Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions
Abstract
:1. Introduction
2. Results
2.1. Temperature and Relative Humidity
2.2. Plant Height
2.3. Biomass
2.4. Vegetation Indices
2.5. Electron Transport Rate
2.6. Essential Oil Content
2.7. Essential Oil Composition
3. Discussion
4. Materials and Methods
4.1. Plant Material and Cultivation
4.2. Harvest and Data Collection
4.3. Essential Oil Extraction and Analysis
4.4. Statistical Analysis
5. Conclusions
- A selection for cultivation should not only be made at the species level but rather at the genotype level because of both inter- and intra-specific differences.
- EO content under shading is slightly higher than under control conditions.
- In latitudes or altitudes with higher UV radiation, shading might contribute to higher EO quality.
- To gain high quantities of mint biomass, shading is not necessarily beneficial unless further examination of the leaf size and leaf–stem ratio reveals that shading promotes larger and more leaves.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.M. Mint: The Genus Mentha; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Saric-Kundalic, B.; Fialova, S.; Dobes, C.; Ölzant, S.; Tekelova, D.; Grancai, D.; Reznicek, G.; Saukel, J. Multivariate Numerical Taxonomy of Mentha Species, Hybrids, Varieties and Cultivars. Sci. Pharm. 2009, 77, 851–876. [Google Scholar] [CrossRef]
- Deutscher Tee & Kräutertee Verband. Absatzverteilung von Kräuter- und Früchtetee in Deutschland nach Sorte im Jahr 2022. Available online: https://de.statista.com/statistik/daten/studie/1278856/umfrage/absatzverteilung-von-kraeuter-und-fruechtetee-in-deutschland-nach-art/ (accessed on 4 March 2024).
- Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.-H.; Rehman, N.-U. Mentha: A genus rich in vital nutra-pharmaceuticals-A review. Phytother. Res. 2019, 33, 2548–2570. [Google Scholar] [CrossRef] [PubMed]
- Statistisches Bundesamt. Umsatz der Branche Herstellung von etherischen Ölen in Deutschland von 2012 bis 2019 und Prognose bis zum Jahr 2025 (in Millionen Euro). Available online: https://de.statista.com/prognosen/313723/herstellung-von-etherischen-oelen-umsatz-in-deutschland (accessed on 4 March 2024).
- Maffei, M.; Chialva, F.; Sacco, T. Glandular trichomes and essential oils in developing peppermint leaves. New Phytol. 1989, 111, 707–716. [Google Scholar] [CrossRef]
- Ausgabe, A.D.; Deutscher Apotheker Verlag, D.A. (Eds.) Ph. Eur. 10.: Pharmacopoeia Europaea—Europäisches Arzneibuch; Deutscher Apotheker Verlag: Stuttgart, Germany, 2020; ISBN 978-3-7692-7515-5. [Google Scholar]
- Gordon, W.P.; Huitric, A.C.; Seth, C.L.; McClanahan, R.H.; Nelson, S.D. The metabolism of the abortifacient terpene, (R)-(+)-pulegone, to a proximate toxin, menthofuran. Drug Metab. Dispos. 1987, 15, 589–594. [Google Scholar]
- Nair, B. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. Int. J. Toxicol. 2001, 61–73. [Google Scholar]
- Hatfield, J.L.; Walthall, C.L. Meeting Global Food Needs: Realizing the Potential via Genetics × Environment × Management Interactions. Agron. J. 2015, 107, 1215–1226. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha × piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Duriyaprapan, S.; Britten, E.J. The Effects of Solar Radiation on Plant Growth, Oil Yield and Oil Quality of Japanese Mint. J. Exp. Biol. 1982, 33, 1319–1324. [Google Scholar] [CrossRef]
- Kizil, S.; Tonçer, Ö. Influence of different harvest times on the yield and oil composition of spearmint (Mentha spicata L. var. spicata). J. Food Agric. Environ. 2006, 4, 135–137. [Google Scholar]
- Hubert, C.; Tsiaparas, S.; Kahlert, L.; Luhmer, K.; Moll, M.D.; Passon, M.; Wüst, M.; Schieber, A.; Pude, R. Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes. Horticulturae 2023, 9, 960. [Google Scholar] [CrossRef]
- Cusack, D.F. Agroclimate Information For Development: Reviving The Green Revolution; Routledge: New York, NY, USA, 2022; ISBN 9780429049323. [Google Scholar]
- Tmušić, N.; Ilić, Z.S.; Milenković, L.; Šunić, L.; Lalević, D.; Kevrešan, Ž.; Mastilović, J.; Stanojević, L.; Cvetković, D. Shading of Medical Plants Affects the Phytochemical Quality of Herbal Extracts. Horticulturae 2021, 7, 437. [Google Scholar] [CrossRef]
- Ferrante, A.; Mariani, L. Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses: High and Low Values of Temperature, Light Intensity, and Relative Humidity. Horticulturae 2018, 4, 21. [Google Scholar] [CrossRef]
- Stigter, C.J. Shading: A traditional method of microclimate manipulation. Neth. J. Agric. Sci. 1984, 32, 81–86. [Google Scholar] [CrossRef]
- Şeker, S.; Çakaloğulları, U.; Bayram, E.; Tatar, Ö. Production of sage, oregano and rosemary under shading conditions and the effects of light on growth and essential oil properties. Ind. Crops Prod. 2023, 193, 116254. [Google Scholar] [CrossRef]
- Beck, M.; Bopp, G.; Goetzberger, A.; Obergfell, T.; Reise, C.; Schindele, S. Combining PV and Food Crops to Agrophotovoltaic—Optimization of Orientation and Harvest. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012; pp. 4096–4100. [Google Scholar] [CrossRef]
- Prasanta, K.P.; Manoja, D.; Prasanta, K.B. Growth response of mint (Mentha spicata L.) to light and shade regime. Indian J. Plant Physiol. 2003, 8, 193–195. [Google Scholar]
- Roberts, D.A.; Roth, K.L.; Perroy, R.L. Spectral and Spatial Methods of Hyperspectral Image Analysis for Estimation of Biophysical and Biochemical Properties of Agricultural Crops. In Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 325–344. ISBN 9780429192180. [Google Scholar]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Chagas, J.H.; Pinto, J.E.B.P.; Bertolucci, S.K.V.; Costa, A.G.; Jesus, H.C.R.d.; Alves, P.B. Production, content and chemical composition of essential oil of mint cultivated under color shading nets. Hortic. Bras. 2013, 31, 297–303. [Google Scholar] [CrossRef]
- Deraman, D.S.; Paee, F.; Nasim, N.; Sabran, S.F.; Zairi, M. Effect of different light intensities on growth rate in Mentha arvensis. IOP Conf. Ser. Earth Environ. Sci. 2019, 269, 012016. [Google Scholar] [CrossRef]
- Wachira, F.; Ng’etich, W.; Omolo, J.; Mamati, G. Genotype × environment interactions for tea yields. Euphytica 2002, 127, 289–296. [Google Scholar] [CrossRef]
- Patonay, K.; Szalontai, H.; Radácsi, P.; Zámboriné-Németh, É. Chemotypes and Their Stability in Mentha longifolia (L.) L.-A Comprehensive Study of Five Accessions. Plants 2021, 10, 2478. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Liang, C.; Fang, H.; Qi, X.; Li, W.; Shang, Q. Variation of trichome morphology and essential oil composition of seven Mentha species. Biochem. Syst. Ecol. 2018, 79, 30–36. [Google Scholar] [CrossRef]
- Bisset, N.G.; Wichtl, M. Herbal Drugs and Phytopharmaceuticals; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Court, W.A.; Pocs, R.; Roy, R.C. Effect of harvest date on the yield and quality of the essential oil of peppermint. Can. J. Plant Sci. 1993, 73, 815–824. [Google Scholar] [CrossRef]
- Behn, H.; Albert, A.; Marx, F.; Noga, G.; Ulbrich, A. Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.). J. Agric. Food Chem. 2010, 58, 7361–7367. [Google Scholar] [CrossRef]
- Kivimäenpä, M.; Mofikoya, A.; Abd El-Raheem, A.M.; Riikonen, J.; Julkunen-Tiitto, R.; Holopainen, J.K. Alteration in Light Spectra Causes Opposite Responses in Volatile Phenylpropanoids and Terpenoids Compared with Phenolic Acids in Sweet Basil (Ocimum basilicum) Leaves. J. Agric. Food Chem. 2022, 70, 12287–12296. [Google Scholar] [CrossRef]
- Brini, F.; Mseddi, K.; Brestic, M.; Landi, M. Hormone-mediated plant responses to light quality and quantity. Environ. Exp. Bot. 2022, 202, 105026. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejadad, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y.U. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Boochs, F.; Kupfer, G.; Dockter, K.; Kühbauch, W. Shape of the red edge as vitality indicator for plants. Int. J. Remote Sens. 1990, 11, 1741–1753. [Google Scholar] [CrossRef]
Genotype | Treatment | Harvest | FM [g/m2] | DM [g/m2] | DS [%] |
---|---|---|---|---|---|
‘Apfelminze’ | Shaded | 1 | 1433.6 ± 202.2 c | 305.5 ± 47.3 cd | 21.3 ± 0.5 cd |
‘Apfelminze’ | Control | 1 | 1492.2 ± 232.5 c | 360.0 ± 57.4 cd | 24.1 ± 0.9 ab |
‘Fr. Blaue’ | Shaded | 1 | 1496.2 ± 301.9 c | 295.2 ± 56.2 d | 19.8 ± 0.4 d |
‘Fr. Blaue’ | Control | 1 | 1825.9 ± 188.6 bc | 416.7 ± 52.9 bc | 22.8 ± 1.4 bc |
‘Multimentha’ | Shaded | 1 | 2296.1 ± 135.1 ab | 494.3 ± 59.9 ab | 21.5 ± 1.6 cd |
‘Multimentha’ | Control | 1 | 2307.3 ± 182.5 a | 587.3 ± 39.6 a | 25.5 ± 0.8 a |
‘Apfelminze’ | Shaded | 2 | 628.2 ± 107.8 b | 126.4 ± 19.9 b | 20.2 ± 1.1 b |
‘Apfelminze’ | Control | 2 | 645.9 ± 205.6 b | 165.6 ± 46.8 ab | 25.8 ± 0.8 a |
‘Fr. Blaue’ | Shaded | 2 | 1109.7 ± 305.6 a | 226.9 ± 65.4 ab | 20.4 ± 0.8 b |
‘Fr. Blaue’ | Control | 2 | 974.6 ± 361.6 ab | 250.3 ± 90.3 ab | 25.8 ± 1.1 a |
‘Multimentha’ | Shaded | 2 | 890.4 ± 76.9 ab | 183.9 ± 11.4 ab | 20.7 ± 0.8 b |
‘Multimentha’ | Control | 2 | 1195.7 ± 339.5 a | 305.6 ± 96.5 a | 25.4 ± 1.2 a |
‘Apfelminze’ | Shaded | 3 | 516.0 ± 49.2 d | 97.8 ± 12.8 c | 18.9 ± 0.9 ab |
‘Apfelminze’ | Control | 3 | 605.5 ± 56.3 cd | 126.8 ± 11.0 bc | 20.9 ± 1.3 a |
‘Fr. Blaue’ | Shaded | 3 | 724.2 ± 151.3 b–d | 142.1 ± 27.2 b | 19.7 ± 1.2 ab |
‘Fr. Blaue’ | Control | 3 | 1030.5 ± 70.2 a | 221.1 ± 16.3 a | 21.5 ± 1.2 a |
‘Multimentha’ | Shaded | 3 | 791.5 ± 121.2 a–c | 143.4 ± 17.8 b | 18.2 ± 1.1 b |
‘Multimentha’ | Control | 3 | 899.7 ± 141.5 ab | 185.5 ± 20.7 a | 20.7 ± 1.1 ab |
Genotype | Treatment | Harvest | FM [g/m2] | DM [g/m2] | DS [%] |
---|---|---|---|---|---|
‘Apfelminze’ | Shaded | 1 | 1933.4 ± 471.6 a | 178.6 ± 43.1 ab | 9.2 ± 0.4 c |
‘Apfelminze’ | Control | 1 | 2200.1 ± 587.8 a | 236.5 ± 61.4 a | 10.8 ± 0.1 b |
‘Fr. Blaue’ | Shaded | 1 | 1103.2 ± 199.7 b | 121.9 ± 17.3 b | 11.1 ± 0.8 b |
‘Fr. Blaue’ | Control | 1 | 958.7 ± 87.3 b | 128.8 ± 13.0 b | 13.4 ± 0.4 a |
‘Multimentha’ | Shaded | 1 | 1150.6 ± 66.5 b | 124.6 ± 7.9 b | 10.8 ± 0.8 b |
‘Multimentha’ | Control | 1 | 819.2 ± 262.9 ab | 108.9 ± 28.8 b | 13.5 ± 0.9 a |
‘Apfelminze’ | Shaded | 2 | 1123.2 ± 90.6 a | 233.5 ± 19.9 ab | 20.8 ± 0.7 c |
‘Apfelminze’ | Control | 2 | 1099.3 ± 124.6 a | 274.0 ± 28.8 ab | 25.0 ± 1.9 b |
‘Fr. Blaue’ | Shaded | 2 | 581.4 ± 77.9 c | 148.2 ± 21.5 c | 25.5 ± 2.3 b |
‘Fr. Blaue’ | Control | 2 | 659.4 ± 163.3 bc | 196.3 ± 42.4 bc | 30.0 ± 1.6 a |
‘Multimentha’ | Shaded | 2 | 799.4 ± 33.7 bc | 193.5 ± 2.7 bc | 24.2 ± 0.9 b |
‘Multimentha’ | Control | 2 | 913.7 ± 209.5 a | 285.7 ± 69.5 a | 31.2 ± 0.8 a |
‘Apfelminze’ | Shaded | 3 | 924.3 ± 213.4 ab | 154.6 ± 43.6 a–c | 16.6 ± 0.9 c |
‘Apfelminze’ | Control | 3 | 1195.3 ± 302.1 a | 238.9 ± 62.7 a | 20.2 ± 1.1 b |
‘Fr. Blaue’ | Shaded | 3 | 704.9 ± 161.0 bc | 135.9 ± 27.6 bc | 19.4 ± 0.9 b |
‘Fr. Blaue’ | Control | 3 | 408.8 ± 32.9 c | 94.6 ± 7.7 c | 23.2 ± 1.5 a |
‘Multimentha’ | Shaded | 3 | 887.9 ± 118.7 ab | 165.4 ± 19.9 a–c | 18.7 ± 0.4 bc |
‘Multimentha’ | Control | 3 | 914.3 ± 185.7 ab | 218.6 ± 42.5 ab | 23.9 ± 0.3 a |
2022 | 2023 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | AM C | AM S | FB C | FB S | MM C | MM S | AM C | AM S | FB C | FB S | MM C | MM S |
Eucalyptol/ limonene | 12.02 ± 0.48 | 11.25 ± 0.15 | 3.07 ± 0.28 | 3.11 ± 0.22 | 2.41 ± 0.13 | 2.23 ± 0.07 | 11.84 ± 0.59 | 8.76 ± 5.15 | - | - | 1.16 ± 0.07 | - |
p-Menthone | - | - | 42.33 ± 1.70 | 41.79 ± 4.13 | 54.03 ± 2.22 | 52.69 ± 4.04 | - | - | 38.33 ± 12.47 | 44.77 ± 6.02 | 57.54 ± 2.22 | 57.82 ± 2.71 |
Isomenthone | - | - | 5.99 ± 0.29 | 5.64 ± 0.42 | 3.91 ± 0.10 | 3.82 ± 0.21 | - | - | 4.86 ± 1.55 | 5.23 ± 0.58 | 3.63 ± 0.10 | 3.85 ± 0.15 |
Menthofuran | - | - | - | - | - | - | - | - | - | - | - | 1.13 ± 0.12 |
Menthol isomer A | - | - | 3.12 ± 0.37 | 2.92 ± 0.36 | 4.61 ± 0.44 | 4.75 ± 0.57 | - | - | 5.77 ± 0.61 | 4.85 ± 0.94 | 9.19 ± 1.63 | 8.47 ± 0.60 |
Menthol isomer B | - | - | 29.04 ± 0.78 | 28.38 ± 3.61 | 23.62 ± 2.43 | 24.34 ± 3.65 | - | - | 38.99 ± 5.80 | 33.32 ± 5.68 | 20.81 ± 1.52 | 21.07 ± 1.98 |
Dihydro- carvone | 8.98 ± 1.98 | 8.27 ± 1.85 | - | - | - | - | 13.41 ± 1.76 | 10.45 ± 3.16 | - | - | - | - |
1,6-Dihydrocarveol | - | - | - | - | - | - | 1.91 ± 0.71 | 1.52 ± 0.52 | - | - | - | - |
Pulegone | - | - | - | - | - | - | - | - | - | - | - | - |
Carvone | 67.22 ± 2.43 | 69.44 ± 2.51 | - | - | - | - | 62.25 ± 3.25 | 68.54 ± 7.08 | - | - | - | - |
Piperitone | - | - | 1.46 ± 0.13 | 1.57 ± 0.08 | 2.25 ± 0.12 | 2.46 ± 0.19 | 1.84 ± 0.06 | 2.05 ± 0.25 | 1.81 ± 0.21 | 2.26 ± 0.31 | 2.31 ± 0.11 | 2.60 ± 0.14 |
Menthyl acetate | - | - | 2.92 ± 0.84 | 2.88 ± 0.83 | - | 1.33 ± 0.50 | - | - | 5.10 ± 0.45 | 4.32 ± 0.65 | 1.33 ± 0.28 | 1.71 ± 0.23 |
β-Bourbonene | 1.06 ± 0.55 | - | - | - | - | - | - | - | - | - | - | - |
β-Caryophyllene | 1.37 ± 0.80 | 1.42 ± 0.21 | 3.08 ± 0.50 | 3.29 ± 0.12 | 1.34 ± 0.44 | 1.42 ± 0.04 | 1.09 ± 0.16 | 1.02 ± 0.15 | - | - | - | - |
β-Copaene | 4.05 ± 0.24 | 3.87 ± 0.61 | 3.52 ± 0.56 | 4.61 ± 0.17 | 1.90 ± 0.63 | 2.41 ± 0.11 | 3.13 ± 0.59 | 3.60 ± 0.90 | 1.24 ± 0.27 | 1.11 ± 0.20 | - | - |
2022 | 2023 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | AM C | AM S | FB C | FB S | MM C | MM S | AM C | AM S | FB C | FB S | MM C | MM S |
Eucalyptol/ limonene | 15.18 ± 0.51 | 13.23 ± 0.15 | 3.55 ± 0.12 | 3.21 ± 0.14 | 2.37 ± 0.03 | 2.19 ± 0.14 | 15.02 ± 0.27 | 13.31 ± 0.40 | 3.87 ± 0.09 | 3.59 ± 0.13 | 2.67 ± 0.17 | 2.49 ± 0.12 |
p-Menthone | - | - | 52.47 ± 1.82 | 55.22 ± 2.16 | 64.69 ± 0.81 | 67.35 ± 1.03 | - | - | 46.41 ± 1.95 | 49.56 ± 3.18 | 63.36 ± 1.96 | 65.36 ± 2.13 |
Isomenthone | - | - | 7.60 ± 0.10 | 7.32 ± 0.15 | 4.32 ± 0.05 | 4.30 ± 0.21 | - | - | 7.06 ± 0.03 | 6.59 ± 0.08 | 4.16 ± 0.05 | 4.07 ± 0.07 |
Menthofuran | - | - | 1.58 ± 0.16 | 2.12 ± 0.15 | 2.70 ± 0.19 | 2.29 ± 0.76 | - | - | 1.67 ± 0.21 | 1.25 ± 0.10 | 2.81 ± 0.26 | 2.12 ± 0.25 |
Menthol isomer A | - | - | 1.84 ± 0.15 | 1.73 ± 0.20 | 2.50 ± 0.22 | 2.62 ± 0.42 | - | - | 2.43 ± 0.27 | 1.83 ± 0.27 | 1.95 ± 0.22 | 1.83 ± 0.23 |
Menthol isomer B | - | - | 23.36 ± 2.55 | 21.09 ± 1.75 | 14.38 ± 1.16 | 13.16 ± 0.70 | - | - | 29.75 ± 2.10 | 26.52 ± 3.34 | 17.68 ± 1.79 | 16.09 ± 2.25 |
Dihydro- carvone | 8.62 ± 1.88 | 8.24 ± 1.51 | - | - | - | - | 2.49 ± 0.77 | 2.38 ± 0.92 | - | - | - | - |
1,6-Dihydrocarveol | - | - | - | - | - | - | - | - | - | - | - | - |
Pulegone | - | - | 1.59 ± 0.15 | 1.03 ± 0.40 | 2.67 ± 0.39 | 2.32 ± 0.39 | - | - | 1.09 ± 0.34 | - | 1.83 ± 0.28 | - |
Carvone | 67.29 ± 1.58 | 70.73 ± 1.40 | - | - | - | - | 73.46 ± 1.08 | 75.11 ± 1.32 | - | - | - | - |
Piperitone | - | - | 1.56 ± 0.03 | 1.59 ± 0.04 | 1.91 ± 0.09 | 2.03 ± 0.14 | - | - | 1.27 ± 0.04 | 1.34 ± 0.03 | 1.59 ± 0.12 | 1.78 ± 0.08 |
Menthyl acetate | - | - | - | - | - | - | - | - | - | - | - | - |
β-Bourbonene | - | - | - | - | - | - | - | - | - | - | - | - |
β-Caryophyllene | 1.45 ± 0.21 | 1.01 ± 0.11 | 1.49 ± 0.54 | 1.23 ± 0.26 | - | - | 1.61 ± 0.06 | 1.49 ± 0.13 | 1.38 ± 0.38 | 1.98 ± 0.29 | - | - |
β-Copaene | 2.33 ± 0.33 | 2.19 ± 0.37 | - | 1.15 ± 0.22 | - | - | 3.17 ± 0.54 | 3.86 ± 1.38 | 1.25 ± 0.35 | 2.52 ± 0.49 | - | 1.49 ± 0.15 |
2022 | 2023 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | AM C | AM S | FB C | FB S | MM C | MM S | AM C | AM S | FB C | FB S | MM C | MM S |
Eucalyptol/ limonene | 12.88 ± 0.35 | 11.55 ± 0.55 | 3.06 ± 0.43 | 2.70 ± 0.15 | 1.72 ± 0.16 | 1.65 ± 0.24 | 13.32 ± 0.54 | 10.06 ± 1.79 | 2.76 ± 0.32 | 2.91 ± 0.22 | 1.74 ± 0.14 | 1.48 ± 0.19 |
p-Menthone | - | - | 39.85 ± 0.94 | 44.71 ± 1.27 | 55.91 ± 2.09 | 60.27 ± 3.12 | - | - | 45.56 ± 2.93 | 46.84 ± 2.81 | 58.35 ± 1.26 | 60.07 ± 1.00 |
Isomenthone | - | - | 5.40 ± 0.22 | 5.50 ± 0.24 | 3.38 ± 0.12 | 3.59 ± 0.12 | - | - | 6.05 ± 0.19 | 6.07 ± 0.23 | 3.71 ± 0.11 | 3.54 ± 0.12 |
Menthofuran | - | - | - | - | - | - | - | - | 3.38 ± 0.42 | 3.26 ± 0.84 | 5.07 ± 0.61 | 5.88 ± 0.84 |
Menthol isomer A | - | - | 3.21 ± 0.12 | 2.56 ± 0.28 | 4.87 ± 1.89 | 4.11 ± 0.94 | - | - | 2.93 ± 0.21 | 2.38 ± 0.21 | 3.15 ± 0.30 | 2.64 ± 0.33 |
Menthol isomer B | - | - | 39.57 ± 0.61 | 37.44 ± 0.86 | 29.58 ± 1.72 | 26.55 ± 2.52 | - | - | 30.98 ± 2.35 | 30.24 ± 2.64 | 22.09 ± 0.57 | 20.63 ± 1.51 |
Dihydro- carvone | 11.17 ± 1.38 | 15.60 ± 2.67 | - | - | - | - | 10.35 ± 3.47 | 13.50 ± 4.64 | - | - | - | - |
1,6-Dihydrocarveol | 1.38 ± 0.17 | 2.39 ± 0.57 | - | - | - | - | - | 1.23 ± 0.62 | - | - | - | - |
Pulegone | - | - | - | - | - | - | - | - | - | - | 1.20 ± 0.11 | 1.50 ± 0.20 |
Carvone | 67.34 ± 1.73 | 63.41 ± 2.59 | - | - | - | - | 68.20 ± 3.59 | 67.84 ± 4.25 | - | - | - | - |
Piperitone | - | - | 1.17 ± 0.08 | 1.18 ± 0.13 | 1.26 ± 0.04 | 1.29 ± 0.09 | - | - | 1.05 ± 0.10 | 1.17 ± 0.13 | 1.21 ± 0.06 | 1.14 ± 0.08 |
Menthyl acetate | - | - | 5.25 ± 0.53 | 4.13 ± 0.54 | 1.66 ± 0.58 | 1.42 ± 0.36 | - | - | 1.80 ± 0.19 | 1.10 ± 0.28 | - | - |
β-Bourbonene | - | - | - | - | - | - | - | - | - | - | - | - |
β-Caryophyllene | - | - | - | - | - | - | - | - | 1.32 ± 0.11 | 1.26 ± 0.15 | - | - |
β-Copaene | 1.57 ± 0.12 | 1.75 ± 0.28 | - | - | - | - | 2.26 ± 0.14 | 2.82 ± 0.48 | 1.36 ± 0.09 | 1.72 ± 0.30 | - | - |
2022 | 2023 | |||
---|---|---|---|---|
Month | Temperature [°C] | Precipitation [mm] | Temperature [°C] | Precipitation [mm] |
January | 3.5 ± 3.0 | 40.7 | 4.5 ± 4.7 | 40.8 |
February | 5.9 ± 2.3 | 48.4 | 4.8 ± 3.6 | 21.0 |
March | 6.6 ± 3.3 | 15.1 | 6.8 ± 4.2 | 66.0 |
April | 8.9 ± 3.6 | 36.4 | 8.4 ± 2.6 | 46.0 |
May | 15.3 ± 3.1 | 73.8 | 13.4 ± 2.3 | 73.2 |
June | 18.3 ± 2.9 | 78.4 | 19.5 ± 2.5 | 44.0 |
July | 19.6 ± 3.0 | 5.4 | 19.1 ± 2.5 | 60.3 |
August | 21.0 ± 2.5 | 8.1 | 18.4 ± 2.8 | 77.6 |
September | 14.5 ± 4.2 | 70.3 | 18.1 ± 3.1 | 40.4 |
October | 13.7 ± 2.5 | 32.2 | 13.3 ± 4.0 | 53.6 |
November | 8.3 ± 2.8 | 38.4 | 7.0 ± 3.4 | 72.7 |
December | 3.1 ± 6.2 | 45.8 | 5.8 ± 3.8 | 48.6 |
2022 | 2023 | |||
---|---|---|---|---|
Control | Shaded | Control | Shaded | |
UV-A (W/m2) | 31.4 ± 8.3 | 16.5 ± 5.8 | 29.8 ± 12.1 | 15.1 ± 6.6 |
UV-B (W/m2) | 0.7 ± 0.3 | 0.4 ± 0.2 | 0.7 ± 0.3 | 0.4 ± 0.2 |
PAR (PPFD) | 1430 ± 434 | 772 ± 277 | 1331 ± 613 | 684 ± 335 |
2022 | 2023 | ||||
---|---|---|---|---|---|
Date | Measurement | Day of the Year | Date | Measurement | Day of the Year |
11 May | 1 | 131 | 19 April | 1 | 109 |
17 May | 2 | 137 | 26 April | 2 | 116 |
26 May | 3 | 146 | 03 May | 3 | 123 |
01 June | 4 | 152 | 10 May | 4 | 130 |
07 June | 5 | 158 | 07 June | 5 | 158 |
14 June | 6 | 165 | 14 June | 6 | 165 |
21 June | 7 | 172 | 21 June | 7 | 172 |
29 June | 8 | 180 | 28 June | 8 | 178 |
20 July | 9 | 201 | 05 July | 9 | 186 |
26 July | 10 | 207 | 13 July | 10 | 194 |
03 August | 11 | 215 | 20 July | 11 | 201 |
09 August | 12 | 220 | 10 August | 12 | 222 |
06 September | 13 | 249 | 17 August | 13 | 229 |
13 September | 14 | 256 | 23 August | 14 | 235 |
21 September | 15 | 264 | 31 August | 15 | 243 |
29 September | 16 | 272 | 07 September | 16 | 250 |
05 October | 17 | 278 | 14 September | 17 | 257 |
11 October | 18 | 284 | 21 September | 18 | 264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubert-Schöler, C.; Tsiaparas, S.; Luhmer, K.; Moll, M.D.; Passon, M.; Wüst, M.; Schieber, A.; Pude, R. Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions. Plants 2024, 13, 3155. https://doi.org/10.3390/plants13223155
Hubert-Schöler C, Tsiaparas S, Luhmer K, Moll MD, Passon M, Wüst M, Schieber A, Pude R. Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions. Plants. 2024; 13(22):3155. https://doi.org/10.3390/plants13223155
Chicago/Turabian StyleHubert-Schöler, Charlotte, Saskia Tsiaparas, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber, and Ralf Pude. 2024. "Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions" Plants 13, no. 22: 3155. https://doi.org/10.3390/plants13223155
APA StyleHubert-Schöler, C., Tsiaparas, S., Luhmer, K., Moll, M. D., Passon, M., Wüst, M., Schieber, A., & Pude, R. (2024). Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions. Plants, 13(22), 3155. https://doi.org/10.3390/plants13223155