Effects of Rice Root Development and Rhizosphere Soil on Methane Emission in Paddy Fields
Abstract
:1. Introduction
2. Results
2.1. Difference Analysis of CH4 Emissions and Yield of Different Rice Varieties
2.1.1. CH4 Emission Fluxes
2.1.2. Cumulative CH4 Emissions, Rice Yield, and CH4 Emissions per Yield of Each Rice Variety
2.2. Analysis of Soil Eh
2.3. Analysis of Root Development
2.4. Analysis of Rhizosphere Soil
2.5. Abundance and Community Structure of Methanogens and Methanotrophs in Different Rice Varieties
2.6. Effects of Rice Root Development and Rhizosphere Soil on CH4 Emissions from Paddy Fields
3. Discussion
3.1. CH4 Emission Rule in Paddy Field
3.2. Effect of Rice Root Development on CH4 Emissions
3.3. Effects of Rice Rhizosphere Soil on CH4 Emissions
4. Materials and Methods
4.1. An Overview of the Experiment
4.2. Experimental Design
4.3. Field Experiment Sampling and Measurement Methods
4.3.1. CH4 Sampling and Measurement Methods
4.3.2. Yield Measurement Methods
4.3.3. Soil Sampling and Measurement
4.3.4. Rice Root Sampling and Measurement
4.3.5. DNA Extraction and Real-Time PCR
4.3.6. Determination of Community Composition of Methanogens and Methanotrophs
4.3.7. A Statistical Analysis of the Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Law, A.; Saunders, P.; Middleton, J.; Mccoy, D. Global Warming Must Stay below 1.5 °C. BMJ Br. Med. J. 2018, 363, k4410. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- PCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Wang, Z.; Wang, L.; Liang, H.; Peng, T.; Xia, G.; Zhang, J.; Zhao, Q. Methane and Nitrous Oxide Emission Characteristics of High-Yielding Rice Field. Environ. Sci. Pollut. Res. 2021, 28, 15021–15031. [Google Scholar] [CrossRef] [PubMed]
- Liechty, Z.; Santos-Medellin, C.; Edwards, J.; Nguyen, B.; Mikhail, D.; Eason, S.; Phillips, G.; Sundaresan, V. Comparative Analysis of Root Microbiomes of Rice Cultivars with High and Low Methane Emissions Reveals Differences in Abundance of Methanogenic Archaea and Putative Upstream Fermenters. Msystems 2020, 5, e00897-19. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Li, S.; Jin, Y.; Wu, S.; Chen, J.; Hu, T.; Wang, H.; Liu, S.; Zou, J. Linking Methane Emissions to Methanogenic and Methanotrophic Communities under Different Fertilization Strategies in Rice Paddies. Geoderma 2019, 347, 233–243. [Google Scholar] [CrossRef]
- Kumaraswamy, S.; Ramakrishnan, B.; Satpathy, S.N.; Rath, A.K.; Misra, S.; Rao, V.R.; Sethunathan, N. Spatial Distribution of Methane-Oxidizing Activity in a Flooded Rice Soil. Plant Soil 1997, 191, 241–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Li, Z.; Zhu, X.; Wang, X.; Chen, J.; Hang, X.; Deng, A.; Zhang, J.; Zhang, W. Aboveground Morphological Traits Do Not Predict Rice Variety Effects on CH4 Emissions. Agric. Ecosyst. Environ. 2015, 208, 86–93. [Google Scholar] [CrossRef]
- Zheng, H.; Fu, Z.; Zhong, J.; Long, W. Low Methane Emission in Rice Cultivars with High Radial Oxygen Loss. Plant Soil 2018, 431, 119–128. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Han, X.; Yang, K.; Liu, K.; Wang, J.; Chen, Y.; Liu, L. Rice Cultivar Renewal Reduces Methane Emissions by Improving Root Traits and Optimizing Photosynthetic Carbon Allocation. Agriculture 2022, 12, 2134. [Google Scholar] [CrossRef]
- Jimenez, J.d.l.C.; Pedersen, O. Mitigation of Greenhouse Gas Emissions from Rice via Manipulation of Key Root Traits. Rice 2023, 16, 24. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Zhang, Y.; Li, T.; Ge, H.; Xia, S.; Gu, J.; Zhang, H.; Lu, B.; Wu, X.; et al. Rice Root Morphological and Physiological Traits Interaction with Rhizosphere Soil and Its Effect on Methane Emissions in Paddy Fields. Soil Biol. Biochem. 2019, 129, 191–200. [Google Scholar] [CrossRef]
- Bosse, U.; Frenzel, P. Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa). Appl. Environ. Microbiol. 1997, 63, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Jiang, Y.; Cao, C. Deep Rice Root Systems Reduce Methane Emissions in Rice Paddies. Plant Soil 2021, 468, 337–352. [Google Scholar] [CrossRef]
- Lu, Y.; Wassmann, R.; Neue, H.U.; Huang, C. Impact of Phosphorus Supply on Root Exudation, Aerenchyma Formation and Methane Emission of Rice Plants. Biogeochemistry 1999, 47, 203–218. [Google Scholar] [CrossRef]
- Maurer, D.; Kiese, R.; Kreuzwieser, J.; Rennenberg, H. Processes That Determine the Interplay of Root Exudation, Methane Emission and Yield in Rice Agriculture. Plant Biol. 2018, 20, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.-R.; Wang, Z.; Chen, W.; Virk, A.L.; Li, F.-M.; Liu, J.; Xue, Y.; Yang, H. Soil Organic Carbon Regulates CH4 Production through Methanogenic Evenness and Available Phosphorus under Different Straw Managements. J. Environ. Manag. 2023, 328, 116990. [Google Scholar] [CrossRef]
- Wang, K.; Li, F.; Dong, Y. Methane Emission Related to Enzyme Activities and Organic Carbon Fractions in Paddy Soil of South China Under Different Irrigation and Nitrogen Management. J. Soil Sci. Plant Nutr. 2020, 20, 1397–1410. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, Y.; Huang, Q.; Shen, W.; Wei, Z.; Ma, J.; Zhang, G.; Xu, H. Temporal Variation of Methanogenic Pathways in Rice Fields under Three Different Cropping Systems. Biol. Fertil. Soils 2023, 60, 743–756. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Yuyukina, T.; Blagodatsky, S.; Kuzyakov, Y. Three-Source-Partitioning of Microbial Biomass and of CO2 Efflux from Soil to Evaluate Mechanisms of Priming Effects. Soil Biol. Biochem. 2011, 43, 778–786. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Yu, F.; Zhang, Y.; Liu, K.; Zhuo, X.; Qiu, Y.; Zhang, H.; Gu, J.; Wang, W.; et al. Reducing Methane Emission by Promoting Its Oxidation in Rhizosphere through Nitrogen-Induced Root Growth in Paddy Fields. Plant Soil 2022, 474, 541–560. [Google Scholar] [CrossRef]
- Linquist, B.A.; Adviento-Borbe, M.A.; Pittelkow, C.M.; van Kessel, C.; van Groenigen, K.J. Fertilizer Management Practices and Greenhouse Gas Emissions from Rice Systems: A Quantitative Review and Analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
- Nan, Q.; Fang, C.; Cheng, L.; Hao, W.; Wu, W. Elevation of –N from Biochar Amendment Facilitates Mitigating Paddy CH4 Emission Stably over Seven Years. Environ. Pollut. 2022, 295, 118707. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Hu, Q.; Cai, M.; Cao, C.; Jiang, Y. Effect of Dissolved Organic Matter (DOM) on Greenhouse Gas Emissions in Rice Varieties. Agric. Ecosyst. Environ. 2022, 330, 107870. [Google Scholar] [CrossRef]
- Kludze, H.K.; DeLaune, R.D.; Patrick, W.H. Aerenchyma Formation and Methane and Oxygen Exchange in Rice. Soil Sci. Soc. Am. J. 1993, 57, 386–391. [Google Scholar] [CrossRef]
- Guo, H.; Xie, S.; Pan, C. The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China. Int. J. Environ. Res. Public Health 2021, 18, 705. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.; Wu, K.; Kang, L. Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection. Land 2021, 10, 605. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Huang, F.; Yang, X.; Liu, Z.; Wan, W.; Wang, J.; Xu, Y.; Li, Z.; Ren, T. Ensuring National Food Security by Strengthening High-Productivity Black Soil Granary in Northeast China. Bull. Chin. Acad. Sci. Chin. Version 2021, 36, 1184–1193. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Z.; Chen, P.; Li, T.; Han, Y.; Song, J. Fate of Each Period Fertilizer N in Mollisols under Water and N Management: A 15N Tracer Study. Agric. WATER Manag. 2022, 272, 107872. [Google Scholar] [CrossRef]
- China Water. 2019. Available online: http://slt.hlj.gov.cn/contents/9/4645.html (accessed on 23 July 2019).
- Sun, J.; Chen, L.; Ogle, S.; Cheng, K.; Xu, X.; Li, Y.; Pan, G. Future Climate Change May Pose Pressures on Greenhouse Gas Emission Reduction in China’s Rice Production. Geoderma 2023, 440, 116732. [Google Scholar] [CrossRef]
- Fernandez-Baca, C.P.; Rivers, A.R.; Kim, W.; Iwata, R.; McClung, A.M.; Roberts, D.P.; Reddy, V.R.; Barnaby, J.Y. Changes in Rhizosphere Soil Microbial Communities across Plant Developmental Stages of High and Low Methane Emitting Rice Genotypes. Soil Biol. Biochem. 2021, 156, 108233. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane Production, Oxidation and Mitigation: A Mechanistic Understanding and Comprehensive Evaluation of Influencing Factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef] [PubMed]
- Hou, A.X.; Chen, G.X.; Wang, Z.P.; Van Cleemput, O.; Patrick, W.H. Methane and Nitrous Oxide Emissions from a Rice Field in Relation to Soil Redox and Microbiological Processes. Soil Sci. Soc. Am. J. 2000, 64, 2180–2186. [Google Scholar] [CrossRef]
- Freitag, T.E.; Prosser, J.I. Correlation of Methane Production and Functional Gene Transcriptional Activity in a Peat Soil. Appl. Environ. Microbiol. 2009, 75, 6679–6687. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.J.; Costello, A.; Lidstrom, M.E.; Murrell, J.C. Evidence That Participate Methane Monooxygenase and Ammonia Monooxygenase May Be Evolutionarily Related. FEMS Microbiol. Lett. 1995, 132, 203–208. [Google Scholar] [CrossRef]
- Ma, K.; Qiu, Q.; Lu, Y. Microbial Mechanism for Rice Variety Control on Methane Emission from Rice Field Soil. Glob. Chang. Biol. 2010, 16, 3085–3095. [Google Scholar] [CrossRef]
- Li, D.; Ni, H.; Jiao, S.; Lu, Y.; Zhou, J.; Sun, B.; Liang, Y. Coexistence Patterns of Soil Methanogens Are Closely Tied to Methane Generation and Community Assembly in Rice Paddies. Microbiome 2021, 9, 20. [Google Scholar] [CrossRef]
- Jiao, S.; Xu, Y.; Zhang, J.; Lu, Y. Environmental Filtering Drives Distinct Continental Atlases of Soil Archaea between Dryland and Wetland Agricultural Ecosystems. Microbiome 2019, 7, 15. [Google Scholar] [CrossRef]
- Conrad, R. Microbial Ecology of Methanogens and Methanotrophs. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2007; Volume 96, pp. 1–63. [Google Scholar]
- Yuan, Y.; Conrad, R.; Lu, Y. Transcriptional Response of Methanogen mcrA Genes to Oxygen Exposure of Rice Field Soil. Environ. Microbiol. Rep. 2011, 3, 320–328. [Google Scholar] [CrossRef]
- Liu, K.; Li, T.; Chen, Y.; Huang, J.; Qiu, Y.; Li, S.; Wang, H.; Zhu, A.; Zhuo, X.; Yu, F.; et al. Effects of Root Morphology and Physiology on the Formation and Regulation of Large Panicles in Rice. Field Crops Res. 2020, 258, 107946. [Google Scholar] [CrossRef]
- Inubushi, K.; Cheng, W.G.; Aonuma, S.; Hoque, M.M.; Kobayashi, K.; Miura, S.; Kim, H.Y.; Okada, M. Effects of Free-Air CO2 Enrichment (FACE) on CH4 Emission from a Rice Paddy Field. Glob. Chang. Biol. 2003, 9, 1458–1464. [Google Scholar] [CrossRef]
- Conrad, R.; Klose, M. How Specific Is the Inhibition by Methyl Fluoride of Acetoclastic Methanogenesis in Anoxic Rice Field Soil? Fems Microbiol. Ecol. 1999, 30, 47–56. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, L.; Deng, Z.; Xie, Y.; Zhang, C.; Xiao, F.; Chen, X.; Li, F.; Zou, Y.; Sheng, R.; et al. Changes in Methane Emission and Community Composition of Methane-Cycling Microorganisms Along an Elevation Gradient in the Dongting Lake Floodplain, China. Atmosphere 2020, 11, 997. [Google Scholar] [CrossRef]
- Fan, D.J.; Liu, T.Q.; Sheng, F.; Li, S.H.; Cao, C.G.; Li, C.F. Nitrogen Deep Placement Mitigates Methane Emissions by Regulating Methanogens and Methanotrophs in No-Tillage Paddy Fields. Biol. Fertil. Soils 2020, 56, 711–727. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.; Wei, X.; Kuzyakov, Y.; Li, B.; Kim, P.J.; Wu, J.; Liu, S.; Ge, T. Sources and Intensity of CH4 Production in Paddy Soils Depend on Iron Oxides and Microbial Biomass. Biol. Fertil. Soils 2022, 58, 181–191. [Google Scholar] [CrossRef]
- Leigh, J.A. Genomics of Diazotrophic Archaea. In Genomes and Genomics of Nitrogen-Fixing Organisms; Palacios, R., Newton, W.E., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 7–12. ISBN 978-1-4020-3054-3. [Google Scholar]
- Wang, J.; Yao, X.; Jia, Z.; Zhu, L.; Zheng, P.; Kartal, B.; Hu, B. Nitrogen Input Promotes Denitrifying Methanotrophs’ Abundance and Contribution to Methane Emission Reduction in Coastal Wetland and Paddy Soil. Environ. Pollut. 2022, 302, 119090. [Google Scholar] [CrossRef]
- Hu, A.; Lu, Y. The Differential Effects of Ammonium and Nitrate on Methanotrophs in Rice Field Soil. Soil Biol. Biochem. 2015, 85, 31–38. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Z.; Nie, T.; Lin, Y.; Li, T. Simulation Study of CH4 and N2O Emission Fluxes from Rice Fields in Northeast China under Different Straw-Returning and Irrigation Methods Based on the DNDC Model. Water 2023, 15, 2633. [Google Scholar] [CrossRef]
- Chu, H.; Grogan, P. Soil Microbial Biomass, Nutrient Availability and Nitrogen Mineralization Potential among Vegetation-Types in a Low Arctic Tundra Landscape. Plant Soil 2010, 329, 411–420. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Inubushi, K.; Cheng, W.; Mizuno, T.; Lou, Y.; Hasegawa, T.; Sakai, H.; Kobayashi, K. Microbial Biomass Carbon and Methane Oxidation Influenced by Rice Cultivars and Elevated CO2 in a Japanese Paddy Soil. Eur. J. Soil Sci. 2011, 62, 69–73. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, Z.; Sun, H.; Bi, J.; Zhang, J.; Wang, C.; Zhou, S. Crosstalk between Methanogens and Methanotrophs Determines Methane Emissions in a Rice Paddy under Different Watering Regimes. Appl. Soil Ecol. 2024, 195, 105229. [Google Scholar] [CrossRef]
Rice Varieties | Cumulative CH4 Emissions (kg hm−2 ± s.d.) | Yield (t·hm−2 ± s.d.) | CH4 Emissions per Yield (t·t−1 ± s.d.) |
---|---|---|---|
Longqing 31 | 398.3 ± 17.5 b | 8.65 ± 0.34 b | 0.046 ± 0.0021 b |
Suijing 18 | 325.7 ± 25.1 c | 9.63 ± 0.28 ab | 0.034 ± 0.0016 c |
Longjing 31 | 256.3 ± 21.1 d | 10.19 ± 0.37 a | 0.025 ± 0.0012 e |
Longqing 32 | 285.0 ± 19.7 cd | 9.58 ± 0.14 ab | 0.030 ± 0.0016 d |
Longjing 20 | 457.5 ± 18.9 a | 7.55 ± 0.19 c | 0.061 ± 0.0010 a |
CH4 Emissions | mcrA | pmoA | pmoA/mcrA | –N | –N | DOC | MBC | Root Dryweight | Root Length | Eh | |
---|---|---|---|---|---|---|---|---|---|---|---|
CH4 emissions | 1 | ||||||||||
mcrA | 0.84 ** | 1 | |||||||||
pmoA | −0.68 ** | −0.24 | 1 | ||||||||
pmoA/mcrA | −0.92 ** | −0.78 ** | 0.71 ** | 1 | |||||||
–N | 0.75 ** | 0.84 ** | −0.30 | −0.67 ** | 1 | ||||||
–N | −0.82 ** | −0.50 | 0.83 ** | 0.92 ** | −0.54 * | 1 | |||||
DOC | 0.83 ** | 0.77 ** | −0.44 | −0.78 ** | 0.65 ** | −0.61 * | 1 | ||||
MBC | 0.70 ** | 0.58 * | −0.55 * | −0.65 ** | 0.70 ** | −0.79 ** | 0.49 * | 1 | |||
Root dryweight | −0.48 * | −0.67 ** | 0.04 | 0.47 | −0.73 ** | 0.34 | −0.27 | −0.39 | 1 | ||
Root length | −0.60 ** | −0.69 ** | 0.26 | 0.60* | −0.36 | 0.24 | −0.71 ** | −0.22 | 0.03 | 1 | |
Eh | −0.80 ** | −0.72 ** | 0.58 * | 0.94 ** | −0.66 ** | 0.88 ** | −0.77 ** | −0.68 * | 0.44 | 0.54 * | 1 |
Independent Variable | Direct Path Coefficient | Indirect Path Coefficient | |
---|---|---|---|
mcrA→CH4 | pmoA→CH4 | ||
Root dry weight | −0.09 | −0.61 * | 0.00 |
Root length | 0.17 | −0.63 * | −0.21 |
–N | −0.23 | 0.76 * | 0.14 |
–N | −0.15 | −0.46 | −0.39 * |
DOC | 0.27 | 0.70 * | 0.21 |
MBC | 0.07 | 0.53 * | 0.26 * |
Eh | 0.23 | −0.66* | −0.27 |
mcrA | 0.91 * | ||
pmoA | −0.47 * |
Soil Properties | |
---|---|
pH (H2O) | 6.4 |
Organic matter (g·kg−1) | 40.9 |
Alkaline N (mg·kg−1) | 177.8 |
Available P (mg·kg−1) | 35.2 |
Available K (mg·kg−1) | 125.1 |
Total porosity (%) | 61.8 |
C/N Ratio | 13.5 |
Soil texture | Sandy clay loam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Qi, Z.; Li, S.; Du, S.; Xu, D. Effects of Rice Root Development and Rhizosphere Soil on Methane Emission in Paddy Fields. Plants 2024, 13, 3223. https://doi.org/10.3390/plants13223223
Guan S, Qi Z, Li S, Du S, Xu D. Effects of Rice Root Development and Rhizosphere Soil on Methane Emission in Paddy Fields. Plants. 2024; 13(22):3223. https://doi.org/10.3390/plants13223223
Chicago/Turabian StyleGuan, Sheng, Zhijuan Qi, Sirui Li, Sicheng Du, and Dan Xu. 2024. "Effects of Rice Root Development and Rhizosphere Soil on Methane Emission in Paddy Fields" Plants 13, no. 22: 3223. https://doi.org/10.3390/plants13223223
APA StyleGuan, S., Qi, Z., Li, S., Du, S., & Xu, D. (2024). Effects of Rice Root Development and Rhizosphere Soil on Methane Emission in Paddy Fields. Plants, 13(22), 3223. https://doi.org/10.3390/plants13223223