Screening for Drought Tolerance Within a Common Bean (Phaseolus vulgaris L.) Landrace Accessions Core Collection from the Lazio Region of Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Screening for Drought Tolerance Under Controlled Conditions
2.1.1. Plant Material
- provenance, covering a complete north-south transect within the Lazio Region.
- Cropping pedo-climatic context, encompassing plateau, hill, and mountain landforms (from 380 to 969 m asl).
- Growth habit, i.e., determinate versus indeterminate growth.
- Customary water management during the growing season, i.e., irrigated versus rainfed.
- Gene pool of origin, i.e., Mesoamerican or Andean.
2.1.2. Growth Conditions
2.1.3. Imposing Drought Stress
2.1.4. Growth Parameters
2.1.5. Phenotypic Plasticity and Drought Stress Indexes
DTE = DWD/DWC
2.1.6. Statistical Analysis
2.2. Screening of Bean Landraces Under Field Conditions
2.2.1. Plant Material
2.2.2. Experimental Sites and Design
2.2.3. Cultivation
2.2.4. Imposing Drought Stress
2.2.5. Morpho-Physiological Measurements
2.2.6. Harvest
2.2.7. Drought Stress Indexes
DTI (LMA) = (LMAD/LMAC)/(LMATD/LMATC)
DTI (NPR) = (NPRD/NPRC)/(NPRTD/NPRTC)
DTI (FWP) = (FWPD/FWPC)/(FWPTD/FWPTC)
DTI (SY) = (SYD/SYC)/(SYTD/SYTC)
DTI (100SW) = (100SWD/100SWC)/(100SWTD/100SWTC)
DTI (NP) = (NPD/NPC)/(NPTD/NPTC)
DTI (NS) = (NSD/NSC)/(NSTD/NSTC)
DTE (LMA) = LMAD/LMAC
DTE (NPR) = NPRD/NPRC
DTE (FWP) = FWPD/FWPC
DTE (SY) = SYD/SYC
DTE (100SW) = 100SWD/100SWC
DTE (NP) = NPD/NPC
DTE (NS) = NSD/NSC
2.2.8. Statistical Analysis
3. Results
3.1. Pre-Screening for Drought Tolerance Under Controlled Conditions
3.2. Screening Under Field Conditions
3.2.1. Seasonal Growth at the Experimental Sites
3.2.2. Yield
3.2.3. Morpho-Physiological Traits During Plants’ Growth
3.2.4. Principal Component Analysis (PCA) on Drought-Tolerant and Drought-Susceptible Common Bean Landrace Accessions
4. Discussion
4.1. Identification of the Most Drought-Tolerant and -Susceptible Common Bean Landrace Accessions
4.2. Screening for Drought Tolerance During the Early Growth Stages
4.3. Morpho-Physiological Traits Related to Drought Tolerance in Common Bean Landrace Accessions
- (1)
- For the drought-tolerant common bean accessions, namely VE-0459 and VE-0277, PCA revealed that the gas exchange parameters at both the V4 and R5 stages were not altered by the NoIrrig treatment. Hence, mechanistically speaking, no substantial degree of stomatal closure occurred in response to water shortage, resulting in a sustained transpiration and preservation of the photosynthetic activity and yield, which was more evident at the Cerveteri site. However, in these bean accessions, it cannot be excluded that other morpho-physiological mechanisms may be employed to support the photosynthetic machinery and therefore maintain productivity under stressful conditions.
- (2)
- For the drought-susceptible common bean accessions, namely VE-0213 and VE-0183, PCA revealed that at the Alvito site, irrigated plants were separated from the non-irrigated ones by gas exchange parameters at the R5 stage, which indicated behavioral differences in the presence and absence of water. In particular, stomatal opening was reduced, resulting in a decreased transpiration rate and photosynthetic activity. This reduction was one of the likely causes of decreased photosynthetic biomass and, therefore productivity. Indeed, common bean has been reported to be very sensitive to drought stress during flowering [97]
- (3)
- At the Cerveteri site, PCA showed that for both the above drought-susceptible accessions, irrigated plants were separated from the non-irrigated ones by yield parameters, whereas no change in gas exchange was observed in response to water shortage. This suggests that other morpho-physiological mechanisms, apart from gas exchanges, may be negatively affected by water stress, resulting in poor growth and productivity. Among these mechanisms are shifts from primary to secondary metabolism and/or the redirection of assimilates toward the root system, at the expense of the aboveground vegetative and reproductive growth [104].
5. Conclusions
- The bean accessions used in field trials exhibited a remarkable degree of variability in response to the two different water regimes.
- The morpho-physiological traits considered were found to be less responsive to water shortage than yield parameters.
- A statistically significant Accession × Treatment interaction was found for almost all the yield parameters considered, suggesting that certain genotypes are more susceptible than others to water shortage. Based solely on drought tolerance indexes, the common bean accessions VE-0224, VE-0277, VE-0378, and VE-0459 were identified as drought-tolerant, whereas VE-0183, VE-0273, and VE-0287 were found to be susceptible to drought.
- When also considering the concept of “yield stability”, i.e., the ability to maintain comparatively high yields even under conditions of water scarcity, the bean accession VE-0277 was found to be the most promising, in terms of drought tolerance. However, VE-0224 and VE-0459 also exhibited satisfactory yield performances.
- The bean genotype pairs VE-0277/VE-0213 and VE-0459/VE-0183 could be considered of interest for studying the morpho-physiological and molecular mechanisms underlying drought tolerance in common bean. Additionally, they could be utilized to identify quantitative trait loci associated with water scarcity, which could be beneficially employed in breeding programs.
- Taken together, the results reported here also suggest that pre-screening under laboratory conditions, followed by targeted field trials, can constitute a reliable, efficient and resourceful combined approach, in which morpho-physiological traits measured on juvenile plants might play a role in predicting drought tolerance at the agronomic level.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IstatData. The Italian National Institute of Statistics Data Warehouse. 2024. Available online: http://dati.istat.it/Index.aspx?QueryId=33654&lang=en (accessed on 2 March 2024).
- Blair, M.W.; Díaz, L.M.; Buendía, H.F.; Duque, M.C. Genetic Diversity, Seed Size Associations and Population Structure of a Core Collection of Common Beans (Phaseolus vulgaris L.). Theor. Appl. Genet. 2009, 119, 955–972. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.C.; Sharma, T.R.; Tyagi, R.K.; Chahota, R.K.; Gautam, N.K.; Singh, M.; Sharma, P.N.; Ojha, S.N. Characterisation of 4274 Accessions of Common Bean (Phaseolus vulgaris L.) Germplasm Conserved in the Indian Gene Bank for Phenological, Morphological and Agricultural Traits. Euphytica 2015, 205, 441–457. [Google Scholar] [CrossRef]
- Blair, M.W.; González, L.F.; Kimani, P.M.; Butare, L. Genetic Diversity, Inter-Gene Pool Introgression and Nutritional Quality of Common Beans (Phaseolus vulgaris L.) from Central Africa. Theor. Appl. Genet. 2010, 121, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Beebe, S. Common Bean Breeding in the Tropics. In Plant Breeding Reviews; Janick, J., Ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 357–426. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; 184p. [Google Scholar]
- Villordo-Pineda, E.; González-Chavira, M.M.; Giraldo-Carbajo, P.; Acosta-Gallegos, J.A.; Caballero-Pérez, J. Identification of Novel Drought-Tolerant-Associated SNPs in Common Bean (Phaseolus vulgaris). Front. Plant Sci. 2015, 6, 546. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Blum, A. Drought Resistance, Water-Use Efficiency, and Yield Potential—Are They Compatible, Dissonant, or Mutually Exclusive? Aust. J. Agric. Res. 2005, 56, 1159. [Google Scholar] [CrossRef]
- Rao, I.M.; Beebe, S.E.; Polania, J.; Ricaurte, J.; Cajiao, C.; Garcia, R. Evaluation of drought resistance and associated traits in advanced lines. In Project IP-1: Bean Improvement for the Tropics Annual Report 2004; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2004; pp. 5–13. [Google Scholar]
- Rao, I.M.; Beebe, S.E.; Polania, J.; Grajales, M.A.; Garcia, R. Differences in drought resistance of advanced lines developed for the last 3 decades. In Project IP-1: Bean Improvement for the Tropics Annual Report 2006; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2006; pp. 2–6. [Google Scholar]
- Tapia, G.; Méndez, J.; Inostroza, L.; Lozano, C. Water Shortage Affects Vegetative and Reproductive Stages of Common Bean (Phaseolus vulgaris) Chilean Landraces, Differentially Impacting Grain Yield Components. Plants 2022, 11, 749. [Google Scholar] [CrossRef]
- Sponchiado, B.N.; White, J.W.; Castillo, J.A.; Jones, P.G. Root Growth of Four Common Bean Cultivars in Relation to Drought Tolerance in Environments with Contrasting Soil Types. Exp. Agric. 1989, 25, 249–257. [Google Scholar] [CrossRef]
- Polania, J.; Rao, I.M.; Cajiao, C.; Grajales, M.; Rivera, M.; Velasquez, F.; Raatz, B.; Beebe, S.E. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23–24 × SEA 5 of Common Bean. Front. Plant Sci. 2017, 8, 296. [Google Scholar] [CrossRef]
- Amede, T.; Schubert, S.; Stahr, K. Mechanisms of Drought Resistance in Grain Legumes I: Osmotic Adjustment. Sinet 2004, 26, 37–46. [Google Scholar] [CrossRef]
- Martínez, J.P.; Silva, H.; Ledent, J.F.; Pinto, M. Effect of Drought Stress on the Osmotic Adjustment, Cell Wall Elasticity and Cell Volume of Six Cultivars of Common Beans (Phaseolus vulgaris L.). Eur. J. Agron. 2007, 26, 30–38. [Google Scholar] [CrossRef]
- de Faria Müller, B.S.; Sakamoto, T.; Silveira, R.D.D.; Zambussi-Carvalho, P.F.; Pereira, M.; Pappas, G.J.; Do Carmo Costa, M.M.; Guimarães, C.M.; Pereira, W.J.; Brondani, C.; et al. Differentially Expressed Genes during Flowering and Grain Filling in Common Bean (Phaseolus vulgaris) Grown under Drought Stress Conditions. Plant Mol. Biol. Rep. 2014, 32, 438–451. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Li, L.; Wang, S. De Novo Assembly of the Common Bean Transcriptome Using Short Reads for the Discovery of Drought-Responsive Genes. PLoS ONE 2014, 9, e109262. [Google Scholar] [CrossRef] [PubMed]
- Pereira, W.J.; de Oliveira Melo, A.T.; Coelho, A.S.G.; Rodrigues, F.A.; Mamidi, S.; de Alencar, S.A.; Lanna, A.C.; Valdisser, P.A.M.R.; Brondani, C.; de Nascimento, I.R., Jr.; et al. Genome-Wide Analysis of the Transcriptional Response to Drought Stress in Root and Leaf of Common Bean. Genet. Mol. Biol. 2020, 43, e20180259. [Google Scholar] [CrossRef] [PubMed]
- Subramani, M.; Urrea, C.A.; Habib, R.; Bhide, K.; Thimmapuram, J.; Kalavacharla, V. Comparative Transcriptome Analysis of Tolerant and Sensitive Genotypes of Common Bean (Phaseolus vulgaris L.) in Response to Terminal Drought Stress. Plants 2023, 12, 210. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Sicard, D.; Nanni, L.; Porfiri, O.; Bulfon, D.; Papa, R. Genetic Diversity of Phaseolus vulgaris L. and P. coccineus L. Landraces in Central Italy. Plant Breed. 2005, 124, 464–472. [Google Scholar] [CrossRef]
- Lioi, L.; Nuzzi, A.; Campion, B.; Piergiovanni, A.R. Assessment of Genetic Variation in Common Bean (Phaseolus vulgaris L.) from Nebrodi Mountains (Sicily, Italy). Genet. Resour. Crop Evol. 2012, 59, 455–464. [Google Scholar] [CrossRef]
- Angioi, S.A.; Rau, D.; Rodriguez, M.; Logozzo, G.; Desiderio, F.; Papa, R.; Attene, G. Nuclear and Chloroplast Microsatellite Diversity in Phaseolus vulgaris L. from Sardinia (Italy). Mol. Breed. 2009, 23, 413–429. [Google Scholar] [CrossRef]
- Mercati, F.; Leone, M.; Lupini, A.; Sorgonà, A.; Bacchi, M.; Abenavoli, M.R.; Sunseri, F. Genetic Diversity and Population Structure of a Common Bean (Phaseolus vulgaris L.) Collection from Calabria (Italy). Genet. Resour. Crop Evol. 2013, 60, 839–852. [Google Scholar] [CrossRef]
- Scarano, D.; Rubio, F.; Ruiz, J.J.; Rao, R.; Corrado, G. Morphological and Genetic Diversity among and within Common Bean (Phaseolus vulgaris L.) Landraces from the Campania Region (Southern Italy). Sci. Hortic. 2014, 180, 72–78. [Google Scholar] [CrossRef]
- De Luca, D.; Cennamo, P.; Del Guacchio, E.; Di Novella, R.; Caputo, P. Conservation and Genetic Characterisation of Common Bean Landraces from Cilento Region (Southern Italy): High Differentiation in Spite of Low Genetic Diversity. Genetica 2018, 146, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Catarcione, G.; Paolacci, A.R.; Alicandri, E.; Gramiccia, E.; Taviani, P.; Rea, R.; Costanza, M.T.; De Lorenzis, G.; Puccio, G.; Mercati, F.; et al. Genetic Diversity and Population Structure of Common Bean (Phaseolus vulgaris L.) Landraces in the Lazio Region of Italy. Plants 2023, 12, 744. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, M.R.; Leone, M.; Sunseri, F.; Bacchi, M.; Sorgonà, A. Root Phenotyping For Drought Tolerance in Bean Landraces From Calabria (Italy). J. Agron. Crop Sci. 2016, 202, 1–12. [Google Scholar] [CrossRef]
- Berny Mier, Y.; Teran, J.C.; Konzen, E.R.; Medina, V.; Palkovic, A.; Ariani, A.; Tsai, S.M.; Gilbert, M.E.; Gepts, P. Root and Shoot Variation in Relation to Potential Intermittent Drought Adaptation of Mesoamerican Wild Common Bean (Phaseolus vulgaris L.). Ann. Bot. 2019, 124, 917–932. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Perea, C.G.; Terán, H.; Allen, R.G.; Wright, J.L.; Westermann, D.T.; Singh, S.P. Selection for Drought Resistance in Dry Bean Landraces and Cultivars. Crop Sci. 2006, 46, 2111–2120. [Google Scholar] [CrossRef]
- Singh, S.P. Drought Resistance in the Race Durango Dry Bean Landraces and Cultivars. Agron. J. 2007, 99, 1219–1225. [Google Scholar] [CrossRef]
- Beebe, S.E.; Rao, I.M.; Blair, M.W.; Acosta-Gallegos, J.A. Phenotyping Common Beans for Adaptation to Drought. Front. Physiol. 2013, 4, 35. [Google Scholar] [CrossRef]
- Sánchez-Reinoso, A.D.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Evaluation of Drought Indices to Identify Tolerant Genotypes in Common Bean Bush (Phaseolus vulgaris L.). J. Integr. Agric. 2020, 19, 99–107. [Google Scholar] [CrossRef]
- Mir, R.R.; Zaman-Allah, M.; Sreenivasulu, N.; Trethowan, R.; Varshney, R.K. Integrated Genomics, Physiology and Breeding Approaches for Improving Drought Tolerance in Crops. Theor. Appl. Genet. 2012, 125, 625–645. [Google Scholar] [CrossRef]
- Nei, M. The theory and estimation of genetic distance. In Genetic Structure of Populations; Morton, N.E., Ed.; University Press of Hawaii: Honolulu, HI, USA, 1973; pp. 45–54. [Google Scholar]
- Fan, M.; Zhu, J.; Richards, C.; Brown, K.M.; Lynch, J.P. Physiological Roles for Aerenchyma in Phosphorus-Stressed Roots. Funct. Plant Biol. 2003, 30, 493. [Google Scholar] [CrossRef]
- Fernandez, O.; Fernando, O.; Gepts, P.L.; Lopez Genes, M.; Arregoces, O. Stages of Development of the Common Bean Plant; Study Guide to be Used as a Supplement to the Audio-Tutorial Unit on the Same Topic; Series 04EB-09.03; CIAT—Centro Internacional de Agricultura Tropical: Cali, Colombia, 1986; 32p. [Google Scholar]
- Michel, B.E. Evaluation of the Water Potentials of Solutions of Polyethylene Glycol 8000 Both in the Absence and Presence of Other Solutes. Plant Physiol. 1983, 72, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Nagel, O. The Role of Biomass Allocation in the Growth Response of Plants to Different Levels of Light, CO2, Nutrients and Water: A Quantitative Review. Funct. Plant Biol. 2000, 27, 1191. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective selection criteria for assessing plant stress tolerance. In Adaptation of Food Crops to Temperature and Water Stress; Kuo, C.G., Ed.; Asian Vegetable Research Development Center: Shanhua, Taiwan, 1992; pp. 257–270, Publication number 93-410. [Google Scholar]
- Ober, E.S.; Clark, C.J.A.; Bloa, M.L.; Royal, A.; Jaggard, K.W.; Pidgeon, J.D. Assessing the Genetic Resources to Improve Drought Tolerance in Sugar Beet: Agronomic Traits of Diverse Genotypes under Droughted and Irrigated Conditions. Field Crops Res. 2004, 90, 213–234. [Google Scholar] [CrossRef]
- Fischer, K.S.; Johnson, E.C.; Edmeades, G.O. Breeding and selection for drought tolerance in tropical maize. In Drought Resistance in Crops with Emphasis on Rice; International Rice Research Institute: Los Baños, Laguna, Philippines, 1982; pp. 377–399. ISBN 971-104-078-6. [Google Scholar]
- Valladares, F.; Sanchez-Gomez, D.; Zavala, M.A. Quantitative Estimation of Phenotypic Plasticity: Bridging the Gap between the Evolutionary Concept and Its Ecological Applications. J. Ecol. 2006, 94, 1103–1116. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Dai, H.; Zheng, W.; Cao, F.; Zhang, G.; Sun, D.; Wu, F. Genotypic Differences in Physiological Characteristics in the Tolerance to Drought and Salinity Combined Stress between Tibetan Wild and Cultivated Barley. Plant Physiol. Biochem. 2013, 63, 49–60. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L. Long-Time Variations in Leaf Mass and Area of Mediterranean Evergreen Broad-Leaf and Narrow-Leaf Maquis Species. Photosynthetica 2006, 44, 161–168. [Google Scholar] [CrossRef]
- Flexas, J.; Carriquí, M.; Nadal, M. Gas Exchange and Hydraulics during Drought in Crops: Who Drives Whom? J. Exp. Bot. 2018, 69, 3791–3795. [Google Scholar] [CrossRef]
- González, L.; González-Vilar, M. Determination of relative water content. In Handbook of Plant Ecophysiology Techniques; Roger, M.R., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 207–212. [Google Scholar]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and Consequences of Variation in Leaf Mass per Area (LMA): A Meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Deshmukh, S.N.N.; Basu, M.S.; Reddy, P.S. Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian J. Agric. Sci. 1986, 56, 816–821. [Google Scholar]
- Yahiaoui, S.; Cuesta-Marcos, A.; Gracia, M.P.; Medina, B.; Lasa, J.M.; Casas, A.M.; Ciudad, F.J.; Montoya, J.L.; Moralejo, M.; Molina-Cano, J.L.; et al. Spanish Barley Landraces Outperform Modern Cultivars at Low-productivity Sites. Plant Breed. 2014, 133, 218–226. [Google Scholar] [CrossRef]
- Migliorini, P.; Spagnolo, S.; Torri, L.; Arnoulet, M.; Lazzerini, G.; Ceccarelli, S. Agronomic and Quality Characteristics of Old, Modern and Mixture Wheat Varieties and Landraces for Organic Bread Chain in Diverse Environments of Northern Italy. Eur. J. Agron. 2016, 79, 131–141. [Google Scholar] [CrossRef]
- Missio, J.C.; Rivera, A.; Figàs, M.R.; Casanova, C.; Camí, B.; Soler, S.; Simó, J. A Comparison of Landraces vs. Modern Varieties of Lettuce in Organic Farming During the Winter in the Mediterranean Area: An Approach Considering the Viewpoints of Breeders, Consumers, and Farmers. Front. Plant Sci. 2018, 9, 1491. [Google Scholar] [CrossRef] [PubMed]
- Marone, D.; Russo, M.A.; Mores, A.; Ficco, D.B.M.; Laidò, G.; Mastrangelo, A.M.; Borrelli, G.M. Importance of Landraces in Cereal Breeding for Stress Tolerance. Plants 2021, 10, 1267. [Google Scholar] [CrossRef] [PubMed]
- Nelimor, C.; Badu-Apraku, B.; Tetteh, A.Y.; N’guetta, A.S.P. Assessment of Genetic Diversity for Drought, Heat and Combined Drought and Heat Stress Tolerance in Early Maturing Maize Landraces. Plants 2019, 8, 518. [Google Scholar] [CrossRef] [PubMed]
- Fujita, D.; Trijatmiko, K.R.; Tagle, A.G.; Sapasap, M.V.; Koide, Y.; Sasaki, K.; Tsakirpaloglou, N.; Gannaban, R.B.; Nishimura, T.; Yanagihara, S.; et al. NAL1 Allele from a Rice Landrace Greatly Increases Yield in Modern Indica Cultivars. Proc. Natl. Acad. Sci. USA 2013, 110, 20431–20436. [Google Scholar] [CrossRef]
- Ishimaru, K.; Hirotsu, N.; Madoka, Y.; Murakami, N.; Hara, N.; Onodera, H.; Kashiwagi, T.; Ujiie, K.; Shimizu, B.; Onishi, A.; et al. Loss of Function of the IAA-Glucose Hydrolase Gene TGW6 Enhances Rice Grain Weight and Increases Yield. Nat. Genet. 2013, 45, 707–711. [Google Scholar] [CrossRef]
- Puglisi, D.; Landoni, M.; Cassani, E.; Toschi, I.; Lucchini, G.; Cesari, V.; Borlini, G.; Scapin, A.; Pilu, R. Traditional farmers’ varieties: A valuable source of genetic variability for biofortification programs. Maydica 2018, 63, 1–10. [Google Scholar]
- Ribeiro, N.D.; Santos, G.G.D.; Maziero, S.M.; Dos Santos, G.G. Genetic Diversity and Selection of Bean Landraces and Cultivars Based on Technological and Nutritional Traits. J. Food Compos. Anal. 2021, 96, 103721. [Google Scholar] [CrossRef]
- Papathanasiou, F.; Ninou, E.; Mylonas, I.; Baxevanos, D.; Papadopoulou, F.; Avdikos, I.; Sistanis, I.; Koskosidis, A.; Vlachostergios, D.N.; Stefanou, S.; et al. The Evaluation of Common Bean (Phaseolus vulgaris L.) Genotypes under Water Stress Based on Physiological and Agronomic Parameters. Plants 2022, 11, 2432. [Google Scholar] [CrossRef]
- Mutari, B.; Sibiya, J.; Shayanowako, A.; Chidzanga, C.; Matova, P.M.; Gasura, E. Genome-Wide Association Mapping for Component Traits of Drought Tolerance in Dry Beans (Phaseolus vulgaris L.). PLoS ONE 2023, 18, e0278500. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of Tree Mortality under Drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Martin-StPaul, N.K.; Limousin, J.; Vogt-Schilb, H.; Rodríguez-Calcerrada, J.; Rambal, S.; Longepierre, D.; Misson, L. The Temporal Response to Drought in a Mediterranean Evergreen Tree: Comparing a Regional Precipitation Gradient and a Throughfall Exclusion Experiment. Glob. Change Biol. 2013, 19, 2413–2426. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calcerrada, J.; Li, M.; López, R.; Cano, F.J.; Oleksyn, J.; Atkin, O.K.; Pita, P.; Aranda, I.; Gil, L. Drought-induced Shoot Dieback Starts with Massive Root Xylem Embolism and Variable Depletion of Nonstructural Carbohydrates in Seedlings of Two Tree Species. New Phytol. 2017, 213, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Blackman, C.J.; Creek, D.; Maier, C.; Aspinwall, M.J.; Drake, J.E.; Pfautsch, S.; O’Grady, A.; Delzon, S.; Medlyn, B.E.; Tissue, D.T.; et al. Drought Response Strategies and Hydraulic Traits Contribute to Mechanistic Understanding of Plant Dry-down to Hydraulic Failure. Tree Physiol. 2019, 39, 910–924. [Google Scholar] [CrossRef]
- Bartlett, M.K.; Scoffoni, C.; Sack, L. The Determinants of Leaf Turgor Loss Point and Prediction of Drought Tolerance of Species and Biomes: A Global Meta-analysis. Ecol. Lett. 2012, 15, 393–405. [Google Scholar] [CrossRef]
- Duursma, R.A.; Blackman, C.J.; Lopéz, R.; Martin-StPaul, N.K.; Cochard, H.; Medlyn, B.E. On the Minimum Leaf Conductance: Its Role in Models of Plant Water Use, and Ecological and Environmental Controls. New Phytol. 2019, 221, 693–705. [Google Scholar] [CrossRef]
- López, R.; Cano, F.J.; Martin-StPaul, N.K.; Cochard, H.; Choat, B. Coordination of Stem and Leaf Traits Define Different Strategies to Regulate Water Loss and Tolerance Ranges to Aridity. New Phytol. 2021, 230, 497–509. [Google Scholar] [CrossRef]
- Rosales-Serna, R.; Kohashi-Shibata, J.; Acosta-Gallegos, J.A.; Trejo-López, C.; Ortiz-Cereceres, J.; Kelly, J.D. Biomass Distribution, Maturity Acceleration and Yield in Drought-Stressed Common Bean Cultivars. Field Crop. Res. 2004, 85, 203–211. [Google Scholar] [CrossRef]
- Rao, I.M.; Beebe, S.E.; Polania, J.A.; Grajales, M.; Cajiao, C.; Garcia, R.; Ricaurte, J.; Rivera, M. Physiological basis of improved drought resistance in common bean: The contribution of photosynthate mobilization to grain. In Proceedings of the Interdrought III: The 3rd International Conference on Integrated Approaches to Improve Crop Production Under Drought-Prone Environments, Shanghai, China, 11–16 October 2009. [Google Scholar]
- Ramirez-Vallejo, P.; Kelly, J.D. Traits Related to Drought Resistance in Common Bean. Euphytica 1998, 99, 27–136. [Google Scholar] [CrossRef]
- Polania, J.A.; Grajales, M.; Cajiao, C.; Garcia, G.; Ricaurte, J.; Beebe, S.E.; Rao, M. Physiological Evaluation of Drought Resistance in Elite Lines of Common Bean (Phaseolus vulgaris L.) Under Field Conditions; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2008. [Google Scholar]
- Gourley, C.J.P.; Allan, D.L.; Russelle, M.P. Plant Nutrient Efficiency: A Comparison of Definitions and Suggested Improvement. Plant Soil 1994, 158, 29–37. [Google Scholar] [CrossRef]
- Sorgonà, A.; Abenavoli, M.R.; Gringeri, P.G.; Cacco, G. A Comparison of Nitrogen Use Efficiency Definitions in Citrus Rootstocks. Sci. Hortic. 2006, 109, 389–393. [Google Scholar] [CrossRef]
- Romano, A.; Sorgonà, A.; Lupini, A.; Araniti, F.; Stevanato, P.; Cacco, G.; Abenavoli, M.R. Morpho-Physiological Responses of Sugar Beet (Beta vulgaris L.) Genotypes to Drought Stress. Acta Physiol. Plant. 2013, 35, 853–865. [Google Scholar] [CrossRef]
- Tellah, S.; Badiani, M.; Trifilò, P.; Lo Gullo, M.A.; Ounane, G.; Ounane, S.M.; Sorgonà, A. Morpho-physiological traits contributing to water stress tolerance in a peanut (Arachis hypogaea L.) landraces collection from the Algerian Maghreb. Agrochimica 2014, 58, 126–147. [Google Scholar]
- Miklas, P.N.; Kelly, J.D.; Beebe, S.E.; Blair, M.W. Common Bean Breeding for Resistance against Biotic and Abiotic Stresses: From Classical to MAS Breeding. Euphytica 2006, 147, 105–131. [Google Scholar] [CrossRef]
- Silva, P.E.M.; Cavatte, P.C.; Morais, L.E.; Medina, E.F.; DaMatta, F.M. The Functional Divergence of Biomass Partitioning, Carbon Gain and Water Use in Coffea canephora in Response to the Water Supply: Implications for Breeding Aimed at Improving Drought Tolerance. Environ. Exp. Bot. 2013, 87, 49–57. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Sirault, X.R.R.; Furbank, R.T.; Jones, H.G. New Phenotyping Methods for Screening Wheat and Barley for Beneficial Responses to Water Deficit. J. Exp. Bot. 2010, 61, 3499–3507. [Google Scholar] [CrossRef]
- Sallam, A.; Dhanapal, A.P.; Liu, S. Association Mapping of Winter Hardiness and Yield Traits in Faba Bean (Vicia faba L.). Crop Pasture Sci. 2016, 67, 55. [Google Scholar] [CrossRef]
- Sallam, A.; Mourad, A.M.I.; Hussain, W.; Stephen Baenziger, P. Genetic Variation in Drought Tolerance at Seedling Stage and Grain Yield in Low Rainfall Environments in Wheat (Triticum aestivum L.). Euphytica 2018, 214, 169. [Google Scholar] [CrossRef]
- Ghanbari, A.A.; Mousavi, S.H.; Pessarakli, M. Accumulation of Reserve Compounds in Common Bean Seeds under Drought Stress. J. Plant Nutr. 2015, 38, 609–623. [Google Scholar] [CrossRef]
- Goggin, D.E.; Setter, T.L. Fructosyltransferase Activity and Fructan Accumulation during Development in Wheat Exposed to Terminal Drought. Funct. Plant Biol. 2004, 31, 11. [Google Scholar] [CrossRef]
- Yang, D.-L.; Jing, R.-L.; Chang, X.-P.; Li, W. Identification of Quantitative Trait Loci and Environmental Interactions for Accumulation and Remobilization of Water-Soluble Carbohydrates in Wheat (Triticum aestivum L.) Stems. Genetics 2007, 176, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Polania, J.; Poschenrieder, C.; Rao, I.; Beebe, S. Root Traits and Their Potential Links to Plant Ideotypes to Improve Drought Resistance in Common Bean. Theor. Exp. Plant Physiol. 2017, 29, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.P.; Trethowan, R.M. Physiological interventions in breeding for adaptation to abiotic stress. In Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations; Spiertz, J.H.J., Struik, P.C., van Laar, H.H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 129–146. [Google Scholar]
- Lugojan, C.; Ciulca, S. Evaluation of relative water content in winter wheat. J. Hortic. For. Biotechnol. 2011, 15, 173–177. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Quero, J.L.; Villar, R.; Marañón, T.; Zamora, R. Interactions of Drought and Shade Effects on Seedlings of Four Quercus Species: Physiological and Structural Leaf Responses. New Phytol. 2006, 170, 819–834. [Google Scholar] [CrossRef]
- De La Riva, E.G.; Olmo, M.; Poorter, H.; Ubera, J.L.; Villar, R. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLoS ONE 2016, 11, e0148788. [Google Scholar] [CrossRef]
- Nardini, A. Hard and Tough: The Coordination between Leaf Mechanical Resistance and Drought Tolerance. Flora 2022, 288, 152023. [Google Scholar] [CrossRef]
- Lees, G.L. Cuticle and Cell Wall Thickness: Relation to Mechanical Strength of Whole Leaves and Isolated Cells from Some Forage Legumes 1. Crop Sci. 1984, 24, 1077–1081. [Google Scholar] [CrossRef]
- Kawai, K.; Okada, N. How Are Leaf Mechanical Properties and Water-use Traits Coordinated by Vein Traits? A Case Study in Fagaceae. Funct. Ecol. 2016, 30, 527–536. [Google Scholar] [CrossRef]
- Scoffoni, C.; Albuquerque, C.; Brodersen, C.R.; Townes, S.V.; John, G.P.; Cochard, H.; Buckley, T.N.; McElrone, A.J.; Sack, L. Leaf Vein Xylem Conduit Diameter Influences Susceptibility to Embolism and Hydraulic Decline. New Phytol. 2017, 213, 1076–1092. [Google Scholar] [CrossRef]
- Degl’Innocenti, E.; Hafsi, C.; Guidi, L.; Navari-Izzo, F. The Effect of Salinity on Photosynthetic Activity in Potassium-Deficient Barley Species. J. Plant Physiol. 2009, 166, 1968–1981. [Google Scholar] [CrossRef] [PubMed]
- Misson, L.; Limousin, J.; Rodriguez, R.; Letts, M.G. Leaf Physiological Responses to Extreme Droughts in Mediterranean Quercus Ilex Forest. Plant Cell Environ. 2010, 33, 1898–1910. [Google Scholar] [CrossRef] [PubMed]
- Mathobo, R.; Marais, D.; Steyn, J.M. The Effect of Drought Stress on Yield, Leaf Gaseous Exchange and Chlorophyll Fluorescence of Dry Beans (Phaseolus vulgaris L.). Agric. Water Manag. 2017, 180, 118–125. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; He, Q.; Zhou, H. Stomatal Limitations to Photosynthesis and Their Critical Water Conditions in Different Growth Stages of Maize under Water Stress. Agric. Water Manag. 2020, 241, 106330. [Google Scholar] [CrossRef]
- Pirasteh-Anosheh, H.; Saed-Moucheshi, A.; Pakniyat, H.; Pessarakli, M. Stomatal Responses to Drought Stress. In Water Stress and Crop Plants; Ahmad, P., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 24–40. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G.; Shimizu, H. Plant Responses to Drought and Rewatering. Plant Signal. Behav. 2010, 5, 649–654. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, L.; Lai, J.; Zhao, H.; Song, W. Effects of Drought Stress and Water Recovery on Physiological Responses and Gene Expression in Maize Seedlings. BMC Plant Biol. 2018, 18, 68. [Google Scholar] [CrossRef]
- Rosales, M.A.; Ocampo, E.; Rodríguez-Valentín, R.; Olvera-Carrillo, Y.; Acosta-Gallegos, J.; Covarrubias, A.A. Physiological Analysis of Common Bean (Phaseolus vulgaris L.) Cultivars Uncovers Characteristics Related to Terminal Drought Resistance. Plant Physiol. Biochem. 2012, 56, 24–34. [Google Scholar] [CrossRef]
- Polania, J.A.; Salazar-Chavarría, V.; Gonzalez-Lemes, I.; Acosta-Maspons, A.; Chater, C.C.C.; Covarrubias, A.A. Contrasting Phaseolus Crop Water Use Patterns and Stomatal Dynamics in Response to Terminal Drought. Front. Plant Sci. 2022, 13, 894657. [Google Scholar] [CrossRef]
- Muktadir, M.A.; Adhikari, K.N.; Merchant, A.; Belachew, K.Y.; Vandenberg, A.; Stoddard, F.L.; Khazaei, H. Physiological and Biochemical Basis of Faba Bean Breeding for Drought Adaptation—A Review. Agronomy 2020, 10, 1345. [Google Scholar] [CrossRef]
Accession | SER | LAER | FoR | SER-RC | LAER-RC | FoR-RC | |||
---|---|---|---|---|---|---|---|---|---|
A 9.30 *** | A 4.49 *** | A 3.62 *** | |||||||
T 0.42 NS | T 28.57 *** | T 3.52 * | |||||||
A × T 1.85 * | A × T 1.50 * | A × T 1.78 * | |||||||
C | D | C | D | C | D | ||||
VE-0110 | 1.77 | 0.78 | 15.34 | 11.04 | 0.81 | 1.13 | 2.27 | 1.39 | 0.72 |
VE-0117 | 1.23 | 1.63 | 21.26 | 17.57 | 0.85 | 0.74 | 1.81 | 1.21 | 1.14 |
VE-0125 | 3.12 | 2.66 | 20.36 | 12.40 | 0.45 | 0.58 | 1.99 | 1.64 | 0.77 |
VE-0128 | 1.18 | 0.70 | 9.38 | 7.89 | 0.78 | 0.62 | 1.67 | 1.19 | 1.27 |
VE-0179 | 2.63 | 5.71 | 6.89 | 1.42 | 2.70 | 0.68 | 0.46 | 4.85 | 5.05 |
VE-0183 | 0.28 | 0.27 | 3.90 | 6.82 | 0.96 | 0.35 | 1.04 | 8.46 | 2.76 |
VE-0191 | 6.01 | 1.98 | 13.23 | 8.20 | 2.04 | 1.15 | 4.26 | 3.53 | 1.76 |
VE-0192 | 0.49 | 1.28 | 30.51 | 14.25 | 1.02 | 0.89 | 0.38 | 2.14 | 1.15 |
VE-0193 | 1.36 | 4.01 | 27.31 | 9.55 | 0.89 | 0.59 | 0.34 | 3.21 | 1.50 |
VE-0213 | 5.08 | 5.98 | 13.61 | 7.22 | 0.52 | 0.76 | 0.85 | 1.89 | 0.81 |
VE-0215 | 9.22 | 2.78 | 17.39 | 8.48 | 1.50 | 1.88 | 3.32 | 2.05 | 0.80 |
VE-0222 | 3.47 | 5.70 | 11.78 | 13.26 | 1.89 | 1.94 | 0.60 | 0.64 | 0.97 |
VE-0224 | 5.77 | 4.18 | 13.83 | 8.73 | 1.44 | 1.04 | 1.38 | 1.58 | 1.39 |
VE-0243 | 4.63 | 3.85 | 17.55 | 5.64 | 1.58 | 1.49 | 1.20 | 3.11 | 1.06 |
VE-0261 | 11.77 | 10.55 | 20.50 | 9.29 | 1.00 | 0.97 | 1.12 | 2.21 | 1.03 |
VE-0268 | 7.52 | 4.64 | 9.17 | 6.25 | 1.37 | 1.06 | 1.62 | 3.05 | 1.29 |
VE-0273 | 1.81 | 1.88 | 14.73 | 13.60 | 1.03 | 0.95 | 0.96 | 1.08 | 1.09 |
VE-0277 | 9.12 | 3.87 | 8.75 | 6.13 | 1.37 | 2.18 | 2.36 | 1.43 | 0.63 |
VE-0287 | 4.73 | 4.00 | 7.76 | 4.65 | 1.43 | 1.01 | 1.18 | 1.67 | 1.42 |
VE-0378 | 0.87 | 1.56 | 7.81 | 11.53 | 0.44 | 0.80 | 0.56 | 0.68 | 0.55 |
VE-0459 | 6.04 | 9.19 | 16.06 | 12.44 | 0.79 | 1.53 | 0.66 | 1.29 | 0.51 |
VE-0472 | 2.02 | 2.26 | 20.92 | 23.53 | 0.97 | 0.76 | 0.89 | 0.89 | 1.27 |
VE-0473 | 1.38 | 1.39 | 26.95 | 10.88 | 1.42 | 0.86 | 2.21 | 2.48 | 1.64 |
VE-0571 | 1.71 | 3.74 | 10.11 | 7.17 | 2.01 | 1.25 | 0.45 | 1.90 | 1.55 |
Landrace Accession | ShDW | Landrace Accession | LDW | ||
---|---|---|---|---|---|
DTI | DTE | DTI | DTE | ||
VE-0277 | 2.59 | 213 | VE-0277 | 2.35 | 194 |
VE-0459 | 1.61 | 133 | VE-0378 | 1.58 | 130 |
VE-0224 | 1.60 | 132 | VE-0459 | 1.47 | 121 |
VE-0117 | 1.46 | 120 | VE-0224 | 1.43 | 118 |
VE-0378 | 1.45 | 120 | VE-0117 | 1.28 | 106 |
VE-0273 | 1.30 | 107 | VE-0287 | 1.22 | 100 |
VE-0110 | 1.21 | 100 | VE-0273 | 1.19 | 98 |
VE-0287 | 1.17 | 96 | VE-0110 | 1.12 | 92 |
VE-0571 | 1.07 | 88 | VE-0571 | 1.06 | 87 |
VE-0473 | 1.06 | 87 | VE-0243 | 1.01 | 83 |
VE-0268 | 1.06 | 87 | VE-0473 | 1.01 | 83 |
VE-0243 | 1.04 | 86 | VE-0472 | 1.01 | 83 |
VE-0128 | 1.03 | 85 | VE-0268 | 1.01 | 83 |
VE-0192 | 1.02 | 84 | VE-0192 | 1.00 | 82 |
VE-0472 | 0.99 | 82 | VE-0128 | 0.98 | 81 |
VE-0215 | 0.98 | 81 | VE-0222 | 0.98 | 81 |
VE-0222 | 0.97 | 80 | VE-0215 | 0.94 | 78 |
VE-0125 | 0.78 | 64 | VE-0125 | 0.75 | 62 |
VE-0213 | 0.77 | 63 | VE-0213 | 0.72 | 59 |
VE-0261 | 0.69 | 56 | VE-0191 | 0.71 | 58 |
VE-0191 | 0.67 | 55 | VE-0261 | 0.67 | 56 |
VE-0193 | 0.57 | 47 | VE-0193 | 0.51 | 42 |
VE-0183 | 0.50 | 41 | VE-0183 | 0.48 | 40 |
VE-0179 | 0.22 | 18 | VE-0179 | 0.19 | 15 |
Accession | FWP | Accession | SY | Accession | 100SW | Accession | NP | Accession | NS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DTI | DTE | DTI | DTE | DTI | DTE | DTI | DTE | DTI | DTE | |||||
VE-0277 | 1.31 | 93.22 | VE-0378 | 1.30 | 88.02 | Cannellino A | 1.06 | 101.1 | VE-0277 | 1.32 | 100.8 | VE-0277 | 1.18 | 111.0 |
VE-0459 | 1.29 | 91.40 | VE-0459 | 1.29 | 87.73 | VE-0287 | 1.05 | 100.2 | VE-0459 | 1.30 | 99.5 | VE-0459 | 1.04 | 97.7 |
VE-0224 | 1.27 | 90.19 | VE-0277 | 1.29 | 87.70 | VE-0378 | 1.03 | 98.4 | VE-0224 | 1.28 | 97.9 | VE-0378 | 1.03 | 96.9 |
VE-0378 | 1.26 | 89.41 | VE-0224 | 1.27 | 86.46 | VE-0273 | 1.02 | 97.5 | VE-0378 | 1.20 | 91.4 | VE-0117 | 1.02 | 95.5 |
VE-0117 | 1.08 | 76.77 | VE-0117 | 1.01 | 68.73 | VE-0183 | 1.02 | 97.3 | VE-0117 | 1.08 | 82.3 | VE-0224 | 1.01 | 94.3 |
Cannellino A | 0.88 | 62.84 | Cannellino A | 0.97 | 65.46 | VE-0224 | 1.01 | 96.1 | VE-0213 | 1.07 | 81.9 | Borlotto G | 0.99 | 92.6 |
VE-0213 | 0.88 | 62.40 | VE-0213 | 0.87 | 58.96 | VE-0459 | 1.01 | 95.9 | Borlotto G | 0.95 | 73.0 | VE-0273 | 0.98 | 91.6 |
VE-0183 | 0.80 | 56.90 | VE-0183 | 0.84 | 57.26 | VE-0277 | 0.99 | 94.9 | VE-0183 | 0.90 | 68.7 | VE-0183 | 0.98 | 91.4 |
VE-0287 | 0.79 | 56.42 | Borlotto G | 0.84 | 57.12 | VE-0117 | 0.99 | 94.3 | VE-0287 | 0.83 | 63.2 | VE-0213 | 0.97 | 90.8 |
Borlotto G | 0.79 | 56.37 | VE-0287 | 0.77 | 51.99 | VE-0213 | 0.94 | 89.8 | Cannellino A | 0.74 | 56.3 | VE-0287 | 0.94 | 88.2 |
VE-0273 | 0.66 | 46.77 | VE-0273 | 0.63 | 43.05 | Borlotto G | 0.93 | 88.7 | VE-0273 | 0.70 | 53.9 | Cannellino A | 0.90 | 84.7 |
Accession | FWP | Accession | SY | Accession | 100SW | Accession | NP | Accession | NS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DTI | DTE | DTI | DTE | DTI | DTE | DTI | DTE | DTI | DTE | |||||
VE-0277 | 1.30 | 92.10 | VE-0378 | 1.40 | 95.24 | Borlotto G | 1.08 | 102.57 | VE-0378 | 1.31 | 100.34 | VE-0277 | 1.10 | 102.88 |
VE-0224 | 1.28 | 90.88 | VE-0224 | 1.36 | 92.18 | VE-0378 | 1.07 | 101.93 | VE-0277 | 1.25 | 95.53 | VE-0287 | 1.08 | 101.11 |
VE-0378 | 1.26 | 89.73 | VE-0277 | 1.25 | 84.71 | VE-0273 | 1.06 | 101.52 | VE-0459 | 1.24 | 95.01 | VE-0213 | 1.06 | 99.35 |
VE-0459 | 1.17 | 83.47 | VE-0459 | 1.21 | 82.12 | VE-0459 | 1.06 | 101.29 | VE-0224 | 1.21 | 92.78 | Cannellino A | 1.05 | 98.16 |
VE-0117 | 1.12 | 79.66 | VE-0117 | 1.14 | 77.61 | VE-0224 | 1.05 | 99.87 | VE-0213 | 1.16 | 88.54 | VE-0378 | 1.05 | 97.95 |
VE-0213 | 1.10 | 78.17 | Cannellino A | 1.07 | 72.52 | VE-0277 | 1.05 | 99.81 | Cannellino A | 1.06 | 80.69 | VE-0224 | 1.05 | 97.91 |
Cannellino A | 1.03 | 73.25 | Borlotto G | 1.06 | 71.78 | VE-0183 | 1.04 | 99.38 | VE-0117 | 1.04 | 79.26 | Borlotto G | 1.03 | 96.47 |
Borlotto G | 1.00 | 71.15 | VE-0287 | 0.95 | 64.28 | VE-0287 | 1.04 | 99.36 | Borlotto G | 0.96 | 73.11 | VE-0183 | 1.03 | 96.23 |
VE-0287 | 0.94 | 66.58 | VE-0213 | 0.91 | 61.78 | Cannellino A | 1.02 | 97.38 | VE-0273 | 0.95 | 72.29 | VE-0459 | 1.01 | 94.93 |
VE-0183 | 0.89 | 63.45 | VE-0183 | 0.84 | 57.10 | VE-0213 | 0.92 | 87.98 | VE-0287 | 0.93 | 71.28 | VE-0273 | 1.01 | 94.82 |
VE-0273 | 0.81 | 57.60 | VE-0273 | 0.79 | 53.79 | VE-0117 | 0.89 | 85.07 | VE-0183 | 0.88 | 67.28 | VE-0117 | 0.99 | 92.96 |
CERVETERI | FWP | SY | 100SW | NP | NS | |||||
---|---|---|---|---|---|---|---|---|---|---|
p | R2 | p | R2 | p | R2 | p | R2 | p | R2 | |
V4-NPR | 0.118 | 0.25 | 0.073 | 0.318 | 0.356 | 0.095 | 0.141 | 0.223 | 0.208 | 0.167 |
V4-SC | 0.020 | 0.490 | 0.013 | 0.542 | 0.755 | 0.012 | 0.035 | 0.417 | 0.073 | 0.318 |
V4-TR | 0.009 | 0.583 | 0.006 | 0.625 | 0.903 | 0.002 | 0.016 | 0.516 | 0.079 | 0.308 |
R5-NPR | 0.979 | 8.2 × 10−5 | 0.704 | 0.016 | 0.989 | 8.2 × 10−5 | 0.653 | 0.024 | 0.903 | 0.002 |
R5-SC | 0.410 | 0.074 | 0.426 | 0.069 | 0.624 | 0.027 | 0.871 | 0.003 | 0.978 | 8.2 × 10−5 |
R5-TR | 0.548 | 0.040 | 0.586 | 0.033 | 0.724 | 0.014 | 0.989 | 8.2 × 10−5 | 0.539 | 0.044 |
R8-NPR | 0.182 | 0.190 | 0.087 | 0.298 | 0.714 | 0.016 | 0.248 | 0.146 | 0.031 | 0.440 |
R8-SC | 0.485 | 0.056 | 0.614 | 0.030 | 0.056 | 0.36 | 0.293 | 0.119 | 0.558 | 0.040 |
R8-TR | 0.903 | 0.002 | 0.989 | 8.2 × 10−5 | 0.121 | 0.25 | 0.159 | 0.207 | 0.673 | 0.021 |
V4-LMA | 0.860 | 0.004 | 0.818 | 0.007 | 0.673 | 0.021 | 0.765 | 0.010 | 0.129 | 0.241 |
V4-RWC | 0.097 | 0.278 | 0.035 | 0.417 | 0.924 | 0.001 | 0.478 | 0.056 | 0.054 | 0.360 |
R5-LMA | 0.968 | 0.000 | 0.860 | 0.004 | 0.129 | 0.241 | 0.724 | 0.014 | 0.273 | 0.132 |
R5-RWC | 0.097 | 0.278 | 0.118 | 0.25 | 0.460 | 0.060 | 0.159 | 0.207 | 0.379 | 0.084 |
R8-LMA | 0.468 | 0.060 | 0.214 | 0.167 | 0.410 | 0.074 | 0.100 | 0.278 | 0.087 | 0.297 |
R8-RWC | 0.188 | 0.183 | 0.231 | 0.153 | 0.168 | 0.198 | 0.624 | 0.027 | 0.605 | 0.030 |
ALVITO | ||||||||||
V4-NPR | 0.356 | 0.096 | 0.313 | 0.113 | 0.557 | 0.040 | 0.881 | 0.003 | 0.775 | 0.010 |
V4-SC | 0.299 | 0.119 | 0.273 | 0.132 | 0.154 | 0.215 | 0.828 | 0.005 | 0.902 | 0.002 |
V4-TR | 0.653 | 0.024 | 0.653 | 0.024 | 0.173 | 0.198 | 0.426 | 0.069 | 0.935 | 0.001 |
R5-NPR | 0.037 | 0.417 | 0.056 | 0.360 | 0.129 | 0.241 | 0.807 | 0.007 | 0.039 | 0.409 |
R5-SC | 0.009 | 0.583 | 0.005 | 0.640 | 0.0313 | 0.113 | 0.286 | 0.126 | 0.034 | 0.426 |
R5-TR | 0.009 | 0.583 | 0.005 | 0.640 | 0.0313 | 0.113 | 0.286 | 0.126 | 0.034 | 0.426 |
R8-NPR | 0.066 | 0.338 | 0.052 | 0.371 | 0.114 | 0.259 | 0.468 | 0.060 | 0.416 | 0.075 |
R8-SC | 0.040 | 0.405 | 0.061 | 0.349 | 0.107 | 0.268 | 0.693 | 0.019 | 0.400 | 0.080 |
R8-TR | 0.040 | 0.405 | 0.061 | 0.349 | 0.107 | 0.268 | 0.693 | 0.019 | 0.400 | 0.080 |
V4-LMA | 0.048 | 0.382 | 0.163 | 0.207 | 0.776 | 0.010 | 1.00 | 0.000 | 0.252 | 0.144 |
V4-RWC | 0.173 | 0.198 | 0.061 | 0.349 | 0.443 | 0.065 | 0.071 | 0.328 | 0.015 | 0.527 |
R5-LMA | 0.015 | 0.529 | 0.007 | 0.611 | 0.807 | 0.007 | 0.061 | 0.349 | 0.003 | 0.698 |
R5-RWC | 0.724 | 0.014 | 0.724 | 0.014 | 0.306 | 0.113 | 1.000 | 0.000 | 0.565 | 0.037 |
R8-LMA | 0.003 | 0.699 | 0.002 | 0.730 | 0.892 | 0.002 | 0.100 | 0.278 | 0.034 | 0.426 |
R8-RWC | 0.673 | 0.021 | 0.327 | 0.107 | 0.090 | 0.288 | 0.004 | 0.669 | 0.967 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alicandri, E.; Badiani, E.; Paolacci, A.R.; Lo Presti, E.; Caridi, R.; Rea, R.; Pati, F.; Badiani, M.; Ciaffi, M.; Sorgonà, A. Screening for Drought Tolerance Within a Common Bean (Phaseolus vulgaris L.) Landrace Accessions Core Collection from the Lazio Region of Italy. Plants 2024, 13, 3132. https://doi.org/10.3390/plants13223132
Alicandri E, Badiani E, Paolacci AR, Lo Presti E, Caridi R, Rea R, Pati F, Badiani M, Ciaffi M, Sorgonà A. Screening for Drought Tolerance Within a Common Bean (Phaseolus vulgaris L.) Landrace Accessions Core Collection from the Lazio Region of Italy. Plants. 2024; 13(22):3132. https://doi.org/10.3390/plants13223132
Chicago/Turabian StyleAlicandri, Enrica, Ester Badiani, Anna Rita Paolacci, Emilio Lo Presti, Roberta Caridi, Roberto Rea, Francesco Pati, Maurizio Badiani, Mario Ciaffi, and Agostino Sorgonà. 2024. "Screening for Drought Tolerance Within a Common Bean (Phaseolus vulgaris L.) Landrace Accessions Core Collection from the Lazio Region of Italy" Plants 13, no. 22: 3132. https://doi.org/10.3390/plants13223132
APA StyleAlicandri, E., Badiani, E., Paolacci, A. R., Lo Presti, E., Caridi, R., Rea, R., Pati, F., Badiani, M., Ciaffi, M., & Sorgonà, A. (2024). Screening for Drought Tolerance Within a Common Bean (Phaseolus vulgaris L.) Landrace Accessions Core Collection from the Lazio Region of Italy. Plants, 13(22), 3132. https://doi.org/10.3390/plants13223132