Winter Cover Cropping in Sustainable Production Systems: Effects on Soybean and Synergistic Implications for Rhizosphere Microorganisms
Abstract
:1. Introduction
2. Results
2.1. Soybean Yield
2.2. Soybean Height and Biomass
2.3. Soybean Grain Protein and Oil
2.4. Microorganisms in Soybean Rhizosphere
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beluhova-Uzunova, R.; Atanasov, D. Biodynamic agriculture—Old traditions and modern practices. Trakia J. Sci. 2019, 17, 530–536. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Kovačević, D.; Oljača, S.; Denčić, S.; Kobiljski, B.; Dolijanović, Ž. Održiva poljoprivreda: Značaj adaptacije agrotehničkih mera u proizvodnji ozime pšenice. J. Sci. Agric. Res. 2007, 68, 39–50. [Google Scholar]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Mishra, R.; Tripathi, M.K.; Sikarwar, R.S.; Singh, Y.; Tripathi, N. Soybean (Glycine max L. Merrill): A Multipurpose Legume Shaping Our World. Plant Cell Biotechnol. Mol. Biol. 2024, 25, 17–37. [Google Scholar] [CrossRef]
- Modgil, R.; Tanwar, B.; Goyal, A.; Kumar, V. Soybean (Glycine max). In Oilseeds: Health Attributes and Food Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–46. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 8 September 2024).
- Clemente, T.E.; Cahoon, E.B. Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Toomer, O.T.; Oviedo, E.O.; Ali, M.; Patino, D.; Joseph, M.; Frinsko, M.; Vu, T.; Maharjan, P.; Fallen, B.; Mian, R. Current agronomic practices, harvest & post-harvest processing of soybeans (Glycine max)—A review. Agronomy 2023, 13, 427. [Google Scholar] [CrossRef]
- Vollmann, J. Introduction to the Soybean Topical Issue and the upcoming World Soybean Research Conference. OCL 2023, 30, 8. [Google Scholar] [CrossRef]
- Lima, J.D.P.; Torino, A.B.; Silva, L.M.D.; Nascimento Júnior, L.F.D.; Brito, M.F.D.; Costa, K.A.D.P.; Silva, B.M.; Severiano, E.D.C. Crop-Livestock Integration Improves Physical Soil, Agronomic and Environmental Aspects in Soybean Cultivation. Plants 2023, 12, 3746. [Google Scholar] [CrossRef]
- Ladha, J.; Khind, C.; Gupta, R.; Meelu, O.; Pasuquin, E. Long-Term Effects of Organic Inputs on Yield and Soil Fertility in the Rice-Wheat Rotation. Soil Sci. Soc. Am. J. 2004, 68, 845–853. [Google Scholar]
- Rose, D.C.; Sutherland, W.J.; Barnes, A.P.; Borthwick, F.; Ffoulkes, C.; Hall, C.; Moorby, J.M.; Nicholas-Davies, P.; Twining, S.; Dicks, L.V. Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy. Land Use Policy 2019, 81, 834–842. [Google Scholar] [CrossRef]
- Šeremešić, S.; Vojnov, B.; Manojlović, M.; Milošev, D.; Ugrenović, V.; Filipović, V.; Babec, B. Organska poljoprivreda u službi biodiverziteta i zdravlja. Letop. Naučnih Rad. Poljopr. Fak. U Novom Sadu 2017, 41, 51–60. [Google Scholar]
- Šeremešić, S.; Ćirić, V.; Jaćimović, G.; Milošev, D.; Belić, M.; Vojnov, B.; Živanov, M. Uticaj konvencionalne i redukovane obrade zemljišta na sadržaj ukupne i lakopristupačne organske materije. Zemlj. I Biljka 2016, 65, 7–18. [Google Scholar]
- Fess, T.L.; Kotcon, J.B.; Benedito, V.A. Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability 2011, 3, 1742–1772. [Google Scholar] [CrossRef]
- Fernandez-Gnecco, G.; Smalla, K.; Maccario, L.; Sørensen, S.J.; Barbieri, P.; Consolo, V.F.; Covacevich, F.; Babin, D. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. FEMS Microbiol. Ecol. 2021, 97, fiab007. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Chenu, C.; Conant, R.; Cotrufo, F.; Lal, R.; Smith, P.; Soussana, J.F. Climate Mitigation Potential of Regenerative Agriculture Is Significant. Princeton University. 2020. Available online: https://searchinger.Princeton.edu/sites/g/files/toruqf4701/files/tsearchi/files/paustian_et_al._response_to_wri_soil_carbon_blog_.pdf (accessed on 16 March 2024).
- Acharya, B.S.; Dodla, S.; Gaston, L.A.; Darapuneni, M.; Wang, J.J.; Sepat, S.; Bohara, H. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. Soil Tillage Res. 2019, 195, 104430. [Google Scholar] [CrossRef]
- Ćupina, B.; Erić, P.; Mihailović, V.; Mikić, A. Značaj i uloga međuuseva u održivoj poljoprivredi. Zb. Rad. Naučni Inst. Za Ratar. Povrt. 2004, 40, 419–430. [Google Scholar]
- Baas, D. Integrating Cover Crops in Soybean Rotations Challenges and Recommendations for the North Central Region; Midwest Cover Crops Council; North Central Soybean Research Program: Ankeny, Iowa, 2015. [Google Scholar]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The Role of CCs towards Sustainable Soil Health and Agriculture—A Review Paper. Am. J. Plant Sci. 2018, 9, 1935–1951. [Google Scholar] [CrossRef]
- Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A. Soil microbiome: A key player for conservation of soil health under changing climate. Biodivers. Conserv. 2019, 28, 2405–2429. [Google Scholar] [CrossRef]
- Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conserv. Lett. 2008, 1, 2–11. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. CCs and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Smith, R.G.; Menalled, F.D.; Robertson, G.P. Temporal Yield Variability under Conventional and Alternative Management Systems. Agron. J. 2007, 99, 1629–1634. [Google Scholar] [CrossRef]
- Euteneuer, P.; Wagentristl, H.; Neugschwandtner, R.W.; Pauer, S.; Keimerl, M.; Piepho, H.P.; Steinkellner, S. Cover crops affect soybean yield components, but not grain quality. Agron. J. 2022, 114, 3193–3205. [Google Scholar] [CrossRef]
- Muller, A.; Olesen, J.E.; Davis, J.; Dytrtova, K.; Gattinger, A.; Lampkin, N.; Niggli, U. Reducing Global Warming and Adapting to Climate Change: The Potential of Organic Agriculture; University of Gothenburg, Department of Economics: Gothenburg, Sweden, 2012. [Google Scholar]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O’neil, K. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 2005, 97, 322–332. [Google Scholar] [CrossRef]
- Chu, M.; Jagadamma, S.; Walker, F.R.; Eash, N.S.; Buschermohle, M.J.; Duncan, L.A. Effect of multispecies cover crop mixture on soil properties and crop yield. Agric. Environ. Lett. 2017, 2, 170030. [Google Scholar] [CrossRef]
- Acuña, J.C.; Villamil, M.B. Short-term effects of cover crops and compaction on soil properties and soybean production in Illinois. Agron. J. 2014, 106, 860–870. [Google Scholar] [CrossRef]
- Duval, M.E.; Galantini, J.A.; Capurro, J.E.; Martinez, J.M. Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions. Soil Tillage Res. 2016, 161, 95–105. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Snapp, S.S.; Robertson, G.P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Natl. Acad. Sci. USA 2017, 114, 926–931. [Google Scholar] [CrossRef]
- Toleikiene, M.; Slepetys, J.; Sarunaite, L.; Lazauskas, S.; Deveikyte, I.; Kadziuliene, Z. Soybean development and productivity in response to organic management above the northern boundary of soybean distribution in Europe. Agronomy 2021, 11, 214. [Google Scholar] [CrossRef]
- Kovačević, D.; Momirović, N. Uloga agrotehničkih mera u suzbijanju korova u savremenim konceptima razvoja poljoprivrede. Acta Herbol. 2008, 17, 23–38. [Google Scholar]
- Mohammed, Y.A.; Matthees, H.L.; Gesch, R.W.; Patel, S.; Forcella, F.; Aasand, K.; Steffl, N.; Burton, L.J.; Wells, M.S.; Lenssen, A.W. Establishing winter annual cover crops by interseeding into maize and soybean. Agron. J. 2020, 112, 719–732. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Clark, A. Managing Cover Crops Profitably; DIANE Publishing: Collingdale, PA, USA, 2008. [Google Scholar]
- Gosling, P.; Shepherd, M. Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 2005, 105, 425–432. [Google Scholar] [CrossRef]
- Zhou, Y.; Roosendaal, L.; Van Eerd, L.L. Increased nitrogen retention by cover crops: Implications of planting date on soil and plant nitrogen dynamics. Renew. Agric. Food Syst. 2020, 35, 720–729. [Google Scholar] [CrossRef]
- Krenchinski, F.H.; Cesco, V.J.S.; Rodrigues, D.M.; Albrecht, L.P.; Wobeto, K.S.; Albrecht, A.J.P. Agronomic performance of soybean grown in succession to winter CCs. Pesqui. Agropecuária Bras. 2018, 53, 909–917. [Google Scholar] [CrossRef]
- Severini, S.; Castellari, M.; Cavalli, D.; Pecetti, L. Economic sustainability and riskiness of cover crop adoption for organic production of corn and soybean in Northern Italy. Agronomy 2021, 11, 766. [Google Scholar] [CrossRef]
- Rice, J.F.; Zander, A.; Harris, C.; Booker, T.; Lofton, J. Integrating Cover Crops into Soybean Systems in the Southern Great Plains: Impacts on Yield and Yield Components. Agronomy 2024, 14, 1356. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nature Reviews. Microbiology 2023, 22, 226–239. [Google Scholar]
- Šarčević, H.; Iljkić, D.; Andrijanić, Z.; Sudarić, A.; Gunjača, J.; Varnica, I.; Rastija, M.; Godena, S.; Maričević, M.; Stepinac, D.; et al. Stability of protein and oil content in soybean across dry and normal environments—A case study in Croatia. Agronomy 2022, 12, 915. [Google Scholar] [CrossRef]
- Vasiljević, M.; Đorđević, V.; Ranđelović, P.; Miladinović, J.; Milovac, Ž.; Ćeran, M.; Marić, D. ECOBREED participatory trials for organic soybean production in Serbia. In Proceedings of the “Plant Breeding for the Green Deal” 72nd Conference, Online, 22–24 November 2021. [Google Scholar]
- Narayana, N.K.; Kingery, W.L.; Jacobs, A.A.; Allison, J.K.; Ganapathi Shanmugam, S. Effects of tillage and winter cover management in a maize soybean rotation on soil bacterial and fungal community composition. Land 2022, 11, 2259. [Google Scholar] [CrossRef]
- Zarb, J.; Ghorbani, R.; Koocheki, A.; Leifert, C. The importance of microorganisms in organic agriculture. Outlooks Pest Manag. 2005, 16, 52–55. [Google Scholar] [CrossRef]
- Wang, C.H.; Wu, L.; Wang, Z.; Alabady, M.S.; Parson, D.; Molumo, Z.; Fankhauser, S.C. Characterizing changes in soil microbiome abundance and diversity due to different cover crop techniques. PLoS ONE 2020, 15, e0232453. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, A.; Souza, R.; Passaglia, L.M.P. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 2016, 400, 193–207. [Google Scholar] [CrossRef]
- Kim, N.; Zabaloy, M.C.; Guan, K.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 2020, 142, 107701. [Google Scholar] [CrossRef]
- Dlamini, S.P.; Akanmu, A.O.; Babalola, O.O. Rhizospheric microorganisms: The gateway to a sustainable plant health. Front. Sustain. Food Syst. 2022, 6, 925802. [Google Scholar] [CrossRef]
- Kodadinne, N.; Kingery, W.L.; Shankle, M.W.; Ganapathi, S. Differential Response of Soil Microbial Diversity and Community Composition Influenced by CCs and Fertilizer Treatments in a Dryland Soybean Production System. Agronomy 2022, 12, 618. [Google Scholar] [CrossRef]
- Seitz, V.A.; McGivem, B.B.; Borton, M.A.; Chaparro, J.M.; Schipanski, M.E.; Prenni, J.E.; Wrighton, K.C. Cover Crop Root Exudates Impact Soil Microbiome Functional Trajectories in Agricultural Soils. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Cazzaniga, S.G.; Braat, L.; van den Elsen, S.; Lombaers, C.; Visser, J.; Obinu, L.; Maciá-Vicente, J.G.; Postma, J.; Mommer, L.; Helder, J. Pinpointing the distinctive impacts of ten cover crop species on the resident and active fractions of the soil microbiome. Appl. Soil Ecol. 2023, 190, 105012. [Google Scholar] [CrossRef]
- Gentsch, N.; Boy, J.; Batalla, J.D.K.; Heuermann, D.; von Wirén, N.; Schweneker, D.; Feuerstein, U.; Groß, J.; Bauer, B.; Reinhold-Hurek, B.; et al. Catch crop diversity increases rhizosphere carbon input and soil microbial biomass. Biol. Fertil. Soils 2020, 56, 943–957. [Google Scholar] [CrossRef]
- Reed, S.C.; Seastedt, T.R.; Mann, C.M.; Suding, K.N.; Townsend, A.R.; Cherwin, K.L. Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Appl. Soil Ecol. 2007, 36, 238–242. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef] [PubMed]
- Siles, J.A.; Margesin, R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci. Rep. 2017, 7, 2204. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Ma, A.; Yan, H.; Miao, Y.; Shao, J.; Zhang, N.; Xu, Z.; Shen, Q.; Zhang, R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. New Phytol. 2024, 242, 2401–2410. [Google Scholar] [CrossRef]
- ISO 11464:2006; Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis. Institute for Standardization of Serbia: Belgrade, Serbia, 2006.
- Barillot, C.D.C.; Sarde, C.O.; Bert, V.; Tarnaud, E.; Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 2013, 63, 471–476. [Google Scholar] [CrossRef]
- Trolldenier, G. Plate Count Technique. In Methods in Soil Biology; Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., Eds.; Springer: Verleg, Germany, 1996; pp. 20–26. [Google Scholar]
- Briones, A.M.; Reichardt, W. Estimating microbial population counts by ‘most probable number’ using Microsoft Excel. J. Microbiol. Meth. 1999, 35, 157–161. [Google Scholar] [CrossRef]
- Casida, L.E.J.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
Factors | Variables | ||
---|---|---|---|
Yield | Height | Biomass | |
Cover crops (CC) | 0.000000 *** | 0.933153 | 0.000371 *** |
Production system (PS) | 0.000001 *** | 0.000000 *** | 0.889682 |
Year (Y) | 0.002694 ** | 0.000000 *** | 0.000009 *** |
CC × PS | 0.861339 | 0.458956 | 0.007894 *** |
CC × Y | 0.318464 | 0.801140 | 0.169923 |
PS × Y | 0.621353 | 0.000001 *** | 0.000432 *** |
CC × PS × Y | 0.260262 | 0.000294 | 0.137627 |
Factors | Variables | |
---|---|---|
Protein | Oil | |
Cover crops (CC) | 0.265856 | 0.197641 |
Production system (PS) | 0.013611 | 0.000008 ** |
Year (Y) | 0.597864 | 0.050979 |
CC × PS | 0.872744 | 0.731202 |
CC × Y | 0.984607 | 0.992290 |
PS × Y | 0.021296 | 0.000062 ** |
CC × PS × Y | 0.757017 | 0.736991 |
Factors | Variables | |||||
---|---|---|---|---|---|---|
Total Bacteria | Ammonifying Bacteria | Nitrogen-Fixing Bacteria | Fungi | Actinobacteria | Dehydrogenase | |
Cover crops (CC) | 0.0018 ** | 0.1106 | 0.0003 *** | 0.0277 * | 0.0346 * | 0.0000 *** |
Production system (PS) | 0.5463 | 0.8451 | 0.0000 *** | 0.0000 *** | 0.0001 *** | 0.0000 *** |
Year (Y) | 0.0000 *** | 0.5178 | 0.0000 *** | 0.0005 *** | 0.4135 | 0.0000 *** |
CC × PS | 0.4802 | 0.6596 | 0.0304 ** | 0.1132 | 0.0968 | 0.0589 |
CC × Y | 0.0827 | 0.0146 * | 0.0051 ** | 0.1052 | 0.2627 | 0.0000 *** |
PS × Y | 0.0000 *** | 0.0002 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | 0.6969 |
CC × PS × Y | 0.0776 | 0.0066 *** | 0.0550 | 0.2371 | 0.0299 ** | 0.0061 * |
Cover Crops | Production System | Year | TB | AMN | NFB | FNG | ACT | DHA |
---|---|---|---|---|---|---|---|---|
Control | Low input | 2020 | 430 a–e | 223 bc | 352 bc | 19.9 d | 36.9 a–e | 6.9 f |
2021 | 296 d–f | 204 bc | 240 c–e | 25.6 b–d | 20.7 c–e | 41.7 b | ||
Organic | 2020 | 359 c–f | 194 bc | 235 de | 32.9 a–c | 26.2 b–e | 18.7 de | |
2021 | 334 c–f | 265 a–c | 199 e | 24.9 b–d | 39.9 a–d | 43.3 b | ||
Rye | Low input | 2020 | 569 a | 252 a–c | 506 a | 19.9 d | 17.2 de | 16.4 de |
2021 | 283 ef | 258 a–c | 251 c–e | 15.7 d | 18.7 de | 39 b | ||
Organic | 2020 | 472 a–c | 247 a–c | 340 b–d | 36 ab | 28.8 b–e | 23.6 cd | |
2021 | 410 b–e | 275 ab | 221 e | 24.7 b–d | 43.9 ab | 52.3 a | ||
Peas + Oats | Low input | 2020 | 549 ab | 344 a | 398 ab | 23.9 cd | 41.8 abc | 12.5 ef |
2021 | 254 f | 149 c | 161 e | 26.4 b–d | 16.2 e | 27.7 c | ||
Organic | 2020 | 430 a–e | 205 bc | 267 c–e | 39.9 a | 30.8 b–e | 24.2 cd | |
2021 | 439 a–d | 260 a–c | 266 c–e | 24.4 cd | 55 a | 41.3 b |
Period | Crop (Variety) | Seed Amount |
---|---|---|
October 2019/2020 | Rye (NS Savo) | 210 kg ha−1 |
October 2019/2020 | Mixture (85:15): | |
Pea (Kosmaj) | 140 kg ha−1 | |
Oat (NS Jadar) | 30 kg ha−1 | |
April 2020/May 2021 | Soybean (NS Mercury) | 100 kg ha−1 |
Soybean (NS Altis) | 95 kg ha−1 |
Production System | pH | CaCO3 % | Humus % | Total N % | AL-P2O5 mg/100 g | AL-K2O mg/100 g | |
---|---|---|---|---|---|---|---|
KCl | H2O | ||||||
LIP * | 7.4 | 8.2 | 5.9 | 2.3 | 0.2 | 17.9 | 20.9 |
OP ** | 7.5 | 8.4 | 13.7 | 3.7 | 0.3 | 7.2 | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiljević, M.; Šeremešić, S.; Miljaković, D.; Đorđević, V.; Marinković, J.; Vojnov, B.; Aćin, V. Winter Cover Cropping in Sustainable Production Systems: Effects on Soybean and Synergistic Implications for Rhizosphere Microorganisms. Plants 2024, 13, 3091. https://doi.org/10.3390/plants13213091
Vasiljević M, Šeremešić S, Miljaković D, Đorđević V, Marinković J, Vojnov B, Aćin V. Winter Cover Cropping in Sustainable Production Systems: Effects on Soybean and Synergistic Implications for Rhizosphere Microorganisms. Plants. 2024; 13(21):3091. https://doi.org/10.3390/plants13213091
Chicago/Turabian StyleVasiljević, Marjana, Srđan Šeremešić, Dragana Miljaković, Vuk Đorđević, Jelena Marinković, Bojan Vojnov, and Vladimir Aćin. 2024. "Winter Cover Cropping in Sustainable Production Systems: Effects on Soybean and Synergistic Implications for Rhizosphere Microorganisms" Plants 13, no. 21: 3091. https://doi.org/10.3390/plants13213091
APA StyleVasiljević, M., Šeremešić, S., Miljaković, D., Đorđević, V., Marinković, J., Vojnov, B., & Aćin, V. (2024). Winter Cover Cropping in Sustainable Production Systems: Effects on Soybean and Synergistic Implications for Rhizosphere Microorganisms. Plants, 13(21), 3091. https://doi.org/10.3390/plants13213091