Physiological Response of Lettuce (Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up and Sampling
2.2. Soil Analysis
2.3. Plant Analysis
2.3.1. Relative Growth Rate (RGR) Determination
2.3.2. PHE Concentrations in Plants
2.3.3. Leaf Gas Exchange Parameters
2.3.4. Oxidative Stress Indicators and Antioxidant Activity
2.3.5. Ascorbate-Glutathione Cycle
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Properties and PHE Levels
3.2. Growth of L. sativa
3.3. PHE Accumulation in L. sativa
3.4. Photosynthesis and Gas Exchange in L. sativa
3.5. Oxidative Stress and Antioxidant Activity in L. sativa
3.6. Ascorbate-Glutathione Metabolism in L. sativa
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global Soil Pollution by Toxic Elements: Current Status and Future Perspectives on the Risk Assessment and Remediation Strategies—A Review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Khelifi, F.; Melki, A.; Hamed, Y.; Adamo, P.; Caporale, A.G. Environmental and Human Health Risk Assessment of Potentially Toxic Elements in Soil, Sediments, and Ore-Processing Wastes from a Mining Area of Southwestern Tunisia. Environ. Geochem. Health 2020, 42, 4125–4139. [Google Scholar] [CrossRef]
- Santos, E.S.; Arán, D.; Abreu, M.M.; de Varennes, A. Engineered Soils Using Amendments for in Situ Rehabilitation of Mine Lands. In Bio-Geotechnologies for Mine Site Rehabilitation; Prasad, M.N.V., Favas, P.J.d.C., Maiti, S.K., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 131–146. ISBN 9780128129876. [Google Scholar]
- Fabbri, D.; Pizzol, R.; Calza, P.; Malandrino, M.; Gaggero, E.; Padoan, E.; Ajmone-Marsan, F. Constructed Technosols: A Strategy toward a Circular Economy. Appl. Sci. 2021, 11, 3432. [Google Scholar] [CrossRef]
- Macías, F.; Bao, M.; Macías-García, F.; Camps Arbestain, M. Valorización Biogeoquímica de Residuos Por Medio de La Elaboración de Tecnosoles Con Diferentes Aplicaciones Ambientales. Agua Residuos 2007, 5, 12–25. [Google Scholar]
- Santos, E.S.; Abreu, M.M.; Macías, F.; de Varennes, A. Chemical Quality of Leachates and Enzymatic Activities in Technosols with Gossan and Sulfide Wastes from the São Domingos Mine. J. Soils Sediments 2016, 16, 1366–1382. [Google Scholar] [CrossRef]
- Asensio, V.; Flórido, F.G.; Ruiz, F.; Perlatti, F.; Otero, X.L.; Oliveira, D.P.; Ferreira, T.O. The Potential of a Technosol and Tropical Native Trees for Reclamation of Copper-Polluted Soils. Chemosphere 2019, 220, 892–899. [Google Scholar] [CrossRef]
- Rodríguez-Vila, A.; Asensio, V.; Forján, R.; Covelo, E.F. Assessing the Influence of Technosol and Biochar Amendments Combined with Brassica juncea L. on the Fractionation of Cu, Ni, Pb and Zn in a Polluted Mine Soil. J. Soils Sediments 2016, 16, 339–348. [Google Scholar] [CrossRef]
- Jordán, M.M.; García-Sánchez, E.; Almendro-Candel, M.B.; Pardo, F.; Vicente, A.B.; Sanfeliu, T.; Bech, J. Technosols Designed for Rehabilitation of Mining Activities Using Mine Spoils and Biosolids. Ion Mobility and Correlations Using Percolation Columns. Catena 2017, 148, 74–80. [Google Scholar] [CrossRef]
- Aguilar-Garrido, A.; Romero-Freire, A.; Paniagua-López, M.; Martínez-Garzón, F.J.; Martín-Peinado, F.J.; Sierra-Aragón, M. Technosols Derived from Mining, Urban, and Agro-Industrial Waste for the Remediation of Metal(Loid)-Polluted Soils: A Microcosm Assay. Toxics 2023, 11, 854. [Google Scholar] [CrossRef]
- Ruiz, F.; Perlatti, F.; Oliveira, D.P.; Ferreira, T.O. Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. Minerals 2020, 10, 110. [Google Scholar] [CrossRef]
- Queiroz, H.M.; Ferreira, A.D.; Ruiz, F.; Bovi, R.C.; Deng, Y.; de Souza Júnior, V.S.; Otero, X.L.; Bernardino, A.F.; Cooper, M.; Ferreira, T.O. Early Pedogenesis of Anthropogenic Soils Produced by the World’s Largest Mining Disaster, the “Fundão” Dam Collapse, in Southeast Brazil. Catena 2022, 219, 106625. [Google Scholar] [CrossRef]
- Arán, D.; Santos, E.S.; Abreu, M.M.; Antelo, J.; Macías, F. Use of Combined Tools for Effectiveness Evaluation of Tailings Rehabilitated with Designed Technosol. Environ. Geochem. Health 2022, 44, 1857–1873. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, A.; Mundodi, L.; Sederkenny, A.; Anderson, N.; Missen, J.; Yellishetty, M. From Spoil to Soil: Utilising Waste Materials to Create Soils for Mine Rehabilitation. In Proceedings of the International Conference on Mine Closure, Brisbane, Australia, 4–6 October 2022; Tibbett, M., Fourie, A.B., Boggs, G., Eds.; Australian Centre for Geomechanics: Brisbane, Australia, 2022; Volume 1, pp. 1237–1248. [Google Scholar]
- García-Carmona, M.; Romero-Freire, A.; Sierra Aragón, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. Evaluation of Remediation Techniques in Soils Affected by Residual Contamination with Heavy Metals and Arsenic. J. Environ. Manag. 2017, 191, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Paniagua-López, M.; Vela-Cano, M.; Correa-Galeote, D.; Martín-Peinado, F.; Marínez Garzón, F.J.; Pozo, C.; González-López, J.; Sierra Aragón, M. Soil Remediation Approach and Bacterial Community Structure in a Long-Term Contaminated Soil by a Mining Spill (Aznalcóllar, Spain). Sci. Total Environ. 2021, 777, 145128. [Google Scholar] [CrossRef]
- Pastor-Jáuregui, R.; Paniagua-López, M.; Aguilar-Garrido, A.; Martínez-Garzón, F.J.; Romero-Freire, A.; Sierra-Aragón, M. Ecotoxicological Risk Assessment in Soils Contaminated by Pb and As 20 Years after a Mining Spill. J. Contam. Hydrol. 2022, 251, 104100. [Google Scholar] [CrossRef]
- Hamels, F.; Malevé, J.; Sonnet, P.; Kleja, D.B.; Smolders, E. Phytotoxicity of Trace Metals in Spiked and Field-Contaminated Soils: Linking Soil-Extractable Metals with Toxicity. Environ. Toxicol. Chem. 2014, 33, 2479–2487. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Sierra-Aragón, M.; Qiu, H.; He, E. Editorial for the Special Issue “Phytotoxicity of Heavy Metals in Contaminated Soils”. Toxics 2023, 11, 536. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil-Plant Interface: Phytoavailability, Translocation, and Phytoremediation–A Review. Earth Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy Metal Contamination Risk Assessment and Correlation Analysis of Heavy Metal Contents in Soil and Crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Huang, D.; Gui, H. Distribution Features and Internal Relations of Heavy Metals in Soil–Maize System of Mining Area, Anhui Province, Eastern China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 863–881. [Google Scholar] [CrossRef]
- Shahid, M.; Khalid, S.; Abbas, G.; Shahid, N.; Nadeem, M.; Sabir, M.; Aslam, M.; Dumat, C. Heavy Metal Stress and Crop Productivity. In Crop Production and Global Environmental Issues; Hakeem, K.R., Ed.; Springer International Publishing: Basel, Switzerland, 2015; pp. 1–25. ISBN 9783319231624. [Google Scholar]
- Rascio, N.; Navari-Izzo, F. Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, E.; Ekinci, M.; Turan, M. Mitigation of Heavy Metal Toxicity by Plant Growth–Promoting Rhizobacteria. In Sustainable Horticulture: Microbial Inoculants and Stress Interaction; Seymen, M., Kurtar, E.S., Erdinc, C., Kumar, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 97–123. ISBN 9780323918619. [Google Scholar]
- Dias, M.C.; Monteiro, C.; Moutinho-Pereira, J.; Correia, C.; Gonçalves, B.; Santos, C. Cadmium Toxicity Affects Photosynthesis and Plant Growth at Different Levels. Acta Physiol. Plant 2013, 35, 1281–1289. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Barrameda-Medina, Y.; Montesinos-Pereira, D.; Romero, L.; Blasco, B.; Ruiz, J.M. Role of GSH Homeostasis under Zn Toxicity in Plants with Different Zn Tolerance. Plant Sci. 2014, 227, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Li, B.B.; Zhang, S.B.; Lv, Y.Y.; Wei, S.; Hu, Y. Sen Reactive Oxygen Species-Induced Protein Carbonylation Promotes Deterioration of Physiological Activity of Wheat Seeds. PLoS ONE 2022, 17, e0263553. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 440478. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Kolahi, M.; Mohajel Kazemi, E.; Yazdi, M.; Goldson-Barnaby, A. Oxidative Stress Induced by Cadmium in Lettuce (Lactuca Sativa Linn.): Oxidative Stress Indicators and Prediction of Their Genes. Plant Physiol. Biochem. 2020, 146, 71–89. [Google Scholar] [CrossRef]
- Israr, M.; Jewell, A.; Kumar, D.; Sahi, S.V. Interactive Effects of Lead, Copper, Nickel and Zinc on Growth, Metal Uptake and Antioxidative Metabolism of Sesbania Drummondii. J. Hazard. Mater. 2011, 186, 1520–1526. [Google Scholar] [CrossRef]
- Bhaduri, A.M.; Fulekar, M.H. Antioxidant Enzyme Responses of Plants to Heavy Metal Stress. Rev. Environ. Sci. Biotechnol. 2012, 11, 55–69. [Google Scholar] [CrossRef]
- OPPTS 850.4200; Seed Germination/Root Elongation Toxicity Test. Ecological Effects Test Guidelines. United States Environmental Protection Agency: Washington, DC, USA, 1996.
- OECD (Organisation for Economic Co-operation and Development). Terrestrial Plant Test: 208: Seedling Emergence and Seedling Growth Test. In Guideline for the Testing of Chemicals; Proposal for Updating Guideline 208; Organization for Economic Cooperation and Development: Paris, France, 2003. [Google Scholar]
- Madejón, P.; Domínguez, M.T.; Madejón, E.; Cabrera, F.; Marañón, T.; Murillo, J.M. Soil-Plant Relationships and Contamination by Trace Elements: A Review of Twenty Years of Experimentation and Monitoring after the Aznalcóllar (SW Spain) Mine Accident. Sci. Total Environ. 2018, 625, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Romero-Freire, A.; García Fernández, I.; Simón Torres, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. Long-Term Toxicity Assessment of Soils in a Recovered Area Affected by a Mining Spill. Environ. Pollut. 2016, 208, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Paniagua-López, M.; Aguilar-Garrido, A.; Contero-Hurtado, J.; García-Romera, I.; Sierra-Aragón, M.; Romero-Freire, A. Ecotoxicological Assessment of Polluted Soils One Year after the Application of Different Soil Remediation Techniques. Toxics 2023, 11, 298. [Google Scholar] [CrossRef]
- Pastor-Jáuregui, R.; Paniagua-López, M.; Aguilar-Garrido, A.; Martín-Peinado, F.J.; Sierra-Aragón, M. Long-term Assessment of Remediation Treatments Applied to an Area Affected by a Mining Spill in Spain. Land Degrad Dev. 2021, 32, 2481–2492. [Google Scholar] [CrossRef]
- Aguilar-Garrido, A.; Paniagua-López, M.; Sierra-Aragón, M.; Martínez Garzón, F.J.; Martín-Peinado, F.J. Remediation Potential of Mining, Agro-Industrial, and Urban Wastes against Acid Mine Drainage. Sci. Rep. 2023, 13, 12120. [Google Scholar] [CrossRef]
- EPA/625/R-92/013; Control of Pathogens and Vector Attraction in Sewage Sludge. Environmental Regulations and Technology. United States Environmental Protection Agency: Washington, DC, USA, 2003.
- Wichuk, K.M.; McCartney, D. A Review of the Effectiveness of Current Time–Temperature Regulations on Pathogen Inactivation during Composting. J. Environ. Eng. Sci. 2015, 6, 573–586. [Google Scholar] [CrossRef]
- Tyurin, I. V Analytical Procedure for a Comparative Study of Soil Humus. Tr. Poch. Inst. Dokuchaev. 1951, 33, 5–21. [Google Scholar]
- Barahona, E. Determinaciones Analíticas En Suelos: Carbonatos Totales y Caliza Activa. In Proceedings of the I Congreso Nacional de la Ciencia del Suelo, Sociedad Española de la Ciencia del Suelo, Madrid, Spain, 4–8 June 1984. [Google Scholar]
- SCS—USDA. Methods and Procedures for Collecting Soil Samples. In Soil Survey Manual; Soil Conservation Service, United States Department of Agriculture: Washington, DC, USA, 1972. [Google Scholar]
- Sposito, G.; Lund, L.J.; Chang, A.C. Trace Metal Chemistry in Arid-Zone Field Soils Amended with Sewage Sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in Solid Phases. Soil Sci. Soc. Am. J. 1982, 46, 260–264. [Google Scholar] [CrossRef]
- Fu, J.; Huang, B. Involvement of Antioxidants and Lipid Peroxidation in the Adaptation of Two Cool-Season Grasses to Localized Drought Stress. Environ. Exp. Bot. 2001, 45, 105–114. [Google Scholar] [CrossRef]
- Bieleski, R.L.; Turner, N.A. Separation and Estimation of Amino Acids in Crude Plant Extracts by Thin-Layer Electrophoresis and Chromatography. Anal Biochem. 1966, 17, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Junglee, S.; Urban, L.; Sallanon, H.; Lopez-Lauri, F. Optimized Assay for Hydrogen Peroxide Determination in Plant Tissue Using Potassium Iodide. Am. J. Analyt. Chem. 2014, 5, 730–736. [Google Scholar] [CrossRef]
- Kubiś, J. Exogenous Spermidine Differentially Alters Activities of Some Scavenging System Enzymes, H2O2 and Superoxide Radical Levels in Water-Stressed Cucumber Leaves. J. Plant Physiol. 2008, 165, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Beyer, W.F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Yu, Q.; Osborne, L.; Rengel, Z. Micronutrient Deficiency Changes Activities of Superoxide Dismutase and Ascorbate Peroxidase in Tobacco Plants. J. Plant Nutr. 1998, 21, 1427–1437. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P.; Murr, D.P.; Watkins, C.B. Influence of Salicylic Acid on H2O2 Production, Oxidative Stress, and H2O2-Metabolizing Enzymes (Salicylic Acid-Mediated Oxidative Damage Requires H2O2). Plant Physiol. 1997, 115, 137–149. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Simultaneous Measurement of Foliar Glutathione, γ-Glutamylcysteine, and Amino Acids by High-Performance Liquid Chromatography: Comparison with Two Other Assay Methods for Glutathione. Anal. Biochem. 1998, 264, 98–110. [Google Scholar] [CrossRef]
- Law, M.Y.; Charles, S.A.; Halliwell, B. Glutathione and Ascorbic Acid in Spinach (Spinacia oleracea) Chloroplasts. The Effect of Hydrogen Peroxide and of Paraquat. Biochem. J. 1983, 210, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P. Ultraviolet-B- and Ozone-Induced Biochemical Changes in Antioxidant Enzymes of Arabidopsis Thaliana. Plant Physiol. 1996, 110, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Simón, M.; Martín, F.; Ortiz, I.; García, I.; Fernández, J.; Fernández, E.; Dorronsoro, C.; Aguilar, J. Soil Pollution by Oxidation of Tailings from Toxic Spill of a Pyrite Mine. Sci. Total Environ. 2001, 279, 63–74. [Google Scholar] [CrossRef]
- Aguilar, J.; Dorronsoro, C.; Fernández, E.; Fernández, J.; García, I.; Martín, F.; Simón, M. Soil Pollution by a Pyrite Mine Spill in Spain: Evolution in Time. Environ. Pollut. 2004, 132, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Simón, M.; Diez, M.; González, V.; García, I.; Martín, F.; de Haro, S. Use of Liming in the Remediation of Soils Polluted by Sulphide Oxidation: A Leaching-Column Study. J. Hazard. Mater. 2010, 180, 241–246. [Google Scholar] [CrossRef]
- Martín, F.; García, I.; Dorronsoro, C.; Simón, M.; Aguilar, J.; Ortíz, I.; Fernández, E.; Fernández, J. Thallium Behavior in Soils Polluted by Pyrite Tailings (Aznalcóllar, Spain). Soil Sediment Contam. 2004, 13, 25–36. [Google Scholar] [CrossRef]
- Madejón, E.; de Mora, A.P.; Felipe, E.; Burgos, P.; Cabrera, F. Soil Amendments Reduce Trace Element Solubility in a Contaminated Soil and Allow Regrowth of Natural Vegetation. Environ. Pollut. 2006, 139, 40–52. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt Tolerance and Salinity Effects on Plants: A Review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Decreto 18/2015; Por El Que Se Aprueba El Reglamento Que Regula El Régimen Aplicable a Los Suelos Contaminados. Consejería de Medio Ambiente y Ordenación del Territorio: Seville, Spain, 2015; Volume 38, ISBN 2008200920102.
- Kraus, U.; Wiegand, J. Long-Term Effects of the Aznalcóllar Mine Spill—Heavy Metal Content and Mobility in Soils and Sediments of the Guadiamar River Valley (SW Spain). Sci. Total Environ. 2006, 367, 855–871. [Google Scholar] [CrossRef]
- Martín Peinado, F.J.; Romero-Freire, A.; García Fernández, I.; Sierra Aragón, M.; Ortiz-Bernad, I.; Simón Torres, M. Long-Term Contamination in a Recovered Area Affected by a Mining Spill. Sci. Total Environ. 2015, 514, 219–223. [Google Scholar] [CrossRef]
- Quevauviller, P.; Lachica, M.; Barahona, E.; Gomez, A.; Rauret, G.; Ure, A.; Muntau, H. Certified Reference Material for the Quality Control of EDTA- and DTPA-Extractable Trace Metal Contents in Calcareous Soil (CRM 600). Fresenius’ J. Anal. Chem. 1998, 360, 505–511. [Google Scholar] [CrossRef]
- Giannakis, I.; Emmanouil, C.; Mitrakas, M.; Manakou, V.; Kungolos, A. Chemical and Ecotoxicological Assessment of Sludge-Based Biosolids Used for Corn Field Fertilization. Environ. Sci. Pollut. Res. 2021, 28, 3797–3809. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-T.; Hseu, Z.-Y.; Zehetner, F. Evaluation of Phytoavailability of Heavy Metals to Chinese Cabbage (Brassica chinensis L.) in Rural Soils. Sci. World J. 2014, 2014, 309396. [Google Scholar] [CrossRef]
- Son, J.; Kim, J.G.; Hyun, S.; Cho, K. Screening Level Ecological Risk Assessment of Abandoned Metal Mines Using Chemical and Ecotoxicological Lines of Evidence. Environ. Pollut. 2019, 249, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- García-Carmona, M.; García-Robles, H.; Turpín Torrano, C.; Fernández Ondoño, E.; Lorite Moreno, J.; Sierra Aragón, M.; Martín Peinado, F.J. Residual Pollution and Vegetation Distribution in Amended Soils 20 years after a Pyrite Mine Tailings Spill (Aznalcóllar, Spain). Sci. Total Environ. 2019, 650, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Cravotta, C.A.; Trahan, M.K. Limestone Drains to Increase PH and Remove Dissolved Metals from Acidic Mine Drainage. Appl. Geochem. 1999, 14, 581–606. [Google Scholar] [CrossRef]
- Bur, T.; Probst, A.; Bianco, A.; Gandois, L.; Crouau, Y. Determining Cadmium Critical Concentrations in Natural Soils by Assessing Collembola Mortality, Reproduction and Growth. Ecotoxicol. Environ. Saf. 2010, 73, 415–422. [Google Scholar] [CrossRef]
- McBride, M.; Sauvé, S.; Hendershot, W. Solubility Control of Cu, Zn, Cd and Pb in Contaminated Soils. Eur. J. Soil Sci. 1997, 48, 337–346. [Google Scholar] [CrossRef]
- García-Carmona, M.; Romero-Freire, A.; Sierra Aragón, M.; Martín Peinado, F.J. Effectiveness of Ecotoxicological Tests in Relation to Physicochemical Properties of Zn and Cu Polluted Mediterranean Soils. Geoderma 2019, 338, 259–268. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Sierra-Aragón, M.; Ortiz-Bernad, I.; Martín-Peinado, F.J. Toxicity of Arsenic in Relation to Soil Properties: Implications to Regulatory Purposes. J. Soils Sediments 2014, 14, 968–979. [Google Scholar] [CrossRef]
- Aguilar, J.; Dorronsoro, C.; Fernández, E.; Fernández, J.; García, I.; Martín, F.; Sierra, M.; Simón, M. Remediation of As-Contaminated Soils in the Guadiamar River Basin (SW, Spain). Water Air Soil Pollut. 2007, 180, 109–118. [Google Scholar] [CrossRef]
- Sierra Aragón, M.; Nakamaru, Y.M.; García-Carmona, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. The Role of Organic Amendment in Soils Affected by Residual Pollution of Potentially Harmful Elements. Chemosphere 2019, 237, 124549. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mulligan, C.N. Occurrence of Arsenic Contamination in Canada: Sources, Behavior and Distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Martin Peinado, F.J.; van Gestel, C.A.M. Effect of Soil Properties on the Toxicity of Pb: Assessment of the Appropriateness of Guideline Values. J. Hazard. Mater. 2015, 289, 46–53. [Google Scholar] [CrossRef]
- Coppola, E.; Capra, G.F.; Odierna, P.; Vacca, S.; Buondonno, A. Lead Distribution as Related to Pedological Features of Soils in the Volturno River Low Basin (Campania, Italy). Geoderma 2010, 159, 342–349. [Google Scholar] [CrossRef]
- Navarro-León, E.; Ruiz, J.M.; Albacete, A.; Blasco, B. Tolerance to Cadmium Toxicity and Phytoremediation Potential of Three Brassica Rapa CAX1a TILLING Mutants. Ecotoxicol. Environ. Saf. 2020, 189, 109961. [Google Scholar] [CrossRef] [PubMed]
- Zaier, H.; Ghnaya, T.; Lakhdar, A.; Baioui, R.; Ghabriche, R.; Mnasri, M.; Sghair, S.; Lutts, S.; Abdelly, C. Comparative Study of Pb-Phytoextraction Potential in Sesuvium Portulacastrum and Brassica Juncea: Tolerance and Accumulation. J. Hazard. Mater. 2010, 183, 609–615. [Google Scholar] [CrossRef]
- Dola, D.B.; Mannan, M.A.; Sarker, U.; Al Mamun, M.A.; Islam, T.; Ercisli, S.; Saleem, M.H.; Ali, B.; Pop, O.L.; Marc, R.A. Nano-Iron Oxide Accelerates Growth, Yield, and Quality of Glycine Max Seed in Water Deficits. Front. Plant Sci. 2022, 13, 992535. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Alassimone, J.; Roppolo, D.; Geldner, N.; Vermeer, J.E.M. The Endodermis-Development and Differentiation of the Plant’s Inner Skin. Protoplasma 2012, 249, 433–443. [Google Scholar] [CrossRef]
- Asare, M.O.; Száková, J.; Tlustoš, P. The Fate of Secondary Metabolites in Plants Growing on Cd-, As-, and Pb-Contaminated Soils—A Comprehensive Review. Environ. Sci. Pollut. Res. 2022, 30, 11378–11398. [Google Scholar] [CrossRef] [PubMed]
- Doblas, V.G.; Geldner, N.; Barberon, M. The Endodermis, a Tightly Controlled Barrier for Nutrients. Curr. Opin. Plant Biol. 2017, 39, 136–143. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Lisowska, K.; Romanowska-Duda, Z.; Wolf, W.M. Combined Cadmium-Zinc Interactions Alter Manganese, Lead, Copper Uptake by Melissa Officinalis. Sci. Rep. 2020, 10, 1675. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X.; Zhang, J.; Li, J.; Niu, T.; Tang, C.; Wang, C.; Xie, J. Zinc Oxide Nanoparticles Improve Lettuce (Lactuca sativa L.) Plant Tolerance to Cadmium by Stimulating Antioxidant Defense, Enhancing Lignin Content and Reducing the Metal Accumulation and Translocation. Front. Plant Sci. 2022, 13, 1015745. [Google Scholar] [CrossRef] [PubMed]
- Clemente, R.; Walker, D.J.; Bernal, M.P. Uptake of Heavy Metals and As by Brassica Juncea Grown in a Contaminated Soil in Aznalcóllar (Spain): The Effect of Soil Amendments. Environ. Pollut. 2005, 138, 46–58. [Google Scholar] [CrossRef]
- Bazihizina, N.; Colzi, I.; Giorni, E.; Mancuso, S.; Gonnelli, C. Photosynthesizing on Metal Excess: Copper Differently Induced Changes in Various Photosynthetic Parameters in Copper Tolerant and Sensitive Silene paradoxa L. Populations. Plant Sci. 2015, 232, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk-Szabela, D.; Chrześcijańska, E.; Zielenkiewicz, P.; Wolf, W.M. Antioxidant Activity and Photosynthesis Efficiency in Melissa Officinalis Subjected to Heavy Metals Stress. Molecules 2023, 28, 2642. [Google Scholar] [CrossRef]
- Liu, X.; Peng, K.; Wang, A.; Lian, C.; Shen, Z. Cadmium Accumulation and Distribution in Populations of Phytolacca americana L. and the Role of Transpiration. Chemosphere 2010, 78, 1136–1141. [Google Scholar] [CrossRef]
- Vitale, E.; Napoletano, P.; Colombo, C.; Arena, C.; De Marco, A. Use of Compost to Improve Technosol Properties and Spontaneous Plant-Soil Relationships of Mediterranean Species Potentially Suitable for Urban Greening. Urban Ecosyst. 2024, 27, 1847–1861. [Google Scholar] [CrossRef]
- Buturi, C.V.; Sabatino, L.; Mauro, R.P.; Navarro-León, E.; Blasco, B.; Leonardi, C.; Giuffrida, F. Iron Biofortification of Greenhouse Soilless Lettuce: An Effective Agronomic Tool to Improve the Dietary Mineral Intake. Agronomy 2022, 12, 1793. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Wei, X.; You, J.; Wang, W.; Lu, J.; Shi, R. Comparative Antioxidative Responses and Proline Metabolism in Two Wheat Cultivars under Short Term Lead Stress. Ecotoxicol. Environ. Saf. 2011, 74, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Siripornadulsil, S.; Traina, S.; Verma, D.P.S.; Sayre, R.T. Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae. Plant Cell 2002, 14, 2837–2847. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Ugurlar, F.; Farooq, S.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Combined Application of Asparagine and Thiourea Improves Tolerance to Lead Stress in Wheat by Modulating AsA-GSH Cycle, Lead Detoxification and Nitrogen Metabolism. Plant Physiol. Biochem. 2022, 190, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K. Heavy Metals Toxicity in Plants: An Overview on the Role of Glutathione and Phytochelatins in Heavy Metal Stress Tolerance of Plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
Soils | pH (H2O) 1:2.5 | EC 1:5 (dS m−1) | OC (%) | CaCO3 (%) | CEC (cmol+ kg−1) | Na+ (cmol+ kg−1) |
---|---|---|---|---|---|---|
RS | 7.38 ± 0.12 c | 0.96 ± 0.11 a | 5.89 ± 0.24 e | 0.80 ± 0.09 a | 35.28 ± 3.41 d | 0.60 ± 0.02 a |
PS | 4.16 ± 0.09 a | 2.99 ± 0.18 b | 0.87 ± 0.09 a | 0.56 ± 0.06 a | 11.25 ± 1.76 a | 0.53 ± 0.03 a |
TO | 7.72 ± 0.15 e | 4.96 ±0.21 d | 4.08 ± 0.14 c | 23.06 ± 1.25 b | 28.50 ± 2.64 c | 2.45 ± 0.13 b |
TS | 7.30 ± 0.08 b | 4.34 ± 0.17 c | 5.59 ± 0.17 d | 23.17 ± 1.21 b | 24.34 ± 1.74 c | 2.46 ± 0.16 b |
TV | 7.62 ± 0.13 d | 2.96 ± 0.15 b | 2.09 ± 0.11 b | 22.83 ± 1.51 b | 16.51 ± 1.66 b | 0.70 ± 0.02 a |
p-value | *** | *** | *** | *** | *** | *** |
LSD0.05 | 0.02 | 0.08 | 0.14 | 0.77 | 4.15 | 0.27 |
Total (T) | Water-Soluble (W) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soils | AsT | CdT | CuT | FeT * | PbT | ZnT | AsW | CdW | CuW | FeW | PbW | ZnW |
RS | 51.44 ± 0.63 a | 1.98 ± 0.05 a | 112.03 ± 5.12 b | 29.88 ± 0.25 a | 117.36 ± 1.01 a | 420.35 ± 4.37 d | 0.269 ± 0.015 c | 0.010 ± 0.001 a | 0.405 ± 0.015 b | 9.943 ± 0.706 c | 0.078 ± 0.010 b | 0.606 ± 0.034 b |
PS | 345.79 ± 5.64 d | 7.85 ± 0.13 d | 241.34 ± 5.60 d | 52.98 ± 0.79 c | 545.86 ± 9.05 d | 189.14 ± 2.40 b | 0.135 ± 0.009 a | 0.101 ± 0.010 b | 2.617 ± 0.038 d | 3.209 ± 0.125 a | bdl a | 7.061 ± 0.098 e |
TO | 207.84 ± 1.85 c | 4.21 ± 0.27 b | 99.65 ± 1.19 ab | 38.25 ± 0.64 b | 329.30 ± 5.85 c | 163.07 ± 1.73 a | 0.377 ± 0.013 d | 0.015 ± 0.001 a | 3.301 ± 0.053 e | 7.718 ± 0.409 b | 0.089 ± 0.007 b | 1.585 ± 0.043 d |
TS | 178.71 ± 3.75 b | 5.86 ± 0.13 c | 137.63 ± 3.06 c | 38.29 ± 0.39 b | 281.54 ± 4.90 b | 315.76 ± 5.71 c | 0.457 ± 0.014 e | 0.014 ± 0.001 a | 0.696 ± 0.015 c | 19.971 ± 1.010 d | 0.046 ± 0.006 a | 0.913 ± 0.019 c |
TV | 212.20 ± 1.76 c | 5.88 ± 0.09 c | 93.70 ± 1.95 a | 39.91 ± 0.54 b | 333.45 ± 3.44 c | 181.46 ± 2.41 b | 0.199 ± 0.012 b | 0.006 ± 0.001 a | 0.130 ± 0.007 a | 3.251 ± 0.194 a | bdl a | 0.321 ± 0.018 a |
p-value | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | *** |
LSD0.05 | 9.29 | 0.44 | 12.86 | 1.58 | 15.82 | 10.41 | 0.04 | 0.01 | 0.09 | 1.69 | 0.02 | 0.15 |
Aerial Part | Roots | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soils | As | Cd | Cu | Fe | Pb | Zn | As | Cd | Cu | Fe | Pb | Zn |
RS | 2.21 ± 0.22 b | 0.88 ± 0.03 c | 57.14 ± 0.79 a | 85.80 ± 7.14 a | bdl a | 55.37 ± 0.46 b | 5.10 ± 0.86 b | 0.97 ± 0.04 a | 101.40 ± 2.81 ab | 5587 ± 132 a | 6.51 ± 0.48 b | 81.89 ± 6.08 a |
PS | 0.65 ± 0.35 a | 0.55 ± 0.02 b | 152.59 ± 1.08 b | 70.32 ± 13.79 a | 0.78 ± 0.26 ab | 129.31 ± 3.21 d | 0.78 ± 0.68 a | 4.51 ± 0.72 b | 225.53 ± 6.00 c | 6074 ± 139 a | 2.40 ± 0.30 a | 893.85 ± 23.45 b |
TO | 1.79 ± 0.14 ab | 0.27 ± 0.01 a | 185.56 ± 3.12 c | 73.98 ± 7.04 a | 0.38 ± 0.14 a | 49.53 ± 0.28 ab | 18.23 ± 0.72 d | 0.95 ± 0.81 a | 87.58 ± 9.39 a | 7322 ± 313 b | 11.28 ± 0.42 c | 65.27 ± 3.36 a |
TS | 1.55 ± 0.18 ab | 0.23 ± 0.04 a | 363.08 ± 7.08 d | 164.51 ± 12.10 b | 1.32 ± 0.41 b | 44.06 ± 1.03 a | 17.15 ± 0.68 cd | 0.83 ± 0.68 a | 101.62 ± 7.07 ab | 8003 ± 628 b | 13.12 ± 0.49 d | 63.53 ± 5.03 a |
TV | 2.56 ± 0.17 b | 1.57 ± 0.02 d | 68.86 ± 1.53 a | 67.01 ± 6.71 a | bdl a | 92.97 ± 1.76 c | 14.90 ± 0.81 c | 1.40 ± 0.81 a | 112.82 ± 2.07 b | 7741 ± 113 b | 19.88 ± 0.34 e | 83.87 ± 1.12 a |
p-value | * | *** | *** | *** | ** | *** | *** | *** | *** | *** | *** | *** |
LSD0.05 | 1.12 | 0.08 | 11.82 | 28.10 | 0.62 | 5.42 | 2.18 | 2.24 | 17.10 | 883.71 | 1.11 | 31.84 |
Soils | ACO2 (µmol CO2 m−2 s−1) | E (mol H2O m−2 s−1) | gs (mmol CO2 m−2 s−1) | Ci (µmol CO2 mol air−1) | WUE (µmol CO2 mol H2O−1) |
---|---|---|---|---|---|
RS | 4.34 ± 0.15 c | 1.21 ± 0.05 d | 93.40 ± 3.62 d | 311.63 ± 0.77 c | 3589.78 ± 30.19 a |
PS | 0.98 ± 0.09 a | 0.16 ± 0.01 a | 11.50 ± 0.63 a | 257.85 ± 7.80 b | 5827.05 ± 338.38 b |
TO | 2.52 ± 0.19 b | 0.80 ± 0.07 c | 59.40 ± 5.22 c | 313.34 ± 5.82 c | 3436.03 ± 256.61 a |
TS | 2.89 ± 0.09 b | 0.37 ± 0.01 b | 26.80 ± 0.89 b | 215.43 ± 4.18 a | 7836.31 ± 196.14 c |
TV | 4.38 ± 0.14 c | 1.26 ± 0.03 d | 95.00 ± 3.36 d | 311.94 ± 0.08 c | 3491.64 ± 42.17 a |
p-value | *** | *** | *** | *** | *** |
LSD0.05 | 0.36 | 0.11 | 8.60 | 12.82 | 563.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Quero, M.; Aguilar-Garrido, A.; Paniagua-López, M.; García-Huertas, C.; Sierra-Aragón, M.; Blasco, B. Physiological Response of Lettuce (Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. Plants 2024, 13, 3222. https://doi.org/10.3390/plants13223222
González-Quero M, Aguilar-Garrido A, Paniagua-López M, García-Huertas C, Sierra-Aragón M, Blasco B. Physiological Response of Lettuce (Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. Plants. 2024; 13(22):3222. https://doi.org/10.3390/plants13223222
Chicago/Turabian StyleGonzález-Quero, Mateo, Antonio Aguilar-Garrido, Mario Paniagua-López, Carmen García-Huertas, Manuel Sierra-Aragón, and Begoña Blasco. 2024. "Physiological Response of Lettuce (Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation" Plants 13, no. 22: 3222. https://doi.org/10.3390/plants13223222
APA StyleGonzález-Quero, M., Aguilar-Garrido, A., Paniagua-López, M., García-Huertas, C., Sierra-Aragón, M., & Blasco, B. (2024). Physiological Response of Lettuce (Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. Plants, 13(22), 3222. https://doi.org/10.3390/plants13223222