Grapes. Am. J. Enol. Vitic. 1995, 46, 429–436. [Google Scholar] [CrossRef]
- Modesti, M.; Gianmarco, A.; Magri, A.; Roberto, F.; Serena, F.; Petriccione, M.; Taglieri, I.; Fabio, M.; Andrea, B. Using Ethanol as Postharvest Treatment to Increase Polyphenols and Anthocyanins in Wine Grape. Heliyon 2024, 10, e26067. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Apostolopoulou, A.A.; Flouros, A.I.; Demertzis, P.G.; Akrida-Demertzi, K. Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 2005, 16, 157–164. [Google Scholar] [CrossRef]
- Aborawash, A.A.; El Wakeel, H.F.; Mansour, N.I. Improving Fruit Quality of Crimson Seedless by Ethephon and Abscisic Acid Foliar Applications Using Three Machine Types. Egypt. J. Hortic. 2022, 49, 159–171. [Google Scholar] [CrossRef]
- Spyros, A.; Dais, P. NMR Spectroscopy in Food Analysis; Royal Society of Chemistry: London, UK, 2012. [Google Scholar]
- Lydakis, D.; Aked, J. Vapour heat treatment of Sultanina table grapes. II: Effects on postharvest quality. Postharvest Biol. Technol. 2003, 27, 117–126. [Google Scholar] [CrossRef]
- Bakker, J.; Bridle, P.; Timberlake, C. Tristimulus measurements (CIELAB 76) of port wine colour. Vitis 1986, 25, 67–73. [Google Scholar]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Kontaxakis, E.; Atzemopoulos, A.; Alissandrakis, E.; Ververidis, F.; Trantas, E. Evolution of Physicochemical Properties and Phenolic Maturity of Vilana, Vidiano, Kotsifali and Mandilari Wine Grape Cultivars (Vitis vinifera L.) during Ripening. Plants 2022, 11, 3547. [Google Scholar] [CrossRef]
Control | Tsikoudia | Ethrel | ABA | Madurel | Cluster Trimming | Sig. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bunch Length (cm) | 2022 | 25.6 a | ±2.9 | 27.5 a | ±1.4 | 24.8 a | ±3.0 | 23.8 a | ±3.6 | 26.3 a | ±5.3 | 16.1 b | ±3.4 | *** |
2023 | 19.4 a | ±3.6 | 20.1 a | ±2.0 | 21.3 a | ±0.5 | 20.8 a | ±2.2 | 20.2 a | ±1.2 | 15.1 b | ±0.9 | *** | |
Bunch Width (cm) | 2022 | 15.5 a | ±1.1 | 16.2 a | ±3.5 | 15.1 a | ±4.3 | 17.9 a | ±3.4 | 16.8 a | ±1.1 | 15.6 a | ±2.6 | ns |
2023 | 18.0 a | ±3.8 | 15.5 a | ±3.5 | 16.6 a | ±1.8 | 16.4 a | ±3.1 | 16.9 a | ±2.8 | 17.4 a | ±1.8 | ns | |
Bunch Weight (g) | 2022 | 410.8 a | ±86.5 | 519.6 a | ±138.6 | 517.8 a | ±171.2 | 569.0 a | ±167.6 | 570.5 a | ±72.7 | 380.7 a | ±116.1 | ns |
2023 | 543.5 a | ±212.2 | 577.6 a | ±127.6 | 678.9 a | ±158.9 | 624.5 a | ±262.8 | 598.1 a | ±123.4 | 529.4 a | ±138.2 | ns | |
Rachis Length (cm) | 2022 | 25.1 a | ±3.1 | 26.3 a | ±1.5 | 24.7 a | ±4.5 | 23.6 a | ±4.3 | 25.2 a | ±5.3 | 15.1 b | ±3.2 | *** |
2023 | 17.4 a | ±3.9 | 19.7 a | ±1.9 | 20.3 a | ±0.5 | 19.7 a | ±2.5 | 19.4 a | ±1.0 | 13.8 b | ±0.6 | *** | |
Rachis Weight (g) | 2022 | 15.9 ab | ±1.6 | 17.4 a | ±0.7 | 15.8 ab | ±7.1 | 17.1 ab | ±7.0 | 17.8 a | ±3.1 | 10.8 b | ±2.3 | ns |
2023 | 11.5 a | ±1.6 | 10.7 a | ±2.0 | 12.2 a | ±3.6 | 10.4 a | ±3.5 | 10.2 a | ±2.1 | 9.0 a | ±2.5 | ns | |
Berry Shatter (%) | 2022 | 0.7 a | ±0.7 | 1.0 a | ±1.9 | 2.7 a | ±2.3 | 2.3 a | ±1.1 | 1.9 a | ±2.4 | 2.8 a | ±1.8 | ns |
2023 | 1.8 a | ±1.7 | 2.9 a | ±2.3 | 1.4 a | ±0.7 | 1.9 a | ±2.0 | 3.0 a | ±2.2 | 2.0 a | ±2.8 | ns | |
Berry Weight (g) | 2022 | 3.8 a | ±0.7 | 3.9 a | ±0.6 | 3.9 a | ±0.7 | 3.7 a | ±0.5 | 3.9 a | ±0.2 | 4.2 a | ±0.5 | ns |
2023 | 3.5 b | ±0.1 | 3.8 ab | ±0.7 | 3.8 ab | ±0.4 | 3.5 b | ±0.6 | 4.0 ab | ±0.5 | 4.4 a | ±0.4 | ns | |
Berries Amount | 2022 | 107.2 ab | ±15.5 | 127.2 ab | ±22.5 | 131.0 ab | ±45.6 | 151.4 a | ±57.1 | 142.2 a | ±16.9 | 88.2 b | ±18.7 | ns |
2023 | 152.6 a | ±61.9 | 154.0 a | ±37.1 | 176.4 a | ±35.9 | 170.2 a | ±54.6 | 147.4 a | ±24.0 | 117.2 a | ±34.1 | ns | |
Small BerriesAmount | 2022 | 4.4 a | ±3.1 | 6.0 a | ±3.3 | 2.8 a | ±3.1 | 7.6 a | ±6.3 | 8.2 a | ±7.7 | 2.2 a | ±1.3 | ns |
2023 | 4.4 a | ±3.1 | 0.4 b | ±0.6 | 2.6 ab | ±4.2 | 0.6 b | ±0.9 | 2.2 ab | ±2.8 | 0.8 b | ±1.1 | ns | |
Total Soluble Solids (°Brix) | 2022 | 18.0 b | ±0.9 | 19.0 ab | ±1.7 | 19.7 a | ±0.4 | 18.7 ab | ±0.5 | 18.3 b | ±0.3 | 17.8 b | ±0.8 | * |
2023 | 17.0 b | ±0.4 | 18.9 a | ±1.2 | 18.6 a | ±0.5 | 18.7 a | ±1.1 | 18.1 a | ±0.9 | 18.1 a | ±0.3 | * | |
Titratable Acidity (g H2 Ta L−1) | 2022 | 6.0 a | ±0.5 | 4.9 b | ±0.5 | 5.5 ab | ±0.6 | 5.0 b | ±0.2 | 5.3 b | ±0.4 | 5.4 ab | ±0.5 | ** |
2023 | 7.7 a | ±0.4 | 6.7 b | ±0.3 | 6.6 b | ±0.1 | 6.4 b | ±0.7 | 6.7 b | ±0.3 | 6.7 b | ±0.8 | ** | |
Maturity Index | 2022 | 30.0 c | ±3.7 | 39.5 a | ±6.3 | 36.5 ab | ±4.2 | 37.5 ab | ±2.4 | 34.7 abc | ±2.3 | 33.1 bc | ±3.0 | * |
2023 | 22.0 b | ±1.9 | 28.2 a | ±2.1 | 28.2 a | ±1.3 | 30.0 a | ±5.4 | 27.0 a | ±2.2 | 27.2 a | ±3.3 | ** | |
pH | 2022 | 3.2 a | ±0.1 | 3.6 a | ±0.1 | 3.2 a | ±0.1 | 3.9 a | ±0.1 | 3.2 a | ±0.0 | 3.2 a | ±0.1 | ns |
2023 | 3.6 a | ±0.1 | 3.6 a | ±0.1 | 3.6 a | ±0.1 | 3.6 a | ±0.0 | 3.5 a | ±0.0 | 3.5 a | ±0.0 | ns |
Control | Tsikoudia | Ethrel | ABA | Madurel | Cluster Trimming | Sig. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bunch Length (cm) | 2022 | 31.1 a | ±1.3 | 31.0 a | ±2.8 | 33.9 a | ±3.2 | 31.9 a | ±4.2 | 33.4 a | ±4.3 | 25.6 b | ±3.5 | ** |
2023 | 27.4 a | ±3.3 | 27.2 a | ±5.6 | 27.1 a | ±3.6 | 28.1 a | ±7.1 | 27.2 a | ±2.9 | 19.4 a | ±1.0 | * | |
Bunch Width (cm) | 2022 | 19.4 a | ±4.2 | 19.2 a | ±1.9 | 19.0 a | ±3.5 | 16.7 a | ±2.8 | 16.1 a | ±1.1 | 16.2 a | ±3.0 | ns |
2023 | 18.4 a | ±2.8 | 19.6 a | ±1.3 | 17.3 a | ±1.7 | 17.0 a | ±1.6 | 18.0 a | ±2.7 | 19.5 a | ±2.6 | ns | |
Bunch Weight (g) | 2022 | 899.8 a | ±339.3 | 973.4 a | ±144.5 | 973.5 a | ±213.6 | 812.2 a | ±196.2 | 754.1 a | ±81.2 | 692.3 a | ±230.8 | ns |
2023 | 1011.8 a | ±163.0 | 1167.8 a | ±95.4 | 971.5 a | ±339.6 | 965.4 a | ±154.7 | 1006.4 a | ±264.5 | 863.5 a | ±157.8 | ns | |
Rachis Length (cm) | 2022 | 29.9 a | ±1.3 | 29.8 a | ±2.6 | 32.3 a | ±3.1 | 30.4 a | ±4.7 | 31.5 a | ±4.1 | 24.5 b | ±3.5 | * |
2023 | 26.0 a | ±3.0 | 25.3 a | ±5.6 | 26.0 a | ±3.9 | 26.6 a | ±6.3 | 25.2 a | ±2.9 | 18.5 a | ±0.9 | * | |
Rachis Weight (g) | 2022 | 19.2 a | ±0.6 | 20.9 a | ±1.2 | 20.3 a | ±2.1 | 19.4 a | ±1.8 | 20.9 a | ±2.7 | 16.1 b | ±2.5 | ** |
2023 | 17.0 a | ±2.3 | 17.7 a | ±4.8 | 17.7 a | ±1.7 | 17.7 a | ±3.8 | 17.6 a | ±1.8 | 14.7 a | ±0.7 | ns | |
Berry Shatter (%) | 2022 | 0.7 a | ±1.0 | 0.4 a | ±0.5 | 0.3 a | ±0.7 | 0.6 a | ±0.9 | 0.5 a | ±0.7 | 1.0 a | ±1.5 | ns |
2023 | 1.3 a | ±1.3 | 1.0 a | ±1.0 | 0.0 a | ±0.0 | 1.4 a | ±1.5 | 0.6 a | ±0.6 | 0.6 a | ±0.8 | ns | |
Berry Weight (g) | 2022 | 9.0 a | ±1.6 | 10.1 a | ±1.0 | 9.4 a | ±1.7 | 8.7 a | ±1.7 | 9.6 a | ±1.2 | 9.3 a | ±1.6 | ns |
2023 | 11.3 a | ±2.6 | 11.7 a | ±1.0 | 10.0 a | ±0.6 | 11.7 a | ±0.5 | 11.1 a | ±0.8 | 9.8 a | ±1.7 | ns | |
Berries Amount | 2022 | 99.4 a | ±33.9 | 98.4 a | ±21.0 | 104.0 a | ±32.1 | 91.2 a | ±11.3 | 73.8 a | ±16.0 | 75.4 a | ±31.4 | ns |
2023 | 89.8 a | ±13.0 | 103.4 a | ±10.9 | 97.0 a | ±32.3 | 75.0 a | ±19.3 | 88.4 a | ±19.2 | 91.4 a | ±14.4 | ns | |
Small Berries Amount | 2022 | 4.6 a | ±3.6 | 2.0 a | ±2.4 | 5.4 a | ±4.5 | 4.8 a | ±5.4 | 2.6 a | ±3.1 | 3.2 a | ±4.5 | ns |
2023 | 2.8 a | ±2.6 | 1.2 a | ±0.8 | 6.4 a | ±7.6 | 1.4 a | ±1.9 | 1.2 a | ±1.3 | 3.4 a | ±5.5 | ns | |
Total Soluble Solids (°Brix) | 2022 | 13.0 b | ±0.3 | 15.1 a | ±1.0 | 15.4 a | ±1.6 | 14.4 ab | ±0.8 | 14.6 ab | ±0.7 | 14.5 ab | ±2.3 | * |
2023 | 12.4 b | ±2.1 | 14.9 a | ±0.8 | 14.5 a | ±0.8 | 14.0 ab | ±1.3 | 13.4 ab | ±0.6 | 13.1 ab | ±1.2 | * | |
Titratable Acidity (g H2 Ta L−1) | 2022 | 6.5 a | ±0.4 | 4.9 b | ±0.7 | 4.1 b | ±0.3 | 4.4 b | ±0.6 | 4.6 b | ±0.7 | 5.0 b | ±0.8 | *** |
2023 | 6.2 a | ±0.4 | 5.0 b | ±0.6 | 5.1 b | ±0.8 | 5.2 b | ±0.6 | 5.0 b | ±0.7 | 5.0 b | ±0.7 | * | |
Maturity Index | 2022 | 19.9 b | ±1.5 | 31.4 a | ±4.3 | 37.4 a | ±5.7 | 33.4 a | ±6.9 | 32.6 a | ±5.4 | 30.3 a | ±10.9 | ** |
2023 | 20.0 b | ±3.3 | 30.2 a | ±5.6 | 28.9 a | ±4.4 | 27.5 a | ±5.7 | 27.6 a | ±5.6 | 26.6 a | ±4.0 | * | |
pH | 2022 | 3.6 a | ±0.1 | 3.6 a | ±0.1 | 3.6 a | ±0.1 | 3.5 a | ±0.0 | 3.5 a | ±0.0 | 3.5 a | ±0.1 | ns |
2023 | 3.5 a | ±0.0 | 3.6 a | ±0.0 | 3.6 a | ±0.1 | 3.5 a | ±0.1 | 3.5 a | ±0.0 | 3.5 a | ±0.1 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontaxakis, E.; Lydakis, D.; Fisarakis, I. Enhancing Red Table Grape Coloration Using Tsikoudia: A Novel and Sustainable Approach. Plants 2024, 13, 2689. https://doi.org/10.3390/plants13192689
Kontaxakis E, Lydakis D, Fisarakis I. Enhancing Red Table Grape Coloration Using Tsikoudia: A Novel and Sustainable Approach. Plants. 2024; 13(19):2689. https://doi.org/10.3390/plants13192689
Chicago/Turabian StyleKontaxakis, Emmanouil, Dimitrios Lydakis, and Ioannis Fisarakis. 2024. "Enhancing Red Table Grape Coloration Using Tsikoudia: A Novel and Sustainable Approach" Plants 13, no. 19: 2689. https://doi.org/10.3390/plants13192689
APA StyleKontaxakis, E., Lydakis, D., & Fisarakis, I. (2024). Enhancing Red Table Grape Coloration Using Tsikoudia: A Novel and Sustainable Approach. Plants, 13(19), 2689. https://doi.org/10.3390/plants13192689