Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism
Abstract
:1. Introduction
2. Results
2.1. Identification of the HuSWEET Gene Family
2.2. Phylogenetic Analysis of the HuSWEET Genes
2.3. Conserved Motif and Gene Structure Analysis
2.4. Cis-Acting Element Analysis of HuSWEET Gene Family Members
2.5. Chromosomal Location, Gene Duplication, and Synteny Analysis of the HuSWEET Gene Family Members
2.6. Changes in Relevant Indicators Before and After Low-Temperature Stress
2.7. Changes in the Expression Profiles of the SWEET Gene Family
2.8. Effects of Exogenous ABA and MeJA on the Expression and Growth of HuSWEETs
2.9. Three-Dimensional Structures of SWEET Gene Family Member Proteins Related to the Pitaya Low-Temperature Stress Response
3. Discussion
4. Materials and Methods
4.1. Data Acquisition
4.2. Identification and Analysis of the Physicochemical Properties and Subcellular Localization of the SWEET Gene Family in Pitaya
4.3. Phylogenetic and Conserved Domain Analysis
4.4. Analysis of Gene Structure and Conserved Motifs
4.5. Analysis of Cis-Acting Elements
4.6. Chromosomal Positioning, Gene Replication, and Collinearity Analysis
4.7. Determination of Soluble Sugar Content
4.8. Determination of the Activities of Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)
4.9. ABA and MeJA Treatment
4.10. Growth Measurement
4.11. Fluorescence Real-Time PCR Analysis
4.12. Protein Structure Prediction
4.13. Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Z.; Gao, H.; Ming, J.; Ding, Z.; Lin, X.; Zhan, R. Combined transcriptome and metabolome analysis of pitaya fruit unveiled the mechanisms underlying peel and pulp color formation. BMC Genom. 2020, 21, 734. [Google Scholar] [CrossRef] [PubMed]
- Lira, S.M.; Dionísio, A.P.; Holanda, M.O.; Marques, C.G.; Silva, G.S.D.; Correa, L.C.; Santos, G.B.M.; de Abreu, F.A.P.; Magalhães, F.E.A.; Rebouças, E.L.; et al. Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MS(E) and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Res. Int. 2020, 127, 108701. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J.; Zhou, L.; Jang, J.C. Sugars as signalling molecules. Curr. Opin. Plant Biol. 1999, 2, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Peng, Y.; Rao, Y.; Li, S.; Zeng, L. Genome-wide identification and expression analysis of sugar transporter (ST) gene family in longan (Dimocarpus longan L.). Plants 2020, 9, 342. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.Y.; Neuhaus, H.E.; Cheng, J.T.; Bie, Z.L. Contributions of sugar transporters to crop yield and fruit quality. J. Exp. Bot. 2022, 73, 2275–2289. [Google Scholar] [CrossRef]
- Zhen, Q.; Fang, T.; Peng, Q.; Liao, L.; Zhao, L.; Owiti, A.; Han, Y. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Hortic. Res. 2018, 5, 14. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Z.; Li, B.; Qin, G.; Tian, S. Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH 2021, 2, 330–340. [Google Scholar] [CrossRef]
- El-Mahdy, M.T.; Ali, M.; Pisam, W.M.M.; Abeed, A.H.A. Physiological and molecular analysis of pitaya (Hylocereus polyrhizus) reveal up-regulation of secondary metabolites, nitric oxide, antioxidant defense system, and expression of responsive genes under low-temperature stress by the pre-treatment of hydrogen peroxide. Plant Physiol. Biochem. 2024, 213, 108840. [Google Scholar] [CrossRef]
- Mishra, B.S.; Sharma, M.; Laxmi, A. Role of sugar and auxin crosstalk in plant growth and development. Physiol. Plant 2022, 174, e13546. [Google Scholar] [CrossRef]
- Shu, P.; Zhang, Z.; Wu, Y.; Chen, Y.; Li, K.; Deng, H.; Zhang, J.; Zhang, X.; Wang, J.; Liu, Z.; et al. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytol. 2023, 238, 2064–2079. [Google Scholar] [CrossRef]
- Chen, L.Q.; Hou, B.H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.Q.; Guo, W.J.; Kim, J.G.; Underwood, W.; Chaudhuri, B.; et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yu, K.; He, T.; Li, F.; Zhang, D.; Liu, J. The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci. World J. 2013, 2013, 658793. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.F.; Leach, K.A.; Braun, D.M. SWEET as sugar, new sucrose effluxers in plants. Mol. Plant 2012, 5, 766–768. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.H.; Hu, Y.B.; Chen, L.Q.; Sosso, D.; Ducat, D.C.; Hou, B.H.; Frommer, W.B. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc. Natl. Acad. Sci. USA 2013, 110, E3685–E3694. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol. Plant 2013, 6, 665–674. [Google Scholar] [CrossRef]
- Xie, H.; Wang, D.; Qin, Y.; Ma, A.; Zhao, J. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development. BMC Plant Biol. 2019, 19, 499. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Ren, Y.; Gan, C.; Li, B.; Fan, Y.; Zhao, X.; Yuan, Z. Identification, analysis and gene cloning of the SWEET gene family provide insights into sugar transport in pomegranate (Punica granatum). Int. J. Mol. Sci. 2022, 23, 2471. [Google Scholar] [CrossRef]
- Lin, I.W.; Sosso, D.; Chen, L.Q.; Gase, K.; Kim, S.G.; Kessler, D.; Klinkenberg, P.M.; Gorder, M.K.; Hou, B.U.; Qu, X.Q.; et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 2014, 508, 546–549. [Google Scholar] [CrossRef]
- Ko, H.Y.; Tseng, H.W.; Ho, L.H.; Wang, L.; Chang, T.F.; Lin, A.; Ruan, Y.L.; Neuhaus, H.E.; Guo, W.J. Hexose translocation mediated by SlSWEET5b is required for pollen maturation in Solanum lycopersicum. Plant Physiol. 2022, 189, 344–359. [Google Scholar] [CrossRef]
- Kanno, Y.; Oikawa, T.; Chiba, Y.; Ishimaru, Y.; Shimizu, T.; Sano, N.; Koshiba, T.; Kamiya, Y.J.; Ueda, M.; Seo, M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat. Commun. 2016, 7, 13245. [Google Scholar] [CrossRef]
- Ninan, A.; Grant, J.; Song, J.; Jameson, P. Expression of genes related to sugar and amino acid transport and cytokinin metabolism during leaf development and senescence in Pisum sativum L. Plants 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Cohn, M.; Bart, R.S.; Shybut, M.; Dahlbeck, D.; Gomez, M.; Morbitzer, R.; Hou, B.H.; Frommer, W.B.; Lahaye, T.; Staskawicz, B.J. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol. Plant Microbe Interact. 2014, 27, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- Phukan, U.J.; Jeena, G.S.; Tripathi, V.; Shukla, R.K. MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidi-rectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol. J. 2017, 16, 221–233. [Google Scholar] [CrossRef]
- Wang, L.; Yao, L.; Hao, X.; Li, N.; Qian, W.; Yue, C.; Ding, C.; Zeng, J.; Yang, Y.; Wang, X. Tea plant SWEET transporters, expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol. Biol. 2018, 96, 577–592. [Google Scholar] [CrossRef]
- Xuan, C.; Lan, G.; Si, F.; Zeng, Z.; Wang, C.; Yadav, V.; Wei, C.; Zhang, X. Systematic genome-wide study and expression analysis of SWEET gene family, sugar transporter family contributes to biotic and abiotic stimuli in watermelon. Int. J. Mol. Sci. 2021, 22, 8407. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, P.; Xu, S.; Chen, Y.; Li, M.; Wu, G.; Jiang, H. Genome-wide identification, expression patterns and sugar transport of the physic nut SWEET gene family and a functional analysis of JcSWEET16 in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 5391. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, F.; Song, S.; Yu, X.; Ren, Y.; Zhao, X.; Liu, H.; Liu, G.; Wang, Y.; He, H. CsSWEET2, a hexose transporter from cucumber (Cucumis sativus L.), affects sugar metabolism and improves cold tolerance in arabidopsis. Int. J. Mol. Sci. 2022, 23, 3886. [Google Scholar] [CrossRef]
- Streubel, J.; Pesce, C.; Hutin, M.; Koebnik, R.; Boch, J.; Szurek, B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 2013, 200, 808–819. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Yu, F.; Tang, J.; Shan, X.; Bao, K.; Yu, L.; Wang, H.; Fei, Z.; Li, J. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and club root disease responses. BMC Genom. 2019, 20, 93. [Google Scholar] [CrossRef]
- Jiang, S.; Balan, B.; Assis, R.d.A.B.; Sagawa, C.H.D.; Wan, X.; Han, S.; Wang, L.; Zhang, L.; Zaini, P.A.; Walawage, S.L.; et al. Genome-wide profiling and phylogenetic analysis of the SWEET sugar transporter gene family in walnut and their lack of responsiveness to Xanthomonas arboricola pv. juglandis infection. Int. J. Mol. Sci. 2020, 21, 1251. [Google Scholar] [CrossRef]
- Sosso, D.; Luo, D.; Li, Q.B.; Sasse, J.; Yang, J.; Gendrot, G.; Suzuki, M.; Koch, K.K.; McCarty, D.R.; Chourey, P.S.; et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat. Genet. 2015, 47, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Li, H.; Xia, X.; Liu, X.; Yang, L. Functional and evolution characterization of SWEET sugar transporters in Ananas comosus. Biochem. Biophys. Res. Commun. 2018, 496, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wen, K.; Zhu, L.; Chen, C.; Yin, T.; Yang, X.; Zhao, K.; Zi, Y.; Zhang, H.; Luo, X.; et al. Genome-wide identification and expression analysis of the Eriobotrya japonica TIFY gene family reveals its functional diversity under abiotic stress conditions. BMC Genom. 2024, 25, 468. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Liu, X.; Wei, Z.; Zhang, X.; Bian, W.; Li, S.; Zhang, H. Transcriptome analysis of low-temperature-treated tetraploid yellow Actinidia chinensis Planch. Tissue Cult. Plantlets. Life 2022, 12, 1573. [Google Scholar]
- Wen, Z.; Li, M.; Meng, J.; Li, P.; Cheng, T.; Zhang, Q.; Sun, L. Genome-wide identification of the SWEET gene family mediating the cold stress response in Prunus mume. PeerJ. 2022, 10, e13273. [Google Scholar] [CrossRef]
- Zi, Y.; Zhang, M.; Yang, X.; Zhao, K.; Yin, T.; Wen, K.; Li, X.; Liu, X.; Zhang, H. Identification of the sweet orange (Citrus sinensis) bHLH gene family and the role of CsbHLH55 and CsbHLH87 in regulating salt stress. Plant Genome 2024, 17, e20502. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Z.; Zhang, H.; Zhang, Y.; Li, S.; Wu, J.; Ye, Q.; Liu, X. Induction of polyploid plants of Actinidia chinensis leads to drought-tolerance increasing. In Proceedings of the 2022 2nd International Conference on Information Technology and Biomedical Engineering (ICITBE), Hangzhou, China, 24–25 December 2022. [Google Scholar]
- Klemens, P.A.; Patzke, K.; Deitmer, J.W.; Spinner, L.; Hir, R.L.; Bellini, C.; Bedu, M.; Chardon, F.; Krapp, A.; Neuhaus, H.E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol. 2013, 163, 1338–1352. [Google Scholar] [CrossRef]
- Chen, C.; Xie, F.; Shah, K.; Hua, Q.; Chen, J.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. Genome-wide identification of WRKY gene family in Pitaya reveals the involvement of HmoWRKY42 in betalain biosynthesis. Int. J. Mol. Sci. 2022, 23, 10568. [Google Scholar] [CrossRef]
- Lu, C.; Ye, J.; Chang, Y.; Mi, Z.; Liu, S.; Wang, D.; Wang, Z.; Niu, J. Genome-wide identification and expression patterns of the SWEET gene family in Bletilla striata and its responses to low temperature and oxidative stress. Int. J. Mol. Sci. 2022, 23, 10057. [Google Scholar] [CrossRef]
- Patil, G.; Valliyodan, B.; Deshmukh, R.; Prince, S.; Nicander, B.; Zhao, M.; Sonah, H.; Song, L.; Lin, L.; Chaudhary, J.; et al. Soybean (Glycine max) SWEET gene family: Insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom. 2015, 16, 520. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, J.; Lyu, M.; Liu, Z.; Mehmood, N.; Munir, N.; Ahmed, M.A.A.; Batool, W.; Aslam, M.M.; Yuan, Y.; Wu, B. Sugar and hormone dynamics and the expression profiles of SUT/SUC and SWEET sweet sugar transporters during flower development in Petunia axillaris. Plants 2020, 9, 1770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woźniak, A.; Kęsy, J.; Glazińska, P.; Glinkowski, W.; Narożna, D.; Bocianowski, J.; Rucińska-Sobkowiak, R.; Mai, V.C.; Krzesiński, W.; Samardakiewicz, S.; et al. The influence of lead and Acyrthosiphon pisum (Harris) on generation of Pisum sativum defense signaling molecules and expression of genes involved in their biosynthesis. Int. J. Mol. Sci. 2023, 24, 10671. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Tian, X.; Mei, E.; He, M.; Gao, J.; Yu, J.; Xu, M.; Liu, J.; Song, L.; Li, X.; et al. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. Plant Cell 2022, 34, 4495–4515. [Google Scholar] [CrossRef] [PubMed]
- Janda, T.; Szalai, G.; Pál, M. Salicylic acid signalling in plants. Int. J. Mol. Sci. 2020, 21, 2655. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Yang, X.; Zi, Y.; Yin, T.; Li, X.; Wen, K.; Zhao, K.; Wan, J.; Zhang, H.; et al. Genome-wide identification of bZIP transcription factors in 12 Rosaceae species and modeling of novel mechanisms of EjbZIPs response to salt stress. Plant Genome 2024, 17, e20468. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Y.; Yang, K.; Wang, X.; Gao, W.; Xie, Q.; Liu, Z.; Gao, C. An insight of Betula platyphylla SWEET gene family through genome-wide identification, expression profiling and function analysis of BpSWEET1c under cold stress. Int. J. Mol. Sci. 2023, 24, 13626. [Google Scholar] [CrossRef]
- Jaehme, M.; Guskov, A.; Slotboom, D.J. The twisted relation between Pnu and SWEET transporters. Trends Biochem. Sci. 2015, 40, 183–188. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, L.; Zeng, J.; Shah, K.; Zhang, R.; Hu, G.; Qin, Y.; Zhang, Z. Identification of HuSWEET family in pitaya (Hylocereus undatus) and key roles of HuSWEET12a and HuSWEET13d in sugar accumulation. Int. J. Mol. Sci. 2023, 24, 12882. [Google Scholar] [CrossRef]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef]
- Yin, B.; Li, J.; Zhang, Q.; Wu, N.; Zhang, J.; Rong, X.; Tao, Y.; Zang, Y.; Li, Y.; Zhou, X.; et al. Freeze-thaw cycles change the physiological sensitivity of Syntrichia caninervis to snow cover. J. Plant Physiol. 2021, 266, 153528. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, S.; Liang, X.; Wang, X.; Xie, H.; Wang, D.; Gai, Z.; Wang, N.; Xiang, P.; Han, D.; et al. Foliar spraying of exogenous uniconazole (S3307) at the flowering stage as an effective method to resist low-temperature stress on mung bean [Vigna radiata (L.) Wilczek]. Sci. Rep. 2023, 13, 22331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Cun, Z.; Chen, J.W. Photosynthetic performance and photosynthesis-related gene expression coordinated in a shade-tolerant species Panax notoginseng under nitrogen regimes. BMC Plant Biol. 2020, 20, 273. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Cang, J.; Lu, Q.; Fan, B.; Xu, Q.; Li, W.; Wang, X. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system. Plant Signal. Behav. 2020, 15, 1780403. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Lan, Z.; Xu, K.; Chang, J.; Ahammed, G.J.; Ma, J.; Wei, C.; Zhang, X. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. Hortic. Res. 2021, 8, 57. [Google Scholar] [CrossRef]
- Ye, Y.J.; Xiao, Y.Y.; Han, Y.C.; Shan, W.; Fan, Z.Q.; Xu, Q.G.; Kuang, J.F.; Lu, W.J.; Lakshmanan, P.; Chen, J.Y. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Sci. Rep. 2016, 6, 23632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, M.; Liu, T.; Lu, J.; Zhou, Y.; Liu, S.; Jiao, P.; Liu, S.; Qu, J.; Guan, S.; Ma, Y. Characterization and functional analysis of ZmSWEET15a in maize. DNA Cell Biol. 2022, 41, 564–574. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Arndt, W.; Miller, B.L.; Wheeler, T.J.; Schreiber, F.; Bateman, A.; Eddy, S.R. HMMER web server: 2015 update. Nucleic Acids Res. 2015, 43, W30–W38. [Google Scholar] [CrossRef]
- Yin, T.; Han, P.; Xi, D.; Yu, W.; Zhu, L.; Du, C.; Yang, N.; Liu, X.; Zhang, H. Genome-wide identification, characterization, and expression profile of NBS-LRR gene family in sweet orange (Citrus sinensis). Gene 2023, 854, 147117. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39, D225–D229. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Baxter, L.; Hickman, R.; Beynon, J.; Moore, J.D.; Ott, S. MEME-LaB: Motif analysis in clusters. Bioinformatics 2013, 29, 1696–1697. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Wang, Y.; Zhang, Y.; Dossa, K.; Li, D.; Zhou, R.; Wang, L.; Zhang, X. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Sci. Rep. 2018, 8, 4331. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Z.; Mao, Y.; Wang, L.; Xiao, T.; Hu, Y.; Zhang, Y.; Ma, Y. Proteogenomic analysis of pitaya reveals cold stress-related molecular signature. PeerJ 2020, 8, e8540. [Google Scholar] [CrossRef]
- Yu, J.Q.; Gu, K.D.; Zhang, L.L.; Sun, C.H.; Zhang, Q.Y.; Wang, J.H.; Wang, C.K.; Wang, W.Y.; Du, M.C.; Hu, D.G. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. J. Integr. Plant Biol. 2022, 64, 884–900. [Google Scholar] [CrossRef]
- Chen, C.; Wu, J.; Hua, Q.; Tel-Zur, N.; Xie, F.; Zhang, Z.; Chen, J.; Zhang, R.; Hu, G.; Zhao, J.; et al. Identification of reliable reference genes for quantitative real-time PCR normalization in pitaya. Plant Methods 2019, 15, 70. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Xi, D.; Yin, T.; Zhu, L.; Yang, X.; Zhou, X.; Zhang, H.; Liu, X. Genome-wide identification and expression analysis of the MADS gene family in sweet orange (Citrus sinensis) infested with pathogenic bacteria. PeerJ 2024, 12, e17001. [Google Scholar] [CrossRef]
Sequence ID | Gene Name | Amino Acid | MW(kDa) | pI | GRAVY | TMHs | Location |
---|---|---|---|---|---|---|---|
HU01G01645.1 | HuSWEET1 | 294 | 32.44 | 8.85 | 0.486 | 7 | Plasmid IMP |
HU01G02211.1 | HuSWEET2 | 309 | 34.74 | 9.45 | 0.593 | 7 | Plasmid IMP |
HU01G02212.1 | HuSWEET3 | 309 | 34.74 | 9.45 | 0.593 | 7 | Plasmid IMP |
HU01G02213.1 | HuSWEET4 | 293 | 33.12 | 9.12 | 0.34 | 7 | Plasmid IMP |
HU01G02214.1 | HuSWEET5 | 257 | 28.99 | 8.68 | 0.311 | 5 | Plasmid IMP |
HU02G01006.1 | HuSWEET6 | 333 | 37.57 | 5.71 | 0.368 | 7 | Plasmid IMP |
HU02G01007.1 | HuSWEET7 | 342 | 38.39 | 8.15 | 0.356 | 7 | Plasmid IMP |
HU02G01008.1 | HuSWEET8 | 182 | 20.49 | 8.63 | 0.221 | 4 | Plasmid IMP |
HU02G02490.1 | HuSWEET9 | 258 | 28.64 | 9.69 | 0.583 | 7 | Plasmid IMP |
HU03G01299.1 | HuSWEET10 | 257 | 28.33 | 9.47 | 0.557 | 7 | Plasmid IMP |
HU04G00350.1 | HuSWEET11 | 211 | 23.10 | 8.38 | 0.647 | 6 | Vacuolar IMP |
HU04G00351.1 | HuSWEET12 | 256 | 27.86 | 9.28 | 0.788 | 7 | Plasmid IMP |
HU04G01094.1 | HuSWEET13 | 135 | 14.96 | 9.05 | 0.939 | 5 | Endoplasmic reticulum IMP |
HU04G01322.1 | HuSWEET14 | 301 | 34.13 | 9.14 | 0.772 | 7 | Plasmid IMP |
HU04G01323.1 | HuSWEET15 | 318 | 35.53 | 8.74 | 0.501 | 7 | Plasmid IMP |
HU04G01325.1 | HuSWEET16 | 315 | 34.87 | 8.96 | 0.534 | 7 | Vacuolar IMP |
HU04G01326.1 | HuSWEET17 | 335 | 37.37 | 7.02 | 0.542 | 7 | Plasmid IMP |
HU04G01327.1 | HuSWEET18 | 289 | 32.14 | 8.32 | 0.391 | 6 | Plasmid IMP |
HU04G02123.1 | HuSWEET19 | 192 | 21.82 | 9.59 | 0.563 | 6 | Plasmid IMP |
HU04G02228.1 | HuSWEET20 | 211 | 23.10 | 8.71 | 0.64 | 6 | Vacuolar IMP |
HU04G02229.1 | HuSWEET21 | 256 | 27.83 | 9.24 | 0.783 | 7 | Plasmid IMP |
HU07G00905.1 | HuSWEET22 | 257 | 28.01 | 9.32 | 0.477 | 7 | Plasmid IMP |
HU07G01376.1 | HuSWEET23 | 332 | 37.39 | 8.18 | 0.387 | 7 | Plasmid IMP |
HU08G01549.1 | HuSWEET24 | 260 | 28.57 | 9.32 | 0.635 | 7 | Plasmid IMP |
HU08G01881.1 | HuSWEET25 | 235 | 26.30 | 9.17 | 0.87 | 7 | Vacuolar IMP |
HU09G00626.1 | HuSWEET26 | 243 | 27.03 | 9.32 | 0.53 | 7 | Cytoplasmic IMP |
HU09G00864.1 | HuSWEET27 | 258 | 28.64 | 9.69 | 0.583 | 7 | Plasmid IMP |
HU10G00025.1 | HuSWEET28 | 216 | 24.39 | 7.62 | 0.479 | 6 | Vacuolar IMP |
Primer Name | Primer Sequence (5′–3′) | Product Size | Tm | Application |
---|---|---|---|---|
HuSWEET1 | AAGCTACCAGAGCAGGTCCA | 168 | 60.01 | qRT-PCR |
HuSWEET1 | GACAATTTTGCCGTCCTCAT | 60.04 | qRT-PCR | |
HuSWEET2 | CTTGGATGGATTTGCCTCAT | 166 | 59.91 | qRT-PCR |
HuSWEET2 | CGAATCACTTGCCTCTGTCA | 59.98 | qRT-PCR | |
HuSWEET3 | CTTGGATGGATTTGCCTCAT | 166 | 59.89 | qRT-PCR |
HuSWEET3 | CGAATCACTTGCCTCTGTCA | 59.98 | qRT-PCR | |
HuSWEET4 | CTCTTTGGGATGGCACAAAT | 181 | 59.93 | qRT-PCR |
HuSWEET4 | GCTGAGTTGGCATCGTGATA | 59.83 | qRT-PCR | |
HuSWEET5 | CTCTTTGGGATGGCACAAAT | 178 | 59.93 | qRT-PCR |
HuSWEET5 | CTTGCTGAGGTGGCATCATA | 59.82 | qRT-PCR | |
HuSWEET6 | AAGCCGAGCTCTGCATAAAA | 168 | 60.12 | qRT-PCR |
HuSWEET6 | TTACCGTCTCCGTCTCCATC | 60.07 | qRT-PCR | |
HuSWEET7 | ACGGTTTCCTCATTCGTGAC | 220 | 59.97 | qRT-PCR |
HuSWEET7 | AGGTCGTCTTGGGGTTTCTT | 59.97 | qRT-PCR | |
HuSWEET8 | ACCGTTATGGTGAGGCTGTC | 154 | 60.00 | qRT-PCR |
HuSWEET8 | GAACTCCACGCTCTTCGTTC | 60.00 | qRT-PCR | |
HuSWEET9 | TCTTTTGCCGACTCCCTAGA | 150 | 59.95 | qRT-PCR |
HuSWEET9 | GCCAACTGAGAGCCAAAAAG | 59.99 | qRT-PCR | |
HuSWEET10 | GGGGGCTGGAAAGATAAAAC | 179 | 59.78 | qRT-PCR |
HuSWEET10 | GCTGGCTCTTTTGTGCTACC | 60.02 | qRT-PCR | |
HuSWEET11 | TGGGTTTTCCAATCTGCATT | 184 | 60.31 | qRT-PCR |
HuSWEET11 | GCTGCTAGCTGCTCTTTGGT | 59.93 | qRT-PCR | |
HuSWEET12 | GCGACAAGCCAGGTGATACT | 159 | 60.29 | qRT-PCR |
HuSWEET12 | GATCGGGTTCTCATCGTTGT | 59.93 | qRT-PCR | |
HuSWEET13 | GCTCCTTCGACTGCCTTCTA | 171 | 59.72 | qRT-PCR |
HuSWEET13 | CACAGCTCAGAAACCCAACA | 59.87 | qRT-PCR | |
HuSWEET14 | TCCTTCCCACTTTAGCGTGT | 171 | 59.73 | qRT-PCR |
HuSWEET14 | GCAACCACATAGGGAATGCT | 59.96 | qRT-PCR | |
HuSWEET15 | AATGTGGTGGGGTTCATGTT | 151 | 59.95 | qRT-PCR |
HuSWEET15 | TGTTTGGCTGTATTCCCACA | 59.96 | qRT-PCR | |
HuSWEET16 | AGAGCAGGTCCAGGTCTCAA | 154 | 59.99 | qRT-PCR |
HuSWEET16 | TTTGCCCTCCTCATTTTCAG | 60.18 | qRT-PCR | |
HuSWEET17 | CAACCCTCAAGCTCCTTCTG | 151 | 59.98 | qRT-PCR |
HuSWEET17 | CTAAGAGGTGCCGCAAAGAC | 60.02 | qRT-PCR | |
HuSWEET18 | CCAAGTGAGTGTTGCTCCAA | 173 | 59.87 | qRT-PCR |
HuSWEET18 | GCAGGTCGAAAGAGAGATGC | 60.10 | qRT-PCR | |
HuSWEET19 | GCTTTGTGTGTTGCCTTCAA | 166 | 59.89 | qRT-PCR |
HuSWEET19 | GCATCCCCACAAAATCATTC | 60.14 | qRT-PCR | |
HuSWEET20 | TGGGCACTCTATGGCTTACC | 179 | 60.10 | qRT-PCR |
HuSWEET20 | ATGCCAACGGCAAGTATCTC | 60.10 | qRT-PCR | |
HuSWEET21 | GCGACAAGCCAGGTGATACT | 159 | 60.29 | qRT-PCR |
HuSWEET21 | GATCGGGTTCTCATCGTTGT | 59.93 | qRT-PCR | |
HuSWEET22 | TACCAAATGGGTTTGGGTGT | 176 | 59.95 | qRT-PCR |
HuSWEET22 | ACCATTAGGCTTGGGCTTTT | 59.97 | qRT-PCR | |
HuSWEET23 | TTGGGTTGGGATATTTGCAT | 201 | 60.02 | qRT-PCR |
HuSWEET23 | CGATGGAGTTGATGGTGATG | 59.92 | qRT-PCR | |
HuSWEET24 | GGTTTTCTTGGCACCAGTGT | 198 | 60.01 | qRT-PCR |
HuSWEET24 | CAATGCACTGAAGAGGGACA | 59.83 | qRT-PCR | |
HuSWEET25 | ACACGACGAAGAGGAGAGGA | 154 | 59.99 | qRT-PCR |
HuSWEET25 | TTTAAACCCTGCGAGAATGG | 60.07 | qRT-PCR | |
HuSWEET26 | TCACCCTTCTGGTTTTCCAC | 158 | 59.94 | qRT-PCR |
HuSWEET26 | TTCCAACAATGCACCAAAAA | 59.95 | qRT-PCR | |
HuSWEET27 | TCTTTTGCCGACTCCCTAGA | 150 | 59.95 | qRT-PCR |
HuSWEET27 | GCCAACTGAGAGCCAAAAAG | 59.99 | qRT-PCR | |
HuSWEET28 | TTGCACGTTGCAGGTAAAAG | 166 | 59.91 | qRT-PCR |
HuSWEET28 | GGGGAGATGGGAGTTTGAAT | 60.13 | qRT-PCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, H.; Zhao, K.; Wei, X.; Li, L.; Tang, Y.; Xiong, Y.; Xu, J. Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism. Plants 2024, 13, 3092. https://doi.org/10.3390/plants13213092
Liu Y, Zhang H, Zhao K, Wei X, Li L, Tang Y, Xiong Y, Xu J. Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism. Plants. 2024; 13(21):3092. https://doi.org/10.3390/plants13213092
Chicago/Turabian StyleLiu, Youjie, Hanyao Zhang, Ke Zhao, Xiuqing Wei, Liang Li, Yajun Tang, Yueming Xiong, and Jiahui Xu. 2024. "Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism" Plants 13, no. 21: 3092. https://doi.org/10.3390/plants13213092
APA StyleLiu, Y., Zhang, H., Zhao, K., Wei, X., Li, L., Tang, Y., Xiong, Y., & Xu, J. (2024). Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism. Plants, 13(21), 3092. https://doi.org/10.3390/plants13213092