Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield
Abstract
:1. Introduction
2. Results
2.1. Alterations in Soil Chemical Properties
2.2. Changes in Soil NPK Contents
2.3. Changes in Total Counts of Bacteria and Fungi
2.4. Responses of Phosphate-Solubilizing Bacteria and Soil Enzymes Activity
2.5. Changes in Chlorophyll and Proline Contents in Wheat Plants
2.6. Changes in NPK Contents in Grain and Straw
2.7. Response of Grain and Straw Yields of Wheat to Applied Treatments
3. Discussion
4. Materials and Methods
4.1. Experimental Description
4.2. Sampling and Measurements
4.2.1. Soil-Related Traits
4.2.2. Plant-Related Traits
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brook, B.W.; Buettel, J.C.; Hong, S. Constrained Scenarios for Twenty-First Century Human Population Size Based on the Empirical Coupling to Economic Growth. arXiv 2021, arXiv:2109.14209. [Google Scholar] [CrossRef]
- Lang, T.; Barling, D. Food Security and Food Sustainability: Reformulating the Debate. Geogr. J. 2012, 178, 313–326. [Google Scholar] [CrossRef]
- Kirwan, J.; Maye, D. Food Security Framings within the UK and the Integration of Local Food Systems. J. Rural. Stud. 2013, 29, 91–100. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2016. Climate Change, Agriculture and Food Security; FAO: Rome, Italy, 2021. [Google Scholar]
- Pranagal, J.; Oleszczuk, P.; Tomaszewska-Krojańska, D.; Kraska, P.; Różyło, K. Effect of Biochar Application on the Physical Properties of Haplic Podzol. Soil Tillage Res. 2017, 174, 92–103. [Google Scholar] [CrossRef]
- Shepherd, M.A.; Bennett, G. Nutrient Leaching Losses from a Sandy Soil in Lysimeters. Commun. Soil Sci. Plant Anal. 1998, 29, 931–946. [Google Scholar] [CrossRef]
- Ren, X.; Weitzel, M.; O’Neill, B.C.; Lawrence, P.; Meiyappan, P.; Levis, S.; Balistreri, E.J.; Dalton, M. Avoided Economic Impacts of Climate Change on Agriculture: Integrating a Land Surface Model (CLM) with a Global Economic Model (iPETS). Clim. Chang. 2018, 146, 517–531. [Google Scholar] [CrossRef]
- Aoda, M.I.; Smucker, A.J.M.; Majeed, S.S.; Mohammed, H.A.; Al-Sahaf, F.H.; Robertson, G.P. Novel Root Zone Soil Water Retention Improves Production with Half the Water in Arid Sands. Agron. J. 2021, 113, 2398–2406. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Aly, A. Effects of Biochar and Synthetic Polymer on the Hydro-Physical Properties of Sandy Soils. Sustainability 2018, 10, 4642. [Google Scholar] [CrossRef]
- Zaidun, S.W.; Jalloh, M.B.; Awang, A.; Sam, L.M.; Besar, N.A.; Musta, B.; Ahmed, O.H.; Omar, L. Biochar and Clinoptilolite Zeolite on Selected Chemical Properties of Soil Cultivated with Maize (Zea mays L.). Eurasian J. Soil Sci. (EJSS) 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Elhawat, N.; Kovács, A.B.; Antal, G.; Kurucz, E.; Domokos-Szabolcsy, É.; Fári, M.G.; Alshaal, T. Living Mulch Enhances Soil Enzyme Activities, Nitrogen Pools and Water Retention in Giant Reed (Arundo donax L.) Plantations. Sci. Rep. 2024, 14, 1704. [Google Scholar] [CrossRef]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic Amendments Enhance Soil Microbial Diversity, Microbial Functionality and Crop Yields: A Meta-Analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef] [PubMed]
- Ning, D.; Qin, A.; Liu, Z.; Duan, A.; Xiao, J.; Zhang, J.; Liu, Z.; Zhao, B.; Liu, Z. Silicon-Mediated Physiological and Agronomic Responses of Maize to Drought Stress Imposed at the Vegetative and Reproductive Stages. Agronomy 2020, 10, 1136. [Google Scholar] [CrossRef]
- Badagliacca, G.; Testa, G.; La Malfa, S.G.; Cafaro, V.; Lo Presti, E.; Monti, M. Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review. Horticulturae 2024, 10, 427. [Google Scholar] [CrossRef]
- Kumar, S.; Diksha; Sindhu, S.S.; Kumar, R. Biofertilizers: An Ecofriendly Technology for Nutrient Recycling and Environmental Sustainability. Curr. Res. Microb. Sci. 2022, 3, 100094. [Google Scholar] [CrossRef]
- Detroit Digestive Ferments Company. Difco Manual: Dehydrated Culture Media and Reagents for Microbiology, 10th ed.; Difco Laboratories: Detroit, MI, USA, 1984; ISBN 978-0-9613169-9-0. [Google Scholar]
- Hamdi, Y. Application of Nitrogen-Fixing Systems in Soil Improvement and Management; FAO: Rome, Italy, 1982. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline Alkali Soils; US Department of Agriculture: Washington, DC, USA, 1954.
- Sparks, D.L. Methods of Soil Analysis. Part 3: Chemical Methods; Soil Science Society of America, American Society of Agronomy, Eds.; Soil Science Society of America Book Series; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA, 1996; ISBN 978-0-89118-825-4. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; US Government Printing Office: Washington DC, USA, 1954.
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhia, India, 1973. [Google Scholar]
- Allen, O.N. Experiments in Soil Bacteriology; Literary Licensing, LLC: Whitefish, MT, USA, 2013; ISBN 978-1-258-67896-8. [Google Scholar]
- Comroe, J.H., Jr. Pay Dirt: The Story of Streptomycin|Part I. From Waksman to Waksman | American Review of Respiratory Disease. Available online: https://www.atsjournals.org/doi/10.1164/arrd.1978.117.4.773 (accessed on 14 October 2024).
- Vyas, A.; Kim, S.-K.; Giacomini, N.; Boothroyd, J.C.; Sapolsky, R.M. Behavioral Changes Induced by Toxoplasma Infection of Rodents Are Highly Specific to Aversion of Cat Odors. Proc. Natl. Acad. Sci. USA 2007, 104, 6442–6447. [Google Scholar] [CrossRef]
- Dick, W.A.; Cheng, L.; Wang, P. Soil Acid and Alkaline Phosphatase Activity as pH Adjustment Indicators. Soil Biol. Biochem. 2000, 32, 1915–1919. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-Term Assay of Soil Urease Activity Using Colorimetric Determination of Ammonium. Biol. Fert. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016; ISBN 978-0-935584-87-5. [Google Scholar]
- Booth, G.D.; Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach. J. Am. Stat. Assoc. 1981, 76, 753. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Lassaletta, L.; Rodríguez, A.; Aguilera, E.; Piñero, P.; Moro, M.; Garnier, J.; Billen, G.; Einarsson, R.; Bai, Z.; et al. Fertilization Strategies for Abating N Pollution at the Scale of a Highly Vulnerable and Diverse Semi-Arid Agricultural Region (Murcia, Spain). Environ. Res. Lett. 2023, 18, 064030. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Abid, M.; Fahad, S.; Brtnicky, M.; Dokulilova, T.; Datta, R.; Danish, S. Potential Role of Compost Mixed Biochar with Rhizobacteria in Mitigating Lead Toxicity in Spinach. Sci. Rep. 2020, 10, 12159. [Google Scholar] [CrossRef] [PubMed]
- Alshaal, T.; Alharbi, K.; Naif, E.; Rashwan, E.; Omara, A.E.-D.; Hafez, E.M. Strengthen Sunflowers Resilience to Cadmium in Saline-Alkali Soil by PGPR-Augmented Biochar. Ecotoxicol. Environ. Saf. 2024, 280, 116555. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.T.K.; Tra, V.T.; Le, T.H.; Nguyen, N.-K.-Q.; Tran, C.-S.; Nguyen, P.-T.; Vo, T.-D.-H.; Thai, V.-N.; Bui, X.-T. Compost to Improve Sustainable Soil Cultivation and Crop Productivity. Case Stud. Chem. Environ. Eng. 2022, 6, 100211. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Nehela, Y.; Mazrou, Y.S.A.; Alshaal, T.; Rady, A.M.S.; El-Sherif, A.M.A.; Omara, A.E.-D.; Abd El-Monem, A.M.; Hafez, E.M. The Integrated Amendment of Sodic-Saline Soils Using Biochar and Plant Growth-Promoting Rhizobacteria Enhances Maize (Zea mays L.) Resilience to Water Salinity. Plants 2021, 10, 1960. [Google Scholar] [CrossRef]
- El-Shamy, M.A.; Alshaal, T.; Mohamed, H.H.; Rady, A.M.S.; Hafez, E.M.; Alsohim, A.S.; Abd El-Moneim, D. Quinoa Response to Application of Phosphogypsum and Plant Growth-Promoting Rhizobacteria under Water Stress Associated with Salt-Affected Soil. Plants 2022, 11, 872. [Google Scholar] [CrossRef]
- Alharbi, K.; Rashwan, E.; Mohamed, H.H.; Awadalla, A.; Omara, A.E.-D.; Hafez, E.M.; Alshaal, T. Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil. Plants 2022, 11, 2026. [Google Scholar] [CrossRef]
- Alharbi, K.; Rashwan, E.; Hafez, E.; Omara, A.E.-D.; Mohamed, H.H.; Alshaal, T. Potassium Humate and Plant Growth-Promoting Microbes Jointly Mitigate Water Deficit Stress in Soybean Cultivated in Salt-Affected Soil. Plants 2022, 11, 3016. [Google Scholar] [CrossRef]
- Alharbi, K.; Hafez, E.M.; Omara, A.E.-D.; Rashwan, E.; Alshaal, T. Zinc Oxide Nanoparticles and PGPR Strengthen Salinity Tolerance and Productivity of Wheat Irrigated with Saline Water in Sodic-Saline Soil. Plant Soil 2023, 493, 475–495. [Google Scholar] [CrossRef]
- Abbas, H.M.M.; Rais, U.; Sultan, H.; Tahir, A.; Bahadur, S.; Shah, A.; Iqbal, A.; Li, Y.; Khan, M.N.; Nie, L. Residual Effect of Microbial-Inoculated Biochar with Nitrogen on Rice Growth and Salinity Reduction in Paddy Soil. Plants 2024, 13, 2804. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Debode, J.; Willekens, K.; Van Delm, T. Recycling of P and K in Circular Horticulture through Compost Application in Sustainable Growing Media for Fertigated Strawberry Cultivation. Eur. J. Agron. 2018, 96, 131–145. [Google Scholar] [CrossRef]
- Omara, A.E.-D.; Hafez, E.M.; Osman, H.S.; Rashwan, E.; El-Said, M.A.A.; Alharbi, K.; Abd El-Moneim, D.; Gowayed, S.M. Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil. Plants 2022, 11, 877. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Yu, X.; Chen, J.; Li, X.; Chen, J.; Li, J. Effects of Compost as a Soil Amendment on Bacterial Community Diversity in Saline–Alkali Soil. Front. Microbiol. 2023, 14, 1253415. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lehmann, A.; Rongstock, R.; Xu, Y.; Kunze, E.; Meidl, P.; Rillig, M.C. Diversity of Organic Amendments Increases Soil Functions and Plant Growth. Plants People Planet 2024, 1–7. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Yan, G.; Wang, M.; Jiang, S.; Wang, X.; Xue, J.; Xu, M.; Xing, Y.; Wang, Q. Soil Enzyme Activities and Microbial Nutrient Limitation during the Secondary Succession of Boreal Forests. CATENA 2023, 230, 107268. [Google Scholar] [CrossRef]
- Khoso, M.A.; Wagan, S.; Alam, I.; Hussain, A.; Ali, Q.; Saha, S.; Poudel, T.R.; Manghwar, H.; Liu, F. Impact of Plant Growth-Promoting Rhizobacteria (PGPR) on Plant Nutrition and Root Characteristics: Current Perspective. Plant Stress 2024, 11, 100341. [Google Scholar] [CrossRef]
- Anjum, N.A.; Aref, I.M.; Duarte, A.C.; Pereira, E.; Ahmad, I.; Iqbal, M. Glutathione and Proline Can Coordinately Make Plants Withstand the Joint Attack of Metal(Loid) and Salinity Stresses. Front. Plant Sci. 2014, 5, 662. [Google Scholar] [CrossRef]
- Kamal, M.Z.U.; Sarker, U.; Roy, S.K.; Alam, M.S.; Azam, M.G.; Miah, M.Y.; Hossain, N.; Ercisli, S.; Alamri, S. Manure-Biochar Compost Mitigates the Soil Salinity Stress in Tomato Plants by Modulating the Osmoregulatory Mechanism, Photosynthetic Pigments, and Ionic Homeostasis. Sci. Rep. 2024, 14, 21929. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. A Review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Huang, S.; Wu, L.; Cai, Z.; Xu, M. Long-Term Combined Application of Organic and Inorganic Fertilizers Increases Crop Yield Sustainability by Improving Soil Fertility in Maize-Wheat Cropping Systems. J. Integr. Agric. 2024; in press. [Google Scholar] [CrossRef]
Parameter | 2022 | 2023 |
---|---|---|
pH (1:2.5 soil: distilled water suspension) | 7.87 ± 0.01 | 7.86 ± 0.01 |
EC ¥ (Soil paste extract; dS/m) | 3.36 ± 0.03 | 2.84 ± 0.02 |
Soluble ions (meq/L) | ||
Na+ | 19.86 ± 0.95 | 16.78 ± 0.84 |
K+ | 0.27 ± 0.01 | 0.23 ± 0.01 |
Ca2+ | 7.02 ± 0.51 | 5.94 ± 0.42 |
Mg2+ | 6.65 ± 0.33 | 5.62 ± 0.25 |
CO32− | nd † | nd |
HCO3− | 10.24 ± 0.72 | 9.72 ± 0.61 |
Cl− | 14.26 ± 0.88 | 12.05 ± 0.83 |
SO42− | 9.30 ± 0.31 | 6.79 ± 0.22 |
SAR (Sodium adsorption ratio) | 7.59 ± 0.12 | 6.98 ± 0.15 |
Exchangeable sodium percentage (%) | 6.53 ± 0.11 | 6.44 ± 0.13 |
Available macronutrients (mg/kg) | ||
N | 22.75 ± 1.21 | 23.62 ± 1.24 |
P | 5.22 ± 0.21 | 5.35 ± 0.19 |
K | 197 ± 21 | 198 ± 25 |
Bulk density (kg/m3) | 1.23 ± 0.01 | 1.22 ± 0.02 |
Total porosity (%) | 53.58 ± 3.41 | 53.96 ± 3.21 |
Organic matter (%) | 0.53 ± 0.01 | 0.54 ± 0.01 |
CaCO3 (%) | 1.63 ± 0.02 | 1.65 ± 0.02 |
Field capacity (%) | 13.32 ± 0.32 | 13.22 ± 0.29 |
Wilting point (%) | 5.25 ± 0.22 | 5.24 ± 0.19 |
Cation exchange capacity (cmolc/kg) | 0.86 ± 0.01 | 0.85 ± 0.01 |
Particle size distribution (%) | ||
Coarse sand | 37.56 ± 1.11 | 37.71 ± 1.01 |
Fine sand | 54.66 ± 2.01 | 53.75 ± 1.99 |
Silt | 3.28 ± 0.01 | 3.94 ± 0.01 |
Clay | 4.50 ± 0.03 | 4.60 ± 0.04 |
Texture class | Sandy | Sandy |
Parameter | 2022 | 2023 |
---|---|---|
pH | 7.83 ± 0.02 | 7.77 ± 0.01 |
EC ¥ (dS/m) | 1.12 ± 0.03 | 1.09 ± 0.01 |
Soluble ions (meq/L) | ||
Ca2+ | 2.34 ± 0.11 | 2.28 ± 0.12 |
Mg2+ | 1.34 ± 0.06 | 1.31 ± 0.04 |
Na+ | 7.60 ± 0.07 | 7.40 ± 0.05 |
K+ | 0.09 ± 0.001 | 0.08 ± 0.002 |
CO32− | nd † | nd |
HCO3− | 3.15 ± 0.03 | 3.63 ± 0.02 |
Cl− | 5.31 ± 0.06 | 5.17 ± 0.08 |
SO42− | 2.91 ± 0.02 | 2.27 ± 0.04 |
SAR (Sodium adsorption ratio) | 5.59 ± 0.06 | 5.52 ± 0.05 |
Parameter | 2022 | 2023 |
---|---|---|
pH (1:10 compost: distilled water suspension) | 6.87 ± 0.01 | 6.69 ± 0.01 |
EC ¥ (1:10 compost: distilled water extract; dS/m) | 4.61 ± 0.05 | 4.57 ± 0.04 |
Organic matter (%) | 37.84 ± 2.22 | 37.82 ± 1.98 |
N (%) | 1.44 ± 0.03 | 1.42 ± 0.04 |
C (%) | 33.14 ± 0.92 | 32.65 ± 0.88 |
C:N | 23.01 ± 1.01 | 22.99 ± 0.99 |
P (%) | 0.78 ± 0.02 | 0.77 ± 0.03 |
K (%) | 1.31 ± 0.13 | 1.16 ± 0.11 |
Manganese (mg/kg) | 341 ± 25 | 339 ± 26 |
Iron (mg/kg) | 329 ± 32 | 331 ± 27 |
Zinc (mg/kg) | 76 ± 11 | 74 ± 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Akhdar, I.; Shabana, M.M.A.; El-Khateeb, N.M.M.; Elhawat, N.; Alshaal, T. Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield. Plants 2024, 13, 3156. https://doi.org/10.3390/plants13223156
El-Akhdar I, Shabana MMA, El-Khateeb NMM, Elhawat N, Alshaal T. Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield. Plants. 2024; 13(22):3156. https://doi.org/10.3390/plants13223156
Chicago/Turabian StyleEl-Akhdar, Ibrahim, Mahmoud M. A. Shabana, Nagwa M. M. El-Khateeb, Nevien Elhawat, and Tarek Alshaal. 2024. "Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield" Plants 13, no. 22: 3156. https://doi.org/10.3390/plants13223156
APA StyleEl-Akhdar, I., Shabana, M. M. A., El-Khateeb, N. M. M., Elhawat, N., & Alshaal, T. (2024). Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield. Plants, 13(22), 3156. https://doi.org/10.3390/plants13223156