When Light Is Crucial, but Wind Is Rather Trivial: A Basil Case Study
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material and Experimental Conditions
3.2. Measurements of Photosynthetic Pigments and Anthocyanins
3.3. Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kokkini, S.; Karousou, R.; Hanlidou, E. HERBS | Herbs of the Labiatae. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 3082–3090. ISBN 978-0-12-227055-0. [Google Scholar]
- Marwat, S.K.; Khan, M.S.; Ghulam, S.; Anwar, N.; Mustafa, G.; Usman, K. Phytochemical Constituents and Pharmacological Activities of Sweet Basil-Ocimum basilicum L. (Lamiaceae). Asian J. Chem. 2011, 23, 10. [Google Scholar]
- Sifola, M.I.; Barbieri, G. Growth, Yield and Essential Oil Content of Three Cultivars of Basil Grown under Different Levels of Nitrogen in the Field. Sci. Hortic. 2006, 108, 408–413. [Google Scholar] [CrossRef]
- Kiferle, C.; Maggini, R.; Pardossi, A. Influence of Nitrogen Nutrition on Growth and Accumulation of Rosmarinic Acid in Sweet Basil (Ocimum basilicum L.) Grown in Hydroponic Culture. Aust. J. Crop Sci. 2013, 7, 321–327. [Google Scholar]
- Nguyen, P.M.; Niemeyer, E.D. Effects of Nitrogen Fertilization on the Phenolic Composition and Antioxidant Properties of Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2008, 56, 8685–8691. [Google Scholar] [CrossRef] [PubMed]
- Nurzynska-Wierdak, R. Essential Oil Composition of Sweet Basil Cultivars as Affected by Nitrogen and Potassium Fertilization. Turk. J. Agric. For. 2013, 37, 427–436. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, K.; Chen, L. Response of Photosynthetic Plasticity of Paeonia Suffruticosa to Changed Light Environments. Environ. Exp. Bot. 2003, 49, 121–133. [Google Scholar] [CrossRef]
- Gonçalves, J.F.d.C.; Barreto, D.C.d.S.; Santos Junior, U.M.d.; Fernandes, A.V.; Sampaio, P.d.T.B.; Buckeridge, M.S. Growth, Photosynthesis and Stress Indicators in Young Rosewood Plants (Aniba Rosaeodora Ducke) under Different Light Intensities. Braz. J. Plant Physiol. 2005, 17, 325–334. [Google Scholar] [CrossRef]
- Muraoka, H.; Tang, Y.; Koizumi, H.; Washitani, I. Effects of Light and Soil Water Availability on Leaf Photosynthesis and Growth of Arisaema Heterophyllum, a Riparian Forest Understorey Plant. J. Plant Res. 2002, 115, 419–427. [Google Scholar] [CrossRef]
- Paiva, É.A.S.; Isaias, R.M.d.S.; Vale, F.H.A.; Queiroz, C.G.d.S. The Influence of Light Intensity on Anatomical Structure and Pigment Contents of Tradescantia Pallida (Rose) Hunt. Cv. Purpurea Boom (Commelinaceae) Leaves. Braz. Arch. Biol. Technol. 2003, 46, 617–624. [Google Scholar] [CrossRef]
- Czeczuga, B. Carotenoid Contents in Leaves Grown under Various Light Intensities. Biochem. Syst. Ecol. 1987, 15, 523–527. [Google Scholar] [CrossRef]
- Zervoudakis, G.; Salahas, G.; Kaspiris, G.; Konstantopoulou, E. Influence of Light Intensity on Growth and Physiological Characteristics of Common Sage (Salvia officinalis L.). Braz. Arch. Biol. Technol. 2012, 55, 89–95. [Google Scholar] [CrossRef]
- Fan, L.; Tarin, M.; Hu, W.; Han, Y.; Rong, J.; Chen, L.; He, T.; Zheng, Y. Changes in Light Intensity Affect Leaf Gas Exchange, Chlorophyll Fluorescence, and Nonstructural Carbohydrates of Ma Bamboo (Dendrocalamus Latiflorus Munro). Appl. Ecol. Environ. Res. 2022, 20, 1269–1284. [Google Scholar] [CrossRef]
- Hui, J.; Wu, C.; Li, X.; Huang, L.; Jiang, Y.; Zhang, B. The Effect of Light Availability on Photosynthetic Responses of Four Aglaonema Commutatum Cultivars with Contrasting Leaf Pigment. Appl. Sci. 2023, 13, 3021. [Google Scholar] [CrossRef]
- Werger, L.; Bergmann, J.; Weber, E.; Heinze, J. Wind Intensity Affects Fine Root Morphological Traits with Consequences for Plant-Soil Feedback Effects. AoB Plants 2020, 12, plaa050. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Werger, L.; Ogden, M.; Heinken, T.; Hoefgen, R.; Weber, E. Short Wind Pulses Consistently Change the Morphology of Roots, but Not of Shoots, across Young Plants of Different Growth Forms. Stress Biol. 2023, 3, 43. [Google Scholar] [CrossRef]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind Impacts on Plant Growth, Mechanics and Damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- de Langre, E. Effects of Wind on Plants. Annu. Rev. Fluid Mech. 2008, 40, 141–168. [Google Scholar] [CrossRef]
- Burgess, A.J.; Retkute, R.; Preston, S.P.; Jensen, O.E.; Pound, M.P.; Pridmore, T.P.; Murchie, E.H. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis. Front. Plant Sci. 2016, 7, 1392. [Google Scholar] [CrossRef]
- Eskandarzade, P.; Zare Mehrjerdi, M.; Didaran, F.; Gruda, N.S.; Aliniaeifard, S. Shading Level and Harvest Time Affect the Photosynthetic and Physiological Properties of Basil Varieties. Agronomy 2023, 13, 2478. [Google Scholar] [CrossRef]
- Porter, B.W.; Zhu, Y.J.; Webb, D.T.; Christopher, D.A. Novel Thigmomorphogenetic Responses in Carica Papaya: Touch Decreases Anthocyanin Levels and Stimulates Petiole Cork Outgrowths. Ann. Bot. 2009, 103, 847–858. [Google Scholar] [CrossRef]
- Umesh, M.R.; Angadi, S.; Begna, S.; Gowda, P.; Prasad, P.V.V. Shade Tolerance Response of Legumes in Terms of Biomass Accumulation, Leaf Photosynthesis, and Chlorophyll Pigment under Reduced Sunlight. Crop Sci. 2023, 63, 278–292. [Google Scholar] [CrossRef]
- Sato, R.; Ito, H.; Tanaka, A. Chlorophyll b Degradation by Chlorophyll b Reductase under High-Light Conditions. Photosynth. Res. 2015, 126, 249–259. [Google Scholar] [CrossRef]
- Luo, T.Q.; Zhao, W.Z.; Zhang, Y.Z.; Xu, S.R.; Xiao, W.; Li, L. Effect of Strong Light on Chlorophyll Degradation in Strawberry Leaves. Russ. J. Plant Physiol. 2023, 69, 163. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Bantis, F.; Radoglou, K. Testing the Potential of LEDs to Enhance Growth and Quality Characteristics of Salvia Fruticosa. Hortic. Sci. 2019, 46, 98–106. [Google Scholar] [CrossRef]
- An, X.; Tan, T.; Zhang, X.; Guo, X.; Zhu, Y.; Song, Z.; Wang, D. Effects of Light Intensity on Endogenous Hormones and Key Enzyme Activities of Anthocyanin Synthesis in Blueberry Leaves. Horticulturae 2023, 9, 618. [Google Scholar] [CrossRef]
- Zhou, Y.; Singh, B.R. Effect of Light on Anthocyanin Levels in Submerged, Harvested Cranberry Fruit. BioMed Res. Int. 2004, 2004, 914571. [Google Scholar] [CrossRef]
- Trojak, M.; Skowron, E. Role of Anthocyanins in High-Light Stress Response. World Sci. News 2017, 81, 150–168. [Google Scholar]
- Zhao, Y.-W.; Wang, C.-K.; Huang, X.-Y.; Hu, D.-G. Anthocyanin Stability and Degradation in Plants. Plant Signal. Behav. 2021, 16, 1987767. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The Effect of Bunch Shading on Berry Development and Flavonoid Accumulation in Shiraz Grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- He, Q.; Ren, Y.; Zhao, W.; Li, R.; Zhang, L. Low Temperature Promotes Anthocyanin Biosynthesis and Related Gene Expression in the Seedlings of Purple Head Chinese Cabbage (Brassica rapa L.). Genes 2020, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Do, V.G.; Lee, Y.; Kim, J.-H.; Kwon, Y.-S.; Park, J.-T.; Yang, S.; Park, J.; Win, N.M.; Kim, S. The Synergistic Effects of Environmental and Genetic Factors on the Regulation of Anthocyanin Accumulation in Plant Tissues. Int. J. Mol. Sci. 2023, 24, 12946. [Google Scholar] [CrossRef] [PubMed]
- Leivar, P.; Quail, P.H. PIFs: Pivotal Components in a Cellular Signaling Hub. Trends Plant Sci. 2011, 16, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Leivar, P.; Monte, E. PIFs: Systems Integrators in Plant Development. Plant Cell 2014, 26, 56–78. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.N.; Kathare, P.K.; Huq, E. Phytochromes and Phytochrome Interacting Factors. Plant Physiol. 2018, 176, 1025–1038. [Google Scholar] [CrossRef]
- Casal, J.J. Shade Avoidance. Arab. Book 2012, 10, e0157. [Google Scholar] [CrossRef]
- Fan, X.-X.; Xu, Z.-G.; Liu, X.-Y.; Tang, C.-M.; Wang, L.-W.; Han, X. Effects of Light Intensity on the Growth and Leaf Development of Young Tomato Plants Grown under a Combination of Red and Blue Light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Bárcena, A.; Graciano, C.; Luca, T.; Guiamet, J.J.; Costa, L. Shade Cloths and Polyethylene Covers Have Opposite Effects on Tipburn Development in Greenhouse Grown Lettuce. Sci. Hortic. 2019, 249, 93–99. [Google Scholar] [CrossRef]
- Fu, W.; Li, P.; Wu, Y.; Tang, J. Effects of Different Light Intensities on Anti-Oxidative Enzyme Activity, Quality and Biomass in Lettuce. Hortic. Sci. 2012, 39, 129–134. [Google Scholar] [CrossRef]
- Ghorbanzadeh, P.; Aliniaeifard, S.; Esmaeili, M.; Mashal, M.; Azadegan, B.; Seif, M. Dependency of Growth, Water Use Efficiency, Chlorophyll Fluorescence, and Stomatal Characteristics of Lettuce Plants to Light Intensity. J. Plant Growth Regul. 2021, 40, 2191–2207. [Google Scholar] [CrossRef]
- Retuerto, R.; Woodward, F.I. The Influences of Increased CO2 and Water Supply on Growth, Biomass Allocation and Water Use Efficiency of Sinapis alba L. Grown under Different Wind Speeds. Oecologia 1993, 94, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, S.J.; Or, D. Wind Increases Leaf Water Use Efficiency. Plant Cell Environ. 2016, 39, 1448–1459. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, G.; Cui, Q.; Huang, Z.; Ye, X.; Cornelissen, J.H.C. New Field Wind Manipulation Methodology Reveals Adaptive Responses of Steppe Plants to Increased and Reduced Wind Speed. Plant Methods 2021, 17, 5. [Google Scholar] [CrossRef] [PubMed]
- Ezziddine, M.; Liltved, H. Quality and Yield of Lettuce in an Open-Air Rooftop Hydroponic System. Agronomy 2021, 11, 2586. [Google Scholar] [CrossRef]
- Cohen, Y.; Ben-Naim, Y. Nocturnal Fanning Suppresses Downy Mildew Epidemics in Sweet Basil. PLoS ONE 2016, 11, e0155330. [Google Scholar] [CrossRef]
- Halin, Z.; Jin, L.; Ruilian, Z.; Jianying, Y.; Jing, F.; Na, S. Effects of wind frequency on the rates of photosynthesis and transpiration in Pinus sylvestris var. mongolica seedlings. Acta Ecol. Sin. 2017, 37, 1431–1437. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. [34] Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Plant Cell Membranes; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
Day of Measurement | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | 0 | 5 | 7 | 9 | 13 | 16 | 21 | 24 | 27 | 31 | 34 | 37 | 39 | |
SPAD | L vs. LW | ns | ns | ns | ns | ns | ns | ** | ns | ns | ns | ns | *** | ns |
L vs. S | ns | ns | ns | ns | ns | *** | **** | **** | **** | **** | **** | **** | **** | |
L vs. SW | ** | ns | ns | ns | ns | ** | **** | **** | **** | **** | **** | **** | **** | |
LW vs. S | ns | ns | ns | ns | ns | ** | ** | **** | **** | **** | **** | **** | **** | |
LW vs. SW | ** | ns | ns | ns | ns | * | *** | *** | **** | **** | **** | **** | **** | |
S vs. SW | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
ACM | L vs. LW | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
L vs. S | * | ns | ** | ns | ns | *** | **** | **** | **** | **** | **** | **** | **** | |
L vs. SW | ns | ns | ns | ns | ns | *** | **** | **** | **** | **** | **** | **** | **** | |
LW vs. S | ** | ns | * | ns | ns | ns | **** | **** | **** | **** | **** | **** | **** | |
LW vs. SW | ns | ns | ns | ns | ns | ns | **** | **** | **** | **** | **** | **** | **** | |
S vs. SW | *** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florou, E.; Politi, A.; Andreadaki, E.; Vrakas, K.; Spaliara, H.; Neli, A.; Koulopoulou, C.E.; Koulopoulos, A.; Bantis, F.; Zervoudakis, G. When Light Is Crucial, but Wind Is Rather Trivial: A Basil Case Study. Plants 2024, 13, 3221. https://doi.org/10.3390/plants13223221
Florou E, Politi A, Andreadaki E, Vrakas K, Spaliara H, Neli A, Koulopoulou CE, Koulopoulos A, Bantis F, Zervoudakis G. When Light Is Crucial, but Wind Is Rather Trivial: A Basil Case Study. Plants. 2024; 13(22):3221. https://doi.org/10.3390/plants13223221
Chicago/Turabian StyleFlorou, Efterpi, Angela Politi, Evangelia Andreadaki, Konstantinos Vrakas, Hariklia Spaliara, Alexandros Neli, Christina Eleni Koulopoulou, Athanasios Koulopoulos, Filippos Bantis, and George Zervoudakis. 2024. "When Light Is Crucial, but Wind Is Rather Trivial: A Basil Case Study" Plants 13, no. 22: 3221. https://doi.org/10.3390/plants13223221
APA StyleFlorou, E., Politi, A., Andreadaki, E., Vrakas, K., Spaliara, H., Neli, A., Koulopoulou, C. E., Koulopoulos, A., Bantis, F., & Zervoudakis, G. (2024). When Light Is Crucial, but Wind Is Rather Trivial: A Basil Case Study. Plants, 13(22), 3221. https://doi.org/10.3390/plants13223221