Non-Foliar Photosynthesis in Pea (Pisum sativum L.) Plants: Beyond the Leaves to Inside the Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Chlorophyll Content
2.3. Chlorophyll a Fluorescence
2.4. RNA Isolation and Real-Time PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Chlorophyll Content and OJIP Chlorophyll Fluorescence Kinetics in Pea Photosynthetic Tissues
3.2. Specific Energy Fluxes and Photosynthetic Performance Index
3.3. Expression of Genes Related to RuBisCO Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stirbet, A.; Lazár, D.; Guo, Y.; Govindjee, G. Photosynthesis: Basics, history and modelling. Ann. Bot. 2020, 126, 511–537. [Google Scholar] [CrossRef] [PubMed]
- Björn, L.O.; Shevela, D.; Govindjee, G. What is photosynthesis?—A broader and inclusive view. In A Closer Look at Photosynthesis; Dalal, V.K., Misra, A.N., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2023; ISBN 9798886978155. [Google Scholar]
- Simkin, A.J.; López-Calcagno, P.E.; Raines, C.A. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 2019, 70, 1119–1140. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; Milliken, A.L. Photosynthesis—Beyond the leaf. New Phytol. 2023, 238, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Aschan, G.; Pfanz, H. Non-foliar photosynthesis—A strategy of additional carbon acquisition. Flora 2003, 198, 81–97. [Google Scholar] [CrossRef]
- Burgess, A.J.; Degen, G.E. Pod power: Soybean pod and seed photosynthesis contributes to yield. Plant Physiol. 2023, 193, 886–887. [Google Scholar] [CrossRef]
- Cho, Y.B.; Stutz, S.S.; Jones, S.I.; Wang, Y.; Pelech, E.A.; Ort, D.R. Impact of pod and seed photosynthesis on seed filling and canopy carbon gain in soybean. Plant Physiol. 2023, 193, 966–979. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, P.; Li, Y.; Wang, M.; Xia, F.; Wang, H. Assessing of the contributions of pod photosynthesis to carbon acquisition of seed in alfalfa (Medicago sativa L.). Sci. Rep. 2017, 7, 42026. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Y.; Xia, H.; Fan, S.; Song, J.; Lv, X.; Kong, L. Photosynthetic characteristics of non-foliar organs in main C3 cereals. Physiol. Plant. 2019, 166, 226–239. [Google Scholar] [CrossRef]
- Yanykin, D.; Sundyreva, M.; Khorobrykh, A.; Semenova, G.; Savchenko, T. Functional characterization of the corticular photosynthetic apparatus in grapevine. Biochim. Biophys. Acta-Bioenerg. 2020, 1861, 148260. [Google Scholar] [CrossRef]
- Lytovchenko, A.; Eickmeier, I.; Pons, C.; Osorio, S.; Szecowka, M.; Lehmberg, K.; Arrivault, S.; Tohge, T.; Pineda, B.; Anton, M.T.; et al. Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development. Plant Physiol. 2011, 157, 1650–1663. [Google Scholar] [CrossRef]
- Prachi, K.; Kanta, C.; Chandra, S.; Sharma, I.P. Plants functional traits and photosynthetic efficiency for enhancing crop yield. In Plant Functional Traits for Improving Productivity; Springer Nature: Singapore, 2024; pp. 119–132. ISBN 9789819715107. [Google Scholar]
- Henry, R.J.; Furtado, A.; Rangan, P. Pathways of photosynthesis in non-leaf tissues. Biology 2020, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, J.; Chen, W.; Zhao, X.; Wang, Z. Contribution of the leaf and silique photosynthesis to the seeds yield and quality of oilseed rape (Brassica napus L.) in reproductive stage. Sci. Rep. 2023, 13, 4721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Wang, Z.; Wang, Z. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res. 2011, 123, 187–195. [Google Scholar] [CrossRef]
- Smolikova, G.N.; Stepanova, N.V.; Kamionskaya, A.M.; Medvedev, S.S. Photochemical activity in developing pea (Pisum sativum L.) cotyledons depends on the light transmittance of covering tissues and the spectral composition of light. Vavilovskii Zhurnal Genet. Sel. Vavilov J. Genet. Breed. 2023, 27, 980–987. [Google Scholar] [CrossRef]
- Smolikova, G.; Kreslavski, V.; Shiroglazova, O.; Bilova, T.; Sharova, E.; Frolov, A.; Medvedev, S. Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons. Funct. Plant Biol. 2018, 45, 228. [Google Scholar] [CrossRef]
- Smolikova, G.; Shiroglazova, O.; Vinogradova, G.; Leppyanen, I.; Dinastiya, E.; Yakovleva, O.; Dolgikh, E.; Titova, G.; Frolov, A.; Medvedev, S. Comparative analysis of the plastid conversion, photochemical activity and chlorophyll degradation in developing embryos of green-seeded and yellow-seeded pea (Pisum sativum) cultivars. Funct. Plant Biol. 2020, 47, 409–424. [Google Scholar] [CrossRef]
- Ruuska, S.A.; Schwender, J.; Ohlrogge, J.B. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 2004, 136, 2700–2709. [Google Scholar] [CrossRef]
- Allen, D.K.; Ohlrogge, J.B.; Shachar-Hill, Y. The role of light in soybean seed filling metabolism. Plant J. 2009, 58, 220–234. [Google Scholar] [CrossRef]
- Schwender, J.; Goffman, F.; Ohlrogge, J.B.; Shachar-Hill, Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 2004, 432, 779–782. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: Abingdon-on-Thames, UK, 2000; pp. 445–483. [Google Scholar]
- Oxborough, K.; Baker, N.R. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—Calculation of qP and Fv/Fm; without measuring Fo. Photosynth. Res. 1997, 54, 135–142. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, S.B.; da Silva, J.G.; Meneguzzo, M.R.R.; Martins, A.B.N.; Meneghello, G.E.; de Tunes, L.V.M. Green soybean seeds: Effect on physiological quality. Ciência Rural 2020, 50, e20180631. [Google Scholar] [CrossRef]
- Grulichová, M.; Mendel, P.; Trojan, V.; Vyhnánek, T. Determination of chlorophyll and carotenoids present in the seeds of the plant family apiaceae and the impact on seed quality. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 859–869. [Google Scholar] [CrossRef]
- Smolikova, G.N.; Laman, N.A.; Boriskevich, O.V. Role of chlorophylls and carotenoids in seed tolerance to abiotic stressors. Russ. J. Plant Physiol. 2011, 58, 965–973. [Google Scholar] [CrossRef]
- Smolikova, G.; Dolgikh, E.; Vikhnina, M.; Frolov, A.; Medvedev, S. Genetic and hormonal regulation of chlorophyll degradation during maturation of seeds with green embryos. Int. J. Mol. Sci. 2017, 18, 1993. [Google Scholar] [CrossRef]
- Bulda, O.V.; Rassadina, V.V.; Alekseichuk, H.N.; Laman, N.A. Spectrophotometric measurement of carotenes, xanthophylls, and chlorophylls in extracts from plant seeds. Russ. J. Plant Physiol. 2008, 55, 544–551. [Google Scholar] [CrossRef]
- Bracher, A.; Whitney, S.M.; Hartl, F.U.; Hayer-Hartl, M. Biogenesis and metabolic maintenance of Rubisco. Annu. Rev. Plant Biol. 2017, 68, 29–60. [Google Scholar] [CrossRef]
- Carvalho, M.E.A.; Labate, C.A.; Barboza da Silva, C.; de Camargo e Castro, P.R.; Azevedo, R.A. Seed photorespiration: A perspective review. Plant Growth Regul. 2022, 97, 477–484. [Google Scholar] [CrossRef]
- Rangan, P.; Wankhede, D.P.; Subramani, R.; Chinnusamy, V.; Malik, S.K.; Baig, M.J.; Singh, K.; Henry, R. Evolution of an intermediate C4 photosynthesis in the non-foliar tissues of the Poaceae. Photosynth. Res. 2022, 153, 125–134. [Google Scholar] [CrossRef]
- Gruber, A.V.; Feiz, L. Rubisco assembly in the chloroplast. Front. Mol. Biosci. 2018, 5, 24. [Google Scholar] [CrossRef]
- Amaral, J.; Lobo, A.K.M.; Carmo-Silva, E. Regulation of Rubisco activity in crops. New Phytol. 2024, 241, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, G.; Diretto, G. Of chromoplasts and chaperones. Trends Plant Sci. 2007, 12, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Raines, C.A. Improving plant productivity by re-tuning the regeneration of RuBP in the Calvin–Benson–Bassham cycle. New Phytol. 2022, 236, 350–356. [Google Scholar] [CrossRef]
- Yu, A.; Xie, Y.; Pan, X.; Zhang, H.; Cao, P.; Su, X.; Chang, W.; Li, M. Photosynthetic phosphoribulokinase structures: Enzymatic mechanisms and the redox regulation of the Calvin-Benson-Bassham cycle. Plant Cell 2020, 32, 1556–1573. [Google Scholar] [CrossRef]
- Gurrieri, L.; Fermani, S.; Zaffagnini, M.; Sparla, F.; Trost, P. Calvin–Benson cycle regulation is getting complex. Trends Plant Sci. 2021, 26, 898–912. [Google Scholar] [CrossRef]
- Simkin, A.J.; Faralli, M.; Ramamoorthy, S.; Lawson, T. Photosynthesis in non-foliar tissues: Implications for yield. Plant J. 2019, 101, 1001–1015. [Google Scholar] [CrossRef]
- Smolova, T.; Khorobrykh, A.; Savchenko, T. Cortical photosynthesis as a physiological marker for grape breeding: Methods and approaches. BIO Web Conf. 2020, 25, 2018. [Google Scholar] [CrossRef]
- Shackira, A.M.; Sarath, N.G.; Aswathi, K.P.R.; Pardha-Saradhi, P.; Puthur, J.T. Green seed photosynthesis: What is it? What do we know about it? Where to go? Plant Physiol. Rep. 2022, 27, 573–579. [Google Scholar] [CrossRef]
- Smolikova, G.N.; Medvedev, S.S. Photosynthesis in the seeds of chloroembryophytes. Russ. J. Plant Physiol. 2016, 63, 1–12. [Google Scholar] [CrossRef]
- Puthur, J.T.; Shackira, A.M.; Saradhi, P.P.; Bartels, D. Chloroembryos: A unique photosynthesis system. J. Plant Physiol. 2013, 170, 1131–1138. [Google Scholar] [CrossRef]
- Borisjuk, L.; Rolletschek, H.; Walenta, S.; Panitz, R.; Wobus, U.; Weber, H. Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity. Plant J. 2003, 36, 318–329. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanova, N.; Zhilkina, T.; Kamionskaya, A.; Smolikova, G. Non-Foliar Photosynthesis in Pea (Pisum sativum L.) Plants: Beyond the Leaves to Inside the Seeds. Plants 2024, 13, 2945. https://doi.org/10.3390/plants13202945
Stepanova N, Zhilkina T, Kamionskaya A, Smolikova G. Non-Foliar Photosynthesis in Pea (Pisum sativum L.) Plants: Beyond the Leaves to Inside the Seeds. Plants. 2024; 13(20):2945. https://doi.org/10.3390/plants13202945
Chicago/Turabian StyleStepanova, Nataliia, Tatiana Zhilkina, Anastasia Kamionskaya, and Galina Smolikova. 2024. "Non-Foliar Photosynthesis in Pea (Pisum sativum L.) Plants: Beyond the Leaves to Inside the Seeds" Plants 13, no. 20: 2945. https://doi.org/10.3390/plants13202945
APA StyleStepanova, N., Zhilkina, T., Kamionskaya, A., & Smolikova, G. (2024). Non-Foliar Photosynthesis in Pea (Pisum sativum L.) Plants: Beyond the Leaves to Inside the Seeds. Plants, 13(20), 2945. https://doi.org/10.3390/plants13202945