Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies
Abstract
:1. Introduction
2. Spectral Imaging
- Positron emission tomography (PET). This labels certain essential substances in plant metabolism (e.g., glucose, protein, and nucleic acid) with short-lived radioactive isotopes and reflects crop metabolic activity through the aggregation of these substances in metabolism activity [17].
- X-ray computed tomography (X-ray CT). This has a wavelength range of 10 pm–10 nm. It is used to detect the differences in energy absorption before and after scanning from different angles to visualize the external and internal three-dimensional (3D) structures of plants [18].
- Hyperspectral imaging (HSI). This has a wavelength range of 200–2500 nm. It is used to detect the two-dimensional geometric space and the one-dimensional spectral information of targets. It is based on a wide range of narrow-band image data and continuous and narrow-band image data with high spectral resolution [15].
- Multispectral imaging (MSI). This has a wavelength range of 200–2500 nm. It contains many discrete spectral bands that typically range from three to hundreds or a set of customized wavelength bands [10].
- Raman mapping (Raman). This has a wavelength range of 285–50000 nm. It is a scattering spectrum used to analyze the molecular structure and chemical composition of substances based on the Raman scattering effect [19].
- Visible imaging (VI). This has a wavelength range of 380–780 nm. It creates an RGB color image with three channels: red, green, and blue [20].
- Chlorophyll fluorescence imaging (ChlF). Although Chl fluorescence is emitted at around 600–750 nm, it can be excited in the 400 to 720–730 nm range. ChlF maps the emitted chlorophyll fluorescence signal to the sample space based on a pixel used to estimate photosynthetic performance and detect the effects of various stresses on plants [21].
- Light detection and ranging (LiDAR). This uses sensors to send light pulses to objects and receives reflected pulses from objects, and measures the distance between the object and the sensor based on the time required between transmission and reception. It can obtain parameters such as distance, orientation, altitude, velocity, attitude, and even the shape of the target [22].
- Near-infrared imaging (NIRI). This has a wavelength range of 780–1300 nm. It mainly records the infrared radiation reflected by objects [11].
- Thermal imaging (TI). This has a wavelength range of 1000–14,000 nm. The infrared radiation energy distribution pattern of the object being tested is received, and the obtained infrared thermal image is formed, which corresponds to the thermal distribution field on the surface of the object [23].
- Magnetic resonance imaging (MRI). This has a wavelength range of 1 mm–1 dm. The electromagnetic waves emitted by an object are detected by applying an external gradient magnetic field. The position and type of atomic nucleus of the object are detected, and an internal structure image is drawn [24].
3. Spectral Imaging Application in Plant Phenotypes
3.1. Morphological Phenotype
3.2. Physiological Phenotype
3.3. Biochemical Phenotype
3.4. Performance Phenotype
4. Comparative Analysis of Spectral Imaging
4.1. Spectral Imaging Comparison
4.2. High-Throughput Plant Phenotyping Platform (HTPP)
5. Research Trends
5.1. Multimodal Data Application
5.2. 3D Image Application
5.3. Micro-Scale Applications
5.4. Low-Cost Portable Imaging Device
5.5. Application of Machine Learning
6. Conclusion and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Ren, Z.; Li, D.; Liu, X. Phenotypic techniques and applications in fruit trees: A review. Plant Methods 2020, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, X.; Cheng, Q.; Fei, S.; Chen, Z. A Machine-Learning Model Based on the Fusion of Spectral and Textural Features from UAV Multi-Sensors to Analyse the Total Nitrogen Content in Winter Wheat. Remote Sens. 2023, 15, 2152. [Google Scholar] [CrossRef]
- Al-Tamimi, N.; Langan, P.; Bernád, V.; Walsh, J.; Mangina, E.; Negrão, S. Capturing crop adaptation to abiotic stress using image-based technologies. Open Biol. 2022, 12, 210353. [Google Scholar] [CrossRef]
- Sun, D.; Xu, Y.; Cen, H. Optical sensors: Deciphering plant phenomics in breeding factories. Trends Plant Sci. 2022, 27, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Radocaj, D.; Siljeg, A.; Marinovic, R.; Jurisic, M. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Yu, S.; Gou, W.; Guo, X.; Zhao, C. Application of Internet of Things to Agriculture—The LQ-FieldPheno Platform: A High-Throughput Platform for Obtaining Crop Phenotypes in Field. Research 2023, 6, 0059. [Google Scholar] [CrossRef]
- Feng, L.; Chen, S.; Zhang, C.; Zhang, Y.; He, Y. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Comput. Electron. Agric. 2021, 182, 106033. [Google Scholar] [CrossRef]
- Fu, P.; Montes, C.M.; Siebers, M.H.; Gomez-Casanovas, N.; McGrath, J.M.; Ainsworth, E.A.; Bernacchi, C.J.; Alistair, M. Advances in field-based high-throughput photosynthetic phenotyping. J. Exp. Bot. 2022, 73, 3157–3172. [Google Scholar] [CrossRef]
- Zheng, C.; Abd-Elrahman, A.; Whitaker, V. Remote Sensing and Machine Learning in Crop Phenotyping and Management, with an Emphasis on Applications in Strawberry Farming. Remote Sens. 2021, 13, 531. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Liu, H.; Huang, X.; Deng, J.; Jia, R.; He, X.; Tahir, M.N.; Lan, Y. Research hotspots and frontiers in agricultural multispectral technology: Bibliometrics and scientometrics analysis of the Web of Science. Front. Plant Sci. 2022, 13, 955340. [Google Scholar] [CrossRef]
- Reddy, P.; Guthridge, K.M.; Panozzo, J.; Ludlow, E.J.; Spangenberg, G.C.; Rochfort, S.J. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview. Sensors 2022, 22, 1981. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput. Electron. Agric. 2015, 119, 61–73. [Google Scholar] [CrossRef]
- Sun, D.; Robbins, K.; Morales, N.; Shu, Q.; Cen, H. Advances in optical phenotyping of cereal crops. Trends Plant Sci. 2022, 27, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, N.; Huang, Y.; Lin, X.; Ren, Z. A comprehensive review on acquisition of phenotypic information of Prunoideae fruits: Image technology. Front. Plant Sci. 2023, 13, 1084847. [Google Scholar] [CrossRef] [PubMed]
- Sarić, R.; Nguyen, V.D.; Burge, T.; Berkowitz, O.; Trtílek, M.; Whelan, J.; Lewsey, M.G.; Čustović, E. Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. 2022, 27, 301–315. [Google Scholar] [CrossRef]
- ElMasry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring—An Overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef]
- Antonecchia, E.; Backer, M.; Cafolla, D.; Ciardiello, M.; Kuhl, C.; Pagnani, G.; Wang, J.; Wang, S.; Zhou, F.; D’Ascenzo, N.; et al. Design Study of a Novel Positron Emission Tomography System for Plant Imaging. Front. Plant Sci. 2022, 13, 736221. [Google Scholar] [CrossRef]
- Piovesan, A.; Vancauwenberghe, V.; Van De Looverbosch, T.; Verboven, P.; Nicolaï, B. X-ray computed tomography for 3D plant imaging. Trends Plant Sci. 2021, 26, 1171–1185. [Google Scholar] [CrossRef]
- Yu, H.; Ding, D.; Huang, Y.; Yuan, Y.; Song, J.; Yin, Y. Characteristic information analysis of Raman spectrum of cucumber chlorophyll content and hardness and detection model construction. J. Food Meas. Charact. 2024, 18, 3492–3501. [Google Scholar] [CrossRef]
- Fu, L.; Majeed, Y.; Zhang, X.; Karkee, M.; Zhang, Q. Faster R–CNN–based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting. Biosyst. Eng. 2020, 197, 245–256. [Google Scholar] [CrossRef]
- Javornik, T.; Carović-Stanko, K.; Gunjača, J.; Vidak, M.; Lazarević, B. Monitoring Drought Stress in Common Bean Using Chlorophyll Fluorescence and Multispectral Imaging. Plants 2023, 12, 1386. [Google Scholar] [CrossRef] [PubMed]
- Jayakumari, R.; Nidamanuri, R.R.; Ramiya, A.M. Object-level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks. Precis. Agric. 2021, 22, 1617–1633. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Gruneberg, W.; Andrade, M.; De Boeck, B.; Loayza, H.; Makunde, G.; Ninanya, J.; Rinza, J.; Heck, S.; Campos, H. Phenotyping of productivity and resilience in sweetpotato under water stress through UAV-based multispectral and thermal imagery in Mozambique. J. Agron. Crop Sci. 2023, 209, 41–55. [Google Scholar] [CrossRef]
- Collewet, G.; Moussaoui, S.; Quellec, S.; Hajjar, G.; Leport, L.; Musse, M. Characterization of Potato Tuber Tissues Using Spatialized MRI T2 Relaxometry. Biomolecules 2023, 13, 286. [Google Scholar] [CrossRef]
- Hansen, M.A.E.; Hay, F.R.; Carstensen, J.M. A virtual seed file: The use of multispectral image analysis in the management of genebank seed accessions. Plant Genet. Resour.-Charact. Util. 2016, 14, 238–241. [Google Scholar] [CrossRef]
- Taner, A.; Öztekin, Y.B.; Duran, H. Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut. Sustainability 2021, 13, 6527. [Google Scholar] [CrossRef]
- Li, X.; Fan, X.; Zhao, L.; Huang, S.; He, Y.; Suo, X. Discrimination of Pepper Seed Varieties by Multispectral Imaging Combined with Machine Learning. Appl. Eng. Agric. 2020, 36, 743–749. [Google Scholar] [CrossRef]
- Yu, Z.; Fang, H.; Zhangjin, Q.; Mi, C.; Feng, X.; He, Y. Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification. Biosyst. Eng. 2021, 212, 46–61. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Nasiri, A.; Fanourakis, D.; Fatahi, S.; Omid, M.; Nikoloudakis, N. Automated In Situ Seed Variety Identification via Deep Learning: A Case Study in Chickpea. Plants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Sanz-Cortiella, R.; Rosell-Polo, J.R.; Morros, J.-R.; Ruiz-Hidalgo, J.; Vilaplana, V.; Gregorio, E. Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry. Comput. Electron. Agric. 2020, 169, 105165. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, W. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning. Front. Plant Sci. 2020, 11, 534853. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Feng, Y.; Wu, J.; Liu, Z.; Gao, F.; Majeed, Y.; Al-Mallahi, A.; Zhang, Q.; Li, R.; Cui, Y. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model. Precis. Agric. 2020, 22, 754–776. [Google Scholar] [CrossRef]
- Seo, D.; Cho, B.-H.; Kim, K.-C. Development of Monitoring Robot System for Tomato Fruits in Hydroponic Greenhouses. Agronomy 2021, 11, 2211. [Google Scholar] [CrossRef]
- Li, C.; Lin, J.; Li, B.; Zhang, S.; Li, J. Partition harvesting of a column-comb litchi harvester based on 3D clustering. Comput. Electron. Agric. 2022, 197, 106975. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Liu, J. Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine. Agriculture 2021, 11, 869. [Google Scholar] [CrossRef]
- Vayssade, J.-A.; Jones, G.; Gée, C.; Paoli, J.-N. Pixelwise instance segmentation of leaves in dense foliage. Comput. Electron. Agric. 2022, 195, 106797. [Google Scholar] [CrossRef]
- Liu, Y.; Su, J.; Shen, L.; Lu, N.; Fang, Y.; Liu, F.; Song, Y.; Su, B. Development of a mobile application for identification of grapevine (Vitis vinifera L.) cultivars via deep learning. Int. J. Agric. Biol. Eng. 2021, 14, 172–179. [Google Scholar] [CrossRef]
- Gautam, V.; Rani, J. Mango Leaf Stress Identification Using Deep Neural Network. Intell. Autom. Soft Comput. 2022, 34, 849–864. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, C.; Xiao, D.; Weckler, P.; Lan, Y.; Lee, J.M. A coarse-to-fine leaf detection approach based on leaf skeleton identification and joint segmentation. Biosyst. Eng. 2021, 206, 94–108. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J. Tomato Anomalies Detection in Greenhouse Scenarios Based on YOLO-Dense. Front. Plant Sci. 2021, 12, 634103. [Google Scholar] [CrossRef]
- Zhang, C.; Craine, W.; McGee, R.; Vandemark, G.; Davis, J.; Brown, J.; Hulbert, S.; Sankaran, S. Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops. Sensors 2020, 20, 1450. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [Google Scholar] [CrossRef]
- Wei, P.; Jiang, T.; Peng, H.; Jin, H.; Sun, H.; Chai, D.; Huang, J. Coffee Flower Identification Using Binarization Algorithm Based on Convolutional Neural Network for Digital Images. Plant Phenomics 2020, 2020, 6323965. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Lee, W.S.; Chen, Y.M.; Peres, N.; Fraisse, C. A deep-level region-based visual representation architecture for detecting strawberry flowers in an outdoor field. Precis. Agric. 2019, 21, 387–402. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Wang, X.; Pan, S.; Qiao, X. Dynamic ensemble selection of convolutional neural networks and its application in flower classification. Int. J. Agric. Biol. Eng. 2022, 15, 216–223. [Google Scholar] [CrossRef]
- Korchagin, S.A.; Gataullin, S.T.; Osipov, A.V.; Smirnov, M.V.; Suvorov, S.V.; Serdechnyi, D.V.; Bublikov, K.V. Development of an Optimal Algorithm for Detecting Damaged and Diseased Potato Tubers Moving along a Conveyor Belt Using Computer Vision Systems. Agronomy 2021, 11, 1980. [Google Scholar] [CrossRef]
- Xie, W.; Wei, S.; Zheng, Z.; Yang, D. A CNN-based lightweight ensemble model for detecting defective carrots. Biosyst. Eng. 2021, 208, 287–299. [Google Scholar] [CrossRef]
- Joseph Fernando, E.A.; Gomez Selvaraj, M.; Delgado, A.; Rabbi, I.; Kulakow, P. Frontline remote sensing tool to locate hidden traits in root and tuber crops. Mol. Plant 2022, 15, 1500–1502. [Google Scholar] [CrossRef]
- Zhao, D.; Eyre, J.X.; Wilkus, E.; de Voil, P.; Broad, I.; Rodriguez, D. 3D characterization of crop water use and the rooting system in field agronomic research. Comput. Electron. Agric. 2022, 202, 107409. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Yang, H.; Xu, B.; Li, Z.; Yang, X. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach. Front. Plant Sci. 2018, 9, 1638. [Google Scholar] [CrossRef]
- Pearse, G.D.; Tan, A.Y.S.; Watt, M.S.; Franz, M.O.; Dash, J.P. Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data. ISPRS J. Photogramm. Remote Sens. 2020, 168, 156–169. [Google Scholar] [CrossRef]
- Tseng, H.-H.; Yang, M.-D.; Saminathan, R.; Hsu, Y.-C.; Yang, C.-Y.; Wu, D.-H. Rice Seedling Detection in UAV Images Using Transfer Learning and Machine Learning. Remote Sens. 2022, 14, 2837. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth monitoring of greenhouse lettuce based on a convolutional neural network. Hortic. Res. 2020, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Guo, X.; Xu, Y.; Zhang, S.; Cheng, X.; Hu, Q.; Wang, W.; Xue, X. Image Recognition of Male Oilseed Rape (Brassica napus) Plants Based on Convolutional Neural Network for UAAS Navigation Applications on Supplementary Pollination and Aerial Spraying. Agriculture 2022, 12, 62. [Google Scholar] [CrossRef]
- Aeberli, A.; Johansen, K.; Robson, A.; Lamb, D.W.; Phinn, S. Detection of Banana Plants Using Multi-Temporal Multispectral UAV Imagery. Remote Sens. 2021, 13, 2123. [Google Scholar] [CrossRef]
- Zhu, T.; Ma, X.; Guan, H.; Wu, X.; Wang, F.; Yang, C.; Jiang, Q. A calculation method of phenotypic traits based on three-dimensional reconstruction of tomato canopy. Comput. Electron. Agric. 2023, 204, 107515. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, J.; Liu, Y.; Ou, C.; Zhu, D.; Niu, B.; Liu, J.; Li, B. Multi-Temporal Unmanned Aerial Vehicle Remote Sensing for Vegetable Mapping Using an Attention-Based Recurrent Convolutional Neural Network. Remote Sens. 2020, 12, 1668. [Google Scholar] [CrossRef]
- Yarak, K.; Witayangkurn, A.; Kritiyutanont, K.; Arunplod, C.; Shibasaki, R. Oil Palm Tree Detection and Health Classification on High-Resolution Imagery Using Deep Learning. Agriculture 2021, 11, 183. [Google Scholar] [CrossRef]
- Tan, S.; Liu, J.; Lu, H.; Lan, M.; Yu, J.; Liao, G.; Wang, Y.; Li, Z.; Qi, L.; Ma, X. Machine Learning Approaches for Rice Seedling Growth Stages Detection. Front. Plant Sci. 2022, 13, 914771. [Google Scholar] [CrossRef]
- Quiroz, I.A.; Alférez, G.H. Image recognition of Legacy blueberries in a Chilean smart farm through deep learning. Comput. Electron. Agric. 2020, 168, 105044. [Google Scholar] [CrossRef]
- Yang, W.; Nigon, T.; Hao, Z.; Dias Paiao, G.; Fernández, F.G.; Mulla, D.; Yang, C. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agric. 2021, 184, 106092. [Google Scholar] [CrossRef]
- Sun, G.; Wang, X.; Sun, Y.; Ding, Y.; Lu, W. Measurement Method Based on Multispectral Three-Dimensional Imaging for the Chlorophyll Contents of Greenhouse Tomato Plants. Sensors 2019, 19, 5295. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Snider, J.L.; Li, C.; Rains, G.C.; Paterson, A.H. Ground Based Hyperspectral Imaging to Characterize Canopy-Level Photosynthetic Activities. Remote Sens. 2020, 12, 315. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Wang, Y.; Elmanawy, A.I.; Elmasry, G.; Wu, L.; Memon, M.S.; Niu, Z.; Huang, T.; Qiu, Z. High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images. Plants 2024, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, B.B.; Hu, C.; Bagavathiannan, M.V. Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments. Front. Plant Sci. 2022, 13, 837726. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Kong, H.; Qiao, Y.; Sukkarieh, S. Data augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural robotics. Comput. Electron. Agric. 2021, 190, 106418. [Google Scholar] [CrossRef]
- Nasiri, A.; Omid, M.; Taheri-Garavand, A.; Jafari, A. Deep learning-based precision agriculture through weed recognition in sugar beet fields. Sustain. Comput. Inform. Syst. 2022, 35, 100759. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Chen, Y.; Yu, J. Detection of Weeds Growing in Alfalfa Using Convolutional Neural Networks. Agronomy 2022, 12, 1459. [Google Scholar] [CrossRef]
- Bendel, N.; Kicherer, A.; Backhaus, A.; Klueck, H.-C.; Seiffert, U.; Fischer, M.; Voegele, R.T.; Toepfer, R. Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards. Plant Methods 2020, 16, 142. [Google Scholar] [CrossRef]
- Blasch, G.; Anberbir, T.; Negash, T.; Tilahun, L.; Belayineh, F.Y.; Alemayehu, Y.; Mamo, G.; Hodson, D.P.; Rodrigues, F.A., Jr. The potential of UAV and very high-resolution satellite imagery for yellow and stem rust detection and phenotyping in Ethiopia. Sci. Rep. 2023, 13, 16768. [Google Scholar] [CrossRef]
- McNish, I.G.; Smith, K.P. Oat Crown Rust Disease Severity Estimated at Many Time Points Using Multispectral Aerial Photos. Phytopathology 2022, 112, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, V.; Calvini, R.; Boom, B.; Menozzi, C.; Rangarajan, A.K.; Maistrello, L.; Offermans, P.; Ulrici, A. Evaluation of the potential of near infrared hyperspectral imaging for monitoring the invasive brown marmorated stink bug. Chemom. Intell. Lab. Syst. 2023, 234, 104751. [Google Scholar] [CrossRef]
- Nabwire, S.; Wakholi, C.; Faqeerzada, M.A.; Arief, M.A.A.; Kim, M.S.; Baek, I.; Cho, B.-K. Estimation of Cold Stress, Plant Age, and Number of Leaves in Watermelon Plants Using Image Analysis. Front. Plant Sci. 2022, 13, 847225. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Costafreda-Aumedes, S.; Leolini, L.; Leolini, C.; Bindi, M.; Moriondo, M. Implementation of an algorithm for automated phenotyping through plant 3D-modeling: A practical application on the early detection of water stress. Comput. Electron. Agric. 2022, 197, 106937. [Google Scholar] [CrossRef]
- Lazarević, B.; Šatović, Z.; Nimac, A.; Vidak, M.; Gunjača, J.; Politeo, O.; Carović-Stanko, K. Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Front. Plant Sci. 2021, 12, 629441. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.C.; Gonçalves, E.F.; Marques da Silva, J.; Costa, J.M. Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress. Front. Plant Sci. 2021, 12, 718202. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Veeranampalayam-Sivakumar, A.-N.; Schachtman, D.P. Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From Unmanned Aircraft System. Front. Plant Sci. 2018, 9, 1406. [Google Scholar] [CrossRef]
- Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crop. Res. 2017, 210, 33–46. [Google Scholar] [CrossRef]
- Luisa Buchaillot, M.; Gracia-Romero, A.; Vergara-Diaz, O.; Zaman-Allah, M.A.; Tarekegne, A.; Cairns, J.E.; Prasanna, B.M.; Luis Araus, J.; Kefauver, S.C. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques. Sensors 2019, 19, 1815. [Google Scholar] [CrossRef]
- de Oliveira, G.S.; Marcato Junior, J.; Polidoro, C.; Osco, L.P.; Siqueira, H.; Rodrigues, L.; Jank, L.; Barrios, S.; Valle, C.; Simeão, R.; et al. Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing. Sensors 2021, 21, 3971. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Z.; Fu, L.; Gao, F.; Li, R.; Cui, Y. Real-time kiwifruit detection in orchard using deep learning on Android™ smartphones for yield estimation. Comput. Electron. Agric. 2020, 179, 105856. [Google Scholar] [CrossRef]
- Khaki, S.; Pham, H.; Han, Y.; Kuhl, A.; Kent, W.; Wang, L. Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting. Sensors 2020, 20, 2721. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jin, S.; Zang, J.; Wang, X.; Sun, Z.; Li, Z.; Xu, S.; Ma, Q.; Su, Y.; Guo, Q.; et al. Deciphering the contributions of spectral and structural data to wheat yield estimation from proximal sensing. Crop J. 2022, 10, 1334–1345. [Google Scholar] [CrossRef]
- Lu, W.; Du, R.; Niu, P.; Xing, G.; Luo, H.; Deng, Y.; Shu, L. Soybean Yield Preharvest Prediction Based on Bean Pods and Leaves Image Recognition Using Deep Learning Neural Network Combined With GRNN. Front. Plant Sci. 2022, 12, 791256. [Google Scholar] [CrossRef]
- Gang, M.-S.; Kim, H.-J.; Kim, D.-W. Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images. Sensors 2022, 22, 5499. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wu, J.; Hu, Q.; Zhao, C.; Tan, C.; Teng, L.; Luo, T. An improved Yolov3 based on dual path network for cherry tomatoes detection. J. Food Process Eng. 2021, 44, 13803. [Google Scholar] [CrossRef]
- Al-Badri, A.H.; Ismail, N.A.; Al-Dulaimi, K.; Salman, G.A.; Khan, A.R.; Al-Sabaawi, A.; Salam, M.S.H. Classification of weed using machine learning techniques: A review—Challenges, current and future potential techniques. J. Plant Dis. Prot. 2022, 129, 745–768. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Wen, W.; Gu, S.; Lu, X.; Guo, X. The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform. J. Clean. Prod. 2021, 280, 123651. [Google Scholar] [CrossRef]
- Prey, L.; von Bloh, M.; Schmidhalter, U. Evaluating RGB Imaging and Multispectral Active and Hyperspectral Passive Sensing for Assessing Early Plant Vigor in Winter Wheat. Sensors 2018, 18, 2931. [Google Scholar] [CrossRef]
- Liang, T.; Duan, B.; Luo, X.; Ma, Y.; Yuan, Z.; Zhu, R.; Peng, Y.; Gong, Y.; Fang, S.; Wu, X. Identification of High Nitrogen Use Efficiency Phenotype in Rice (Oryza sativa L.) Through Entire Growth Duration by Unmanned Aerial Vehicle Multispectral Imagery. Front. Plant Sci. 2021, 12, 740414. [Google Scholar] [CrossRef]
- He, W.; Ye, Z.; Li, M.; Yan, Y.; Lu, W.; Xing, G. Extraction of soybean plant trait parameters based on SfM-MVS algorithm combined with GRNN. Front. Plant Sci. 2023, 14, 1181322. [Google Scholar] [CrossRef]
- Koji, T.; Iwata, H.; Ishimori, M.; Takanashi, H.; Yamasaki, Y.; Tsujimoto, H. Multispectral Phenotyping and Genetic Analyses of Spring Appearance in Greening Plant, Phedimus spp. Plant Phenomics 2023, 5, 0063. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Q.; Xiao, J.; Ma, Y.; Wang, M.; Luan, R.; Liu, X.; Ping, Y.; Nie, Y.; Tao, Z.; et al. Progress in the Application of CNN-Based Image Classification and Recognition in Whole Crop Growth Cycles. Remote Sens. 2023, 15, 2988. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agric. 2020, 174, 105450. [Google Scholar] [CrossRef]
- Ayankojo, I.T.; Thorp, K.R.; Thompson, A.L. Advances in the Application of Small Unoccupied Aircraft Systems (sUAS) for High-Throughput Plant Phenotyping. Remote Sens. 2023, 15, 2623. [Google Scholar] [CrossRef]
- Briechle, S.; Krzystek, P.; Vosselman, G. Silvi-Net—A dual-CNN approach for combined classification of tree species and standing dead trees from remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102292. [Google Scholar] [CrossRef]
- Coupel-Ledru, A.; Pallas, B.; Delalande, M.; Segura, V.; Guitton, B.; Muranty, H.; Durel, C.E.; Regnard, J.L.; Costes, E. Tree architecture, light interception and water-use related traits are controlled by different genomic regions in an apple tree core collection. New Phytol. 2022, 234, 209–226. [Google Scholar] [CrossRef]
- Singh, A.; Jones, S.; Ganapathysubramanian, B.; Sarkar, S.; Mueller, D.; Sandhu, K.; Nagasubramanian, K. Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping. Trends Plant Sci. 2021, 26, 53–69. [Google Scholar] [CrossRef]
- Zubairova, U.S.; Kravtsova, A.Y.; Romashchenko, A.V.; Pushkareva, A.A.; Doroshkov, A.V. Particle-Based Imaging Tools Revealing Water Flows in Maize Nodal Vascular Plexus. Plants 2022, 11, 1533. [Google Scholar] [CrossRef]
- Pflugfelder, D.; Kochs, J.; Koller, R.; Jahnke, S.; Mohl, C.; Pariyar, S.; Fassbender, H.; Nagel, K.A.; Watt, M.; van Dusschoten, D.; et al. The root system architecture of wheat establishing in soil is associated with varying elongation rates of seminal roots: Quantification using 4D magnetic resonance imaging. J. Exp. Bot. 2022, 73, 2050–2060. [Google Scholar] [CrossRef]
- Mayer, S.; Munz, E.; Hammer, S.; Wagner, S.; Guendel, A.; Rolletschek, H.; Jakob, P.M.; Borisjuk, L.; Neuberger, T. Quantitative monitoring of paramagnetic contrast agents and their allocation in plant tissues via DCE-MRI. Plant Methods 2022, 18, 47. [Google Scholar] [CrossRef]
- Tang, W.; Wu, N.; Xiao, Q.; Chen, S.; Gao, P.; He, Y.; Feng, L. Early detection of cotton verticillium wilt based on root magnetic resonance images. Front. Plant Sci. 2023, 14, 1135718. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Yao, Q.; Gillbanks, J.; Zhao, X. Research on High-Throughput Crop Root Phenotype 3D Reconstruction Using X-ray CT in 5G Era. Electronics 2023, 12, 276. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Villadangos, S. Cheap, cost-effective, and quick stress biomarkers for drought stress detection and monitoring in plants. Trends Plant Sci. 2023, 28, 527–536. [Google Scholar] [CrossRef]
- Wang, C.; Hou, D.; Yu, J.; Yang, Y.; Zhu, B.; Jing, S.; Liu, L.; Bai, J.; Xu, H.; Kou, L. X-ray irradiation maintains quality and delays the reduction of energy charge of fresh figs (Ficus carica L. Siluhongyu). Food Control 2024, 160, 110318. [Google Scholar] [CrossRef]
- Ye, L.; Niu, Y.; Wang, Y.; Shi, Y.; Liu, Y.; Yu, J.; Bai, J.; Luo, A. Effect of X-ray irradiation on quality, cell ultrastructure and electrical parameters of postharvest kiwifruit. Innov. Food Sci. Emerg. Technol. 2023, 89, 103483. [Google Scholar] [CrossRef]
- Bai, G.; Blecha, S.; Ge, Y.; Walia, H.; Phansak, P. Characterizing wheat response to water limitation using multispectral and thermal imaging. Trans. Asabe 2017, 60, 1457–1466. [Google Scholar] [CrossRef]
- Singh, T.; Garg, N.M.; Iyengar, S.R.S. Nondestructive identification of barley seeds variety using near-infrared hyperspectral imaging coupled with convolutional neural network. J. Food Process Eng. 2021, 44, e13821. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Sun, H.; Rao, Z.; Ji, H. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120722. [Google Scholar] [CrossRef]
- Herr, A.W.; Adak, A.; Carroll, M.E.; Elango, D.; Kar, S.; Li, C.; Jones, S.E.; Carter, A.H.; Murray, S.C.; Paterson, A.; et al. Unoccupied aerial systems imagery for phenotyping in cotton, maize, soybean, and wheat breeding. Crop Sci. 2023, 63, 1722–1749. [Google Scholar] [CrossRef]
- Virlet, N.; Lebourgeois, V.; Martinez, S.; Costes, E.; Labbe, S.; Regnard, J.-L. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints. J. Exp. Bot. 2014, 65, 5429–5442. [Google Scholar] [CrossRef]
- Lazarević, B.; Carović-Stanko, K.; Živčak, M.; Vodnik, D.; Javornik, T.; Safner, T. Classification of high-throughput phenotyping data for differentiation among nutrient deficiency in common bean. Front. Plant Sci. 2022, 13, 931877. [Google Scholar] [CrossRef]
- Galieni, A.; D’Ascenzo, N.; Stagnari, F.; Pagnani, G.; Xie, Q.; Pisante, M. Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. Front. Plant Sci. 2021, 11, 609155. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Guo, J.; Peng, Q.; Zhou, Z.; Duan, X.; Tanveer, M.; Guo, Y. High-throughput root phenotyping of crop cultivars tolerant to low N in waterlogged soils. Front. Plant Sci. 2023, 14, 1271539. [Google Scholar] [CrossRef]
- Musaev, F.; Priyatkin, N.; Potrakhov, N.; Beletskiy, S.; Chesnokov, Y. Assessment of Brassicaceae Seeds Quality by X-ray Analysis. Horticulturae 2022, 8, 29. [Google Scholar] [CrossRef]
- Hong, S.-J.; Park, S.; Lee, C.-H.; Kim, S.; Roh, S.-W.; Nurhisna, N.I.; Kim, G. Application of X-ray Imaging and Convolutional Neural Networks in the Prediction of Tomato Seed Viability. IEEE Access 2023, 11, 38061–38071. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, C.; Jia, L.; Tang, Q.; Gao, L.; Zhao, G.; Qi, H. Identification of rice seed varieties based on near-infrared hyperspectral imaging technology combined with deep learning. ACS Omega 2022, 7, 4735–4749. [Google Scholar] [CrossRef]
- Lazarevic, B.; Carovic-Stanko, K.; Safner, T.; Poljak, M. Study of high-temperature-induced morphological and physiological changes in potato using nondestructive plant phenotyping. Plants 2022, 11, 3534. [Google Scholar] [CrossRef]
- Park, M.; Somborn, A.; Schlehuber, D.; Keuter, V.; Deerberg, G. Raman spectroscopy in crop quality assessment: Focusing on sensing secondary metabolites: A review. Hortic. Res. 2023, 10, uhad074. [Google Scholar] [CrossRef]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Raman Method in Identification of Species and Varieties, Assessment of Plant Maturity and Crop Quality—A Review. Molecules 2022, 27, 4454. [Google Scholar] [CrossRef]
- Xu, S.; Huang, X.; Lu, H. Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables. Horticulturae 2023, 9, 843. [Google Scholar] [CrossRef]
- Payne, W.Z.; Kurouski, D. Raman spectroscopy enables phenotyping and assessment of nutrition values of plants: A review. Plant Methods 2021, 17, 78. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M.; Zhao, H.; Ren, X.; Lin, T.; Zhang, P.; Zheng, D. Rapid detection and identification of fungi in grain crops using colloidal Au nanoparticles based on surface-enhanced Raman scattering and multivariate statistical analysis. World J. Microbiol. Biotechnol. 2023, 39, 26. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, F.; Wang, Y.; Hu, L.; Yang, N.; Mao, H. A Method for Capture and Detection of Crop Airborne Disease Spores Based on Microfluidic Chips and Micro Raman Spectroscopy. Foods 2022, 11, 3462. [Google Scholar] [CrossRef]
- Sabir, A.; Kumar, A. Study of integrated optical and synthetic aperture radar-based temporal indices database for specific crop mapping using fuzzy machine learning model. J. Appl. Remote Sens. 2023, 17, 014502. [Google Scholar] [CrossRef]
- Bai, J.-W.; Zhang, L.; Cai, J.-R.; Wang, Y.-C.; Tian, X.-Y. Laser light backscattering image to predict moisture content of mango slices with different ripeness during drying process. J. Food Process Eng. 2021, 44, e13900. [Google Scholar] [CrossRef]
- Gutierrez, S.; Wendel, A.; Underwood, J. Spectral filter design based on in-field hyperspectral imaging and machine learning for mango ripeness estimation. Comput. Electron. Agric. 2019, 164, 104890. [Google Scholar] [CrossRef]
- Cao, X.-F.; Yu, K.-Q.; Zhao, Y.-R.; Zhang, H.-H. Current Status of High-Throughput Plant Phenotyping for Abiotic Stress by Imaging Spectroscopy: A REVIEW. Spectrosc. Spectr. Anal. 2020, 40, 3365–3372. [Google Scholar]
- Wang, X.; Silva, P.; Bello, N.M.; Singh, D.; Evers, B.; Mondal, S.; Espinosa, F.P.; Singh, R.P.; Poland, J. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images. Front. Plant Sci. 2020, 11, 587093. [Google Scholar] [CrossRef]
- Hall, R.D.; D’Auria, J.C.; Silva Ferreira, A.C.; Gibon, Y.; Kruszka, D.; Mishra, P.; van de Zedde, R. High-throughput plant phenotyping: A role for metabolomics? Trends Plant Sci. 2022, 27, 549–563. [Google Scholar] [CrossRef]
- Xu, R.; Li, C.; Bernardes, S. Development and Testing of a UAV-Based Multi-Sensor System for Plant Phenotyping and Precision Agriculture. Remote Sens. 2021, 13, 3517. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, J.; Dong, X.; Du, X.; Zhu, J.; Sun, D.; Liu, Y.; He, Y.; Cen, H. Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model. Comput. Electron. Agric. 2021, 187, 106304. [Google Scholar] [CrossRef]
- Henke, M.; Junker, A.; Neumann, K.; Altmann, T.; Gladilin, E. A two-step registration-classification approach to automated segmentation of multimodal images for high-throughput greenhouse plant phenotyping. Plant Methods 2020, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-H.; He, L.; Duan, J.-Z.; Zang, S.-L.; Yang, T.-C.; Schulthess, U.R.S.; Guo, T.-C.; Wang, C.-Y.; Feng, W. Aboveground wheat biomass estimation from a low-altitude UAV platform based on multimodal remote sensing data fusion with the introduction of terrain factors. Precis. Agric. 2023, 25, 119–145. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, X.; Ji, J.; Ma, H.; Cui, H.; Shi, Y.; Zhao, S. Synchronous Retrieval of LAI and Cab from UAV Remote Sensing: Development of Optimal Estimation Inversion Framework. Agronomy 2023, 13, 1119. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef]
Research Object | Phenotypic Characteristics | Imaging Techniques | References | |
---|---|---|---|---|
Morphological Phenotype | Seed | size, shape, quantity, incompleteness | HSI, MSI, RGB, PET, MRI, X-ray CT | soybeans [16], rice [25], hazelnut [26], pepper seed [27], hybrid okra seed [28], chickpea [29] |
Fruit/Ear | size, shape, quantity, color, ear length, ear thickness, symmetry, incompleteness, maturity | HSI, MSI, RGB, PET, X-ray CT | apple [30], sorghum panicle [31], kiwifruit [32], tomato [33], litchi [34], grape [35] | |
Leaves | leaf area, length, width, number, inclination angle, color, veins, texture, symmetry | HSI, MSI, RGB, PET | leaves [36], grape [37], mango [38], sweet potato [39], tomato [40] | |
Flower | quantity, color, number of petals, degree of openness | HSI, MSI, RGB | cool-season crops [41], apple [42], coffee [43], strawberry [44], flower [45] | |
Root | root morphology, tuberous roots, lesions, defects | MRI, X-ray CT | potato [46], carrot [47], root [48], sorghum [49] | |
Plant | plant height, stem thickness, leaves number, leaf area ratio, canopy coverage, stem length, plant spacing | HSI, MSI, RGB, LiDAR | maize [50], tree seedling [51], rice seedling [52], lettuce [53], oilseed [54], banana [55] | |
Canopy | biomass, canopy coverage, coverage rate, average leaf angle, 3D spatial structure | HSI, MSI, RGB, LiDAR | tomato [56], vegetables [57], oil palm tree [58], rice [59], blueberries [60], corn [61] | |
Physiological Phenotype | Plant | leaf texture, leaf surface temperature, photosynthetic capacity, seed hardness, fruit hardness, canopy temperature, texture, density | HSI, MSI, RGB, TI, MRI, X-ray CT | tomato [62], cotton [63], lettuce [64], cucumber [19] |
Biological Stress | disease stress, disease spots, disease severity, pest stress, weed stress | HSI, MSI, RGB, NIRI, MRI, X-ray CT | mango [38], weed [65,66,67,68], grape [69], wheat [70], oats [71], plants [72] | |
Abiotic Stress | drought stress, high/low-temperature stress, salt stress, nutritional stress | HSI, MSI, ChlF, NIRI, TI, PET, MRI, X-ray CT | common bean [21], watermelon [73], tomato [74], basil [75], grape [76] | |
Biochemical Phenotype | Plant | protein, carbohydrates, nitrogen content, carotenoids, fatty acids, chlorophyll content, water content, anthocyanins, starch, sugar | HSI, MSI, RGB, ChlF, NIRI, Raman | sorghum [77], sugar beet [78], corn [79] |
Performance Phenotype | Plant | yield, quality, biomass, fresh weight, dry weight | HSI, MSI, RGB, NIRI | guinea grass [80], kiwifruit [81], corn [61,82], wheat [83], soybean [84] |
Techniques | Advantages | Disadvantages |
---|---|---|
HSI, MSI | non-invasive, fast, and high-throughput; MSI provides higher spatial resolution than HSI; capture stress signals before visible | high cost and heavy weight compared to RGB sensors; high data dimension requires greater computing power, time, and resources; unsuitable for online applications [95]; limitations on plant research at small-scale or patch level [127]; higher challenges for data mining and machine learning |
RGB | qualitative, reliable, inexpensive, convenient, and wild used; advantages in spatial resolution, signal-to-noise ratio, throughput, and repeatability | limited image accuracy due to inherent size distortion between 2D planes and 3D plants; only obtain surface features due to inability to penetrate the crop canopy; unsuitable complex environments with variable lighting, observation angles, object directions, and various occlusion [9] |
NIRI | penetrates deeper than other instruments of the same wavelength; highly sensitive in identifying water’s presence, water stress, and cellular physical structure | unable to provide reliable data on plant chemical composition; relatively large relative error due to the interference between adjacent peaks in the spectrum; dependent on mathematical model to conduct analysis; sensitive to temperature and humidity |
TI | monitors plant stress responses simpler and cheaper; higher spatial resolution, targeting, and sensitivity to certain environmental factors in a constantly changing environment | only obtains features related to surface temperature; relatively poor spatial resolution and repeatability; higher cost and more difficult to deploy compared with infrared thermometers; very limited effectiveness in small temperature differences [76]; easy to be disturbed for soil, air, and canopy temperature |
LiDAR | durability, high accuracy, data resolution, and reading speed, and sensitivity to small distance changes; suitable for various lighting conditions, such as nighttime and field measurements | high cost, large data volume, and narrow band; unsuitable for complex leaf angles and flat canopy; time-consuming and large computational load for 3D point cloud generation; scanning noise was easily generated due to wind and rain interference; low accuracy in large-scale phenotype analysis; difficult analysis |
ChlF | change in ChlF can occur before most other signs of stress; fast, non-invasive, easy-to-operate, low-cost, and highly sensitive; short measurement time, large measurement area, and high flux | vulnerable to interference from uneven lighting, wind, and rain; unable to distinguish potential causes of the stress; difficult to distinguish temperature signals and light signals when outdoors; unable to measure soluble solids content, fruit pH value, and maturity of the plant; requires dark-adapted measurements |
MRI | provides spatial information of the nucleus; suitable for obtaining plant morphological characteristics under limited flux and spatial resolution | only operated in laboratory; no suitable portable devices for the in-field crop; long time consumption of data collection and limited throughput; unable to be used on aerial platforms due to the size and weight of the equipment; very high cost |
X-ray CT | high spatial resolution, signal-to-noise ratio, and repeatability; multi-spectral X-ray provides higher sensitivity for plant identification | high cost, long time consumption, and low throughput; poor environmental adaptability; not suitable for airborne use; only scans roots with a diameter of 1 mm or more; unable to measure many fine roots; only achieves 3D visualization and qualitative interpretation of plant organs and tissues; low automation |
Raman | high spectral resolution; highly sensitive for the detection of minor components; surface-enhanced Raman has better sensitivity | risk of tissue burns when laser irradiation applied due to small sample volume and self-luminous high; very weak and unstable—should be combined with other methods; strong interference of biological fluorescence signals in the background; high cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Luan, R.; Wang, M.; Zhang, J.; Yu, F.; Ping, Y.; Qiu, L. Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies. Plants 2024, 13, 3088. https://doi.org/10.3390/plants13213088
Zhang Q, Luan R, Wang M, Zhang J, Yu F, Ping Y, Qiu L. Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies. Plants. 2024; 13(21):3088. https://doi.org/10.3390/plants13213088
Chicago/Turabian StyleZhang, Qian, Rupeng Luan, Ming Wang, Jinmeng Zhang, Feng Yu, Yang Ping, and Lin Qiu. 2024. "Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies" Plants 13, no. 21: 3088. https://doi.org/10.3390/plants13213088
APA StyleZhang, Q., Luan, R., Wang, M., Zhang, J., Yu, F., Ping, Y., & Qiu, L. (2024). Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies. Plants, 13(21), 3088. https://doi.org/10.3390/plants13213088