Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple
Abstract
:1. Introduction
2. Experimental Part
2.1. Preparation of the Ester Derivatives
2.2. Characterization of the Ester Derivatives
2.3. General Procedure for Acylation of the Phenolic Compounds
2.4. General Procedure for Preparation of the Thymol and Carvacryl Butyrate
2.5. Mycelial Growth Assay
2.6. Minimum Inhibitory Concentration (MIC)
2.7. Ex Vivo Assay
3. Results
3.1. Synthesis of the Esters Derived from Phenolic Substances
3.2. Mycelial Growth Assay
3.3. Minimum Inhibitory Concentration (MIC)
4. Ex Vivo Assays
5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO-Food and Agriculture Organization of the United Nations. World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 7 July 2023).
- Liu, Y.; Li, B.; Wang, C.; Liu, C.; Kong, X.; Zhu, J.; Dai, H. Genetics and Molecular Marker Identification of a Resistance to Glomerella Leaf Spot in Apple. Hortic. Plant J. 2016, 2, 121–125. [Google Scholar] [CrossRef]
- Wang, B.; Li, B.H.; Dong, X.L.; Wang, C.X.; Zhang, Z.F. Effects of Temperature, Wetness Duration, and Moisture on the Conidial Germination, Infection, and Disease Incubation Period of Glomerella cingulata. Plant Dis. 2015, 99, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Katsurayama, Y.; Boneti, J.I.S.; Becker, W.F. Mancha foliar da gala: Principal doença de verão da cultura da macieira. Agropecuária Catarin. 2000, 13, 14–20. [Google Scholar]
- Petri, J.L.; Leite, G.B.; Couto, M.; Francescatto, E.P. Advances of the apple crop in Brazil. Rev. Bras. Frutic. 2011, 33, 48–56. [Google Scholar] [CrossRef]
- Velho, A.C.; Alaniz, S.; Casanova, L.; Mondino, P.; Stadnik, M.J. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biol. 2015, 119, 229–244. [Google Scholar] [CrossRef]
- Moreira, R.R.; Peres, N.A.; May De Mio, L.L. Colletotrichum acutatum and C. gloeosporioides species complex associated with apple in Brazil. Plant Dis. 2019, 103, 268–275. [Google Scholar] [CrossRef]
- De Carraro, T.A.; Moreira, R.R.; Gelain, J.; May De Mio, L.L. Etiology and epidemiology of diseases caused by Colletotrichum spp. in persimmon, apple, peach, and grapevine. Revisão Anu. Patol. Plantas 2022, 28, 136–162. [Google Scholar] [CrossRef]
- Moreira, R.R.; Peres, N.A.; May De Mio, L.L. Sensitivity of Colletotrichum acutatum species complex from apple trees in Brazil to fungicides. Plant Dis. 2019, 103, 2569–2576. [Google Scholar] [CrossRef]
- Valdebenito-Sanhueza, R.M.; Becker, W.; Boneti, J.I.S.; Katsurayama, Y.; Czermainski, A.B.C. Manejo Das Doenças de Verão na Produção Integrada de Maçã; Embrapa Uva e Vinho, Circular Técnica n°.36: Bento Gonçalves, Brazil, 2002; 11p. [Google Scholar]
- Ministério da Agricultura Pecuária e Abastecimento-MAPA. Sistemas de Agrotóxicos Fitosanitários-Agrofit. Available online: http://extranet.agricultura.gobr/agrofit_cons/principal_agrofit_cons (accessed on 1 May 2018).
- Fischer, I.H.; Da Silva, B.L.; Soares, A.R. Efeito de fungicidas e produtos alternativos no controle da antracnose e da pinta preta da goiaba. Semin. Ciências Agrárias 2012, 33, 2753–2766. [Google Scholar] [CrossRef]
- Kowata, L.S.; Strapasson, M.; Challiol, M.A.; May De Mio, L.L. Glomerella leaf spot in apple: Validation of proposed diagrammatic scale and efficiency of fungicides. Ciência Rural 2010, 40, 1502–1508. [Google Scholar] [CrossRef]
- Ghini, R.; Kimati, H. Resistência de Fungos a Fungicidas, 2nd ed.; Embrapa Meio Ambiente: Jaguariúna, Brazil, 2002. [Google Scholar]
- Tripathi, P.; Dubey, N. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 2004, 32, 235–245. [Google Scholar] [CrossRef]
- Moreira, R.R.; Castellar, C.; Hamada, N.A.; May De Mio, L.L. Sensitivity of Colletotrichum species, associated to Glomerella leaf spot in apple, to mancozeb and thiophanate methyl. In Modern Fungicides and Antifungal Compounds; Deising, H.B., Fraaije, B., Mehl, A., Oerke, E.C., Sierotzki, H., Stammler, G., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2017; Volume VIII, pp. 159–160. ISBN 978-3-941261-15-0. [Google Scholar]
- Chung, W.H.; Ishii, H.; Nishimura, K.; Fukaya, M.; Yano, K.; Kajitani, Y. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Dis. 2006, 90, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.A.; Katsurayama, Y.; Dantas, A.C.M. Sensibilidade “in vitro” ao benomyl por isolados de Colletotrichum spp. associados à mancha da gala em macieira. Trop. Plant Pathol. 2009, 34, 347–351. [Google Scholar] [CrossRef]
- Suvarna, J.; Basha, S.T.; Hemalatha, T.M.; Reddy, N.P.E. Efficacy of fungicides against Colletotrichum gloeosporioides causing mango anthracnose. Indian J. Plant Prot. 2009, 37, 201–203. [Google Scholar]
- Tam, G.; Li, Z.; Xue, L.; Li, L. Influence of propiconazole and Bacillus subtilis on the control effect of postharvest anthracnose of apple fruit. Acta Laser Biol. Sin. 2008, 2, 1515–1524. [Google Scholar]
- Ferraz, L.P.; Da Cunha, T.; Da Silva, A.C.; Kupper, K.C. Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol. Res. 2016, 188–189, 72–79. [Google Scholar] [CrossRef]
- Gava, C.A.T.; De Castro, A.P.C.; Pereira, C.A.; Fernandes-Júnior, P.I. Isolation of fruit colonizer yeasts and screening against mango decay caused by multiple pathogens. Biol. Control 2018, 117, 137–146. [Google Scholar] [CrossRef]
- Giorgio, A.; De Stradis, A.; Lo Cantore, P.; Iacobellis, N.S. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front. Microbiol. 2015, 6, 1056. [Google Scholar] [CrossRef]
- Oro, L.; Feliziani, E.; Ciani, M.; Romanazzi, G.; Comitini, F. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Int. J. Food Microbiol. 2018, 265, 18–22. [Google Scholar] [CrossRef]
- Pesce, M.; Nally, M.C.; Carrizo, G.P.; Rojo, C.; Pérez, B.A.; Toro, M.E.; De Figueroa, L.I.C.; Vazquez, F. Antifungal activity of native yeasts from different microenvironments against Colletotrichum gloeosporioides on ripe olive fruits. Biol. Control 2018, 120, 43–51. [Google Scholar] [CrossRef]
- Vilaplana, R.; Pazmiño, L.; Valencia-Chamorro, S. Control of anthracnose, caused by C. musae, on postharvest organic banana by thyme oil. Postharvest Biol. Technol. 2018, 138, 56–63. [Google Scholar] [CrossRef]
- de Lima, J.R.; Viana, F.M.P.; Lima, F.A.; Pieniz, V.; Gonçalves, L.R.B. Efficiency of a yeast-based formulation for the biocontrol of postharvest anthracnose of papayas. Summa Phytopathol. 2014, 40, 203–211. [Google Scholar] [CrossRef]
- Tian, Y.; Li, W.; Jiang, Z.; Jing, M.; Shao, Y. The preservation effect of Metschnikowia pulcherrima yeast on anthracnose of postharvest mango fruits and the possible mechanism. Food Sci. Biotechnol. 2018, 27, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.R.; May De Mio, L.L. Potential biological agents isolated from apple fail to control Glomerella leaf spot in the field. Biol. Control 2015, 87, 56–63. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Medicale 2014, 24, e51–e56. [Google Scholar] [CrossRef]
- Hintz, T.; Matthews, K.K.; Di, R. The Use of Plant Antimicrobial Compounds for Food Preservation. BioMed Res. Int. 2015, 2015, 246–264. [Google Scholar] [CrossRef]
- Nostro, A.; Scaffaro, R.; D’Arrigo, M.; Botta, L.; Filocamo, A.; Marino, A.; Bisignano, G. Study on carvacrol and cinnamaldehyde polymeric films: Mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl. Microbiol. Biotechnol. 2012, 96, 1029–1038. [Google Scholar] [CrossRef]
- Alzate, D.A.O.; Mier, G.I.M.; Afanador, L.K.; Durango, D.L.R.; García, C.M.P. Evaluation of phytotoxicity and antifungal activity against Colletotrichum acutatum of essential oils of thyme (Thymus vulgaris), lemongrass (Cymbopogon citratus), and its main constituents. Vitae 2009, 16, 116–125. [Google Scholar] [CrossRef]
- Castro, J.C.; Endo, E.H.; De Souza, M.R.; Zanqueta, E.B.; Polonio, J.C.; Pamphile, J.A.; Ueda-Nakamura, T.; Nakamura, C.; Dias Filho, B.P.; De Abreu Filho, B.A. Bioactivity of essential oils in the control of Alternaria alternata in dragon fruit (Hylocereus undatus Haw.). Ind. Crops Prod. 2017, 97, 101–109. [Google Scholar] [CrossRef]
- Rozwalka, L.C.; Moreira, R.R.; Ballesteros Garcia, M.J.; Marques, F.A.; May De Mio, L.L. Chemical components of essential oils as a base to control two grape pathogens: Sphaceloma ampelinum and Pseudocercopora vitis. J. Phytopathol. 2020, 168, 342–352. [Google Scholar] [CrossRef]
- Tsao, R.; Zhou, T. Antifungal Activity of Monoterpenoids against Postharvest Pathogens Botrytis cinerea and Monilinia fructicola. J. Essent. Oil Res. 2000, 12, 113–121. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Q.; Wang, Z.; Cao, H.; Zhang, D. Structure-activity relationships of cinnamaldehyde and eugenol derivatives against plant pathogenic fungi. Ind. Crops Prod. 2017, 97, 388–394. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Combrinck, S.; Regnier, T.; Kamatou, G.P.P. In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Ind. Crops Prod. 2011, 33, 344–349. [Google Scholar] [CrossRef]
- Mathela, C.S.; Singh, K.K.; Gupta, K. Synthesis and in vitro Antibacterial Activity of Thymol and Carvacrol Derivatives. Acta Pol. Pharm.—Drug Res. 2010, 67, 375–380. [Google Scholar]
- Zhou, D.; Wang, Z.; Li, M.; Xing, M.; Xian, T.; Tu, K. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches. J. Appl. Microbiol. 2017, 124, 166–178. [Google Scholar] [CrossRef]
- Amiri, A.; Dugas, R.; Pichot, A.; Bompeix, G. In vitro and in vitro activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. Int. J. Food Microbiol. 2008, 126, 13–19. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.; Huang, Q.; Zhang, D. Antifungal activity of several essential oils and major components against wood-rot fungi. Ind. Crops Prod. 2017, 108, 278–285. [Google Scholar] [CrossRef]
- Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.R.; Reglero, G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Still, W.C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, 2923–2925. [Google Scholar] [CrossRef]
- Shusterman, A.J.; Mcdougal, P.G.; Glasfeld, A. Dry-Column Flash Chromatography. J. Chem. Educ. 1997, 74, 1222–1223. [Google Scholar] [CrossRef]
- de Morais, S.M.; Vila-Nova, N.S.; Bevilaqua, C.M.L.; Rondon, F.C.; Lobo, C.H.; de Moura, A.A.A.N.; Sales, A.D.; Rodrigues, A.P.R.; de Figuereido, J.R.; Campello, C.C.; et al. Thymol and eugenol derivatives as potential antileishmanial agents. Bioorganic Med. Chem. 2014, 22, 6250–6255. [Google Scholar] [CrossRef]
- Martin, R.; Demerseman, P. Titanium Tetrachloride Induced Fries Rearrangement: A New Route to Disubstituted 2’-Hydroxypropiophenones. Synthesis 1989, 20, 25–28. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards-NCCLS. M38-A: Método de Referência para Testes de Diluição em Caldo para a Determinação da Sensibilidade a Terapia Antifúngica dos Fungos Filamentosos: Norma Aprovada; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2002. [Google Scholar]
- Moreira, R.R.; da Silva Silveira Duarte, H.; De Mio, L.L.M. Improving accuracy, precision and reliability of severity estimates of Glomerella leaf spot on apple leaves using a new standard area diagram set. Eur. J. Plant Pathol. 2019, 153, 975–982. [Google Scholar] [CrossRef]
- Yang, C.-J.; Gao, Y.; Du, K.-Y.; Luo, X.-Y. Screening of 17 Chinese medicine plants against phytopathogenic fungi and active component in Syzygium aromaticum. J. Plant Dis. Prot. 2020, 127, 237–244. [Google Scholar] [CrossRef]
- Lima, Â.; de Paula, W.; Leite, I.; Gazolla, P.A.R.; de Abreu, L.M.; Fonseca, V.R.; Romão, W.; Lacerda, V., Jr.; de Queiroz, V.T.; Teixeira, R.R.; et al. Synthesis of Eugenol-Fluorinated Triazole Derivatives and Evaluation of Their Fungicidal Activity. J. Braz. Chem. Soc. 2022, 33, 1200–1210. [Google Scholar] [CrossRef]
- Quintana-rodriguez, E.; Rivera-Macias, L.E.; Adame-Alvarez, R.M.; Torres, J.M.; Heil, M. Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity in vitro. Fungal Ecol. 2018, 33, 115–121. [Google Scholar] [CrossRef]
- Dev, U.; Devakumar, C.; Mohan, J.; Agarwal, P.C. Antifungal Activity of Aroma Chemicals Against Seed-borne Fungi. J. Essent. Oil Res. 2004, 16, 496–499. [Google Scholar] [CrossRef]
- Numpaque, M.A.; Oviedo, L.A.; Gil, J.H.; García, C.M.; Durango, D.L. Thymol and carvacrol: Biotransformation and antifungal activity against the plant pathogenic fungi Colletotrichum acutatum and Botryodiplodia theobromae. Trop. Plant Pathol. 2011, 36, 3–13. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, S.; Pu, T.; Fan, L.; Su, F.; Ye, M. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 2019, 33, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Scariot, F.J.; Foresti, L.; Delamare, A.P.L.; Echeverrigaray, A.P.L.S. Activity of monoterpenoids on the in vitro growth of two Colletotrichum species and the mode of action on C. acutatum. Pestic. Biochem. Physiol. 2020, 170, 104698. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Liu, R.; Gao, H.; Chen, H.; Wu, W.; Fang, X.; Han, Y. Inhibitory effect and possible mechanism of carvacrol against Colletotrichum fructicola. Postharvest Biol. Technol. 2020, 163, 111–126. [Google Scholar] [CrossRef]
- Herath, H.; Abeywickrama, K. In vitro application of selected essential oils and their major components in controlling fungal pathogens of crown rot in Embul banana (Musa acuminata–AAB). Int. J. Food Sci. Technol. 2008, 43, 440–447. [Google Scholar] [CrossRef]
- Hammer, K.A.; Heel, K.A. Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci. Int. J. Antimicrob. Agents 2012, 40, 239–245. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Faid, M.; Charai, M.; Mosaddak, M. Chemical composition and antimicrobial activities of two aromatic plants: Organum majorana L. and O. compactum Benth. J. Essent. Oil Res. 1996, 8, 657–664. [Google Scholar]
- Veldhuizen, E.J.A.; Tjeerdsma-Van Bokhoven, J.L.M.; Zweijtzer, C.; Burt, S.A.; Haagsman, H.P. Structural Requirements for the Antimicrobial Activity of Carvacrol. J. Agric. Food Chem. 2006, 54, 1874–1879. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, H.; Raimondi, M.; Svetaz, L.; Liberto, M.D.; Rodriguez, M.; Espinoza, L.; Madrid, A.; Zacchino, S. Antifungal Activity of Eugenol Analogues. Influence of Different Substituents and Studies on Mechanism of Action. Molecules 2012, 17, 1002–1024. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Gou, J.; Han, X.; Wu, Q.; Zhang, C. In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae. Pestic. Biochem. Physiol. 2017, 142, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Chillet, M.; Minier, J.; Hoarau, M.; Meile, J.C. Potential use of thymol to control anthracnose development in mango. Eur. J. Plant Pathol. 2019, 155, 943–952. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Guillén, F.; Valverde, J.M. Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. Int. J. Food Microbiol. 2007, 115, 144–148. [Google Scholar] [CrossRef]
- European Chemical Agency (ECHA), Risk Assessment Committee (RAC). Opinion Proposing Harmonised Classification and Labelling at EU level of Mancozeb (ISO), Manganese Ethylenebis(Dithiocarbamate) (Polymeric) Complex with Zinc Salt. CLH-O-0000001412-86-263/F, (15 March 2019). Available online: https://echa.europa.eu/documents/10162/6ea48bca-63ef-2999-1f1f-4ac1278d7b60 (accessed on 7 July 2023).
- European Union, Official Journal. Commission Implementing Regulation (EU) 2020/2087 of 14 December 2020 Concerning the Non-Renewal of the Approval of the Active Substance Mancozeb, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Document 32020R2087, (14 December 2020). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020R2087 (accessed on 13 July 2023).
Treatments * | mg L−1 | Inhibition (%) ** | Treatments * | mg L−1 | Inhibition (%) ** | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C. nymphaeae | C. chrysophillum | C. nymphaeae | C. chrysophillum | ||||||||
Thiophanate-Methyl | 1 | −7.3 ± 9.2 | 100 ± 0.0 | a | DMSO/ Surfactant | 0.04 | 33.8 ± 11.9 | 28 ± 5.8 | |||
Eg | 600 | 100.0 ± 0.0 | a ** | 100.0 ± 0.0 | a | Tm | 125 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a |
Eg | 300 | 87.9 ± 5.2 | b | 80.8 ± 7.3 | c | Tm | 50 | 84.4 ± 1.4 | b | 80.1 ± 0.8 | c |
Eg | 200 | 73.0 ± 11.0 | c | 77.8 ± 4.0 | c | Tm | 20 | 67.0 ± 15.7 | c | 57.1 ± 17.7 | e |
EgAc | 600 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a | TmAc | 200 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a |
EgAc | 300 | 85.2 ± 6.6 | b | 84.1 ± 4.9 | b | TmAc | 125 | 91.3 ± 4.2 | b | 88.6 ± 5.6 | b |
EgAc | 200 | 72.4 ± 4.2 | c | 62.5 ± 3.5 | d | TmAc | 50 | 45.9 ± 3.8 | e | 43.6 ± 8.5 | f |
EgBt | 1000 | 76.4 ± 1.1 | c | 70.4 ± 2.6 | d | TmBt | 200 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a |
EgBt | 800 | 72.5 ± 2.8 | c | 56.0 ± 6.2 | e | TmBt | 125 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a |
EgBt | 600 | 70.7 ± 2.2 | c | 64.4 ± 3.2 | d | TmBt | 50 | 62.3 ± 5.4 | d | 45.8 ± 16.8 | f |
EgBz | 1200 | 44.5 ± 1.1 | e | 45.6 ± 2.8 | f | TmBz | 1200 | 57.7 ± 3.8 | d | 41.2 ± 3.8 | f |
EgBz | 1000 | 50.0 ± 2.9 | d | 57.4 ± 3.0 | e | TmBz | 1000 | 73.4 ± 1.5 | c | 66.3 ± 2.5 | d |
EgBz | 600 | 33.9 ± 7.4 | f | 51.9 ± 5.5 | e | TmBz | 600 | 72.6 ± 3.4 | c | 63.6 ± 2.5 | d |
Ieg | 1000 | 88.5 ± 13.3 | b | 82.4 ± 4.4 | c | Cv | 125 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a |
Ieg | 800 | 90.1 ± 19.8 | b | 68.1 ± 27.8 | d | Cv | 60 | 88.5 ± 11.0 | b | 90.7 ± 11.1 | b |
Ieg | 600 | 93.1 ±13.8 | b | 86.1 ± 9.6 | b | Cv | 50 | 70.6 ± 3.2 | c | 69.1 ± 2.9 | d |
IegAc | 1000 | 90.8 ± 6.5 | b | 86.6 ± 1.8 | b | CvAc | 600 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a |
IegAc | 800 | 95.6 ± 8.8 | b | 86.8 ± 7.2 | b | CvAc | 200 | 93.5 ± 7.8 | b | 89.4 ± 8.3 | b |
IegAc | 600 | 84.5 ± 12.4 | b | 95.8 ± 8.3 | a | CvAc | 125 | 79.7 ± 11.3 | c | 76.3 ± 11.0 | c |
IegBt | 1400 | 56.6 ± 10.5 | d | 64.3 ± 4.9 | d | CvBt | 200 | 100.0 ± 0.0 | a | 100.0 ± 0.0 | a |
IegBt | 1200 | 65.9 ± 4.2 | d | 54.9 ± 9.6 | e | CvBt | 125 | 87.9 ± 2.0 | b | 80.5 ± 1.7 | c |
IegBt | 1000 | 56.9 ± 6.6 | d | 66.2 ± 5.5 | d | CvBt | 50 | 57.1 ± 1.7 | d | 49.6 ± 0.8 | f |
IegBz | 1000 | 39.1 ± 9.5 | f | 48.1 ± 3.7 | f | CvBz | 1000 | 48.6 ± 5.3 | e | 62.3 ± 2.5 | d |
IegBz | 600 | 21.3 ± 6.0 | g | 36.6 ± 4.1 | g | CvBz | 600 | 36.7 ± 5.5 | f | 46.5 ± 1.3 | f |
IegBz | 200 | 17.2 ± 7.7 | g | 25.0 ± 1.9 | g | CvBz | 200 | 29.7 ± 6.0 | f | 30.6 ± 3.9 | g |
Treatments * | MIC C. nymphaeae | MIC C. chrysophillum | ||
---|---|---|---|---|
Exp. 1 ** | Exp. 2 ** | Exp. 1 ** | Exp. 2 ** | |
mg L−1 | mg L−1 | mg L−1 | mg L−1 | |
Mancozeb | 50 | 50 | >50 | 50 |
DMSO | 100,000 | 100,000 | 100,000 | 100,000 |
Eg | >675 | >675 | >675 | >675 |
EgAc | >675 | >675 | >675 | >675 |
EgBt | >1400 | >1400 | >1400 | 1000 |
EgBz | 1000 | 1000 | 1000 | 1000 |
Ieg | <400 | 600 | 600 | <400 |
IegAc | 1200 | 1200 | 1200 | 1200 |
IegBt | 600 | >1400 | >1400 | 800 |
IegBz | 1000 | 1000 | >1400 | >1400 |
Tm | 100 | 100 | 100 | 100 |
TmAc | 200 | 200 | 200 | 200 |
TmBt | 100 | 100 | 100 | 100 |
TmBz | 1000 | 1000 | 1000 | 1000 |
Cv | 100 | 100 | 100 | 100 |
CvAc | 200 | 200 | 200 | 200 |
CvBt | 200 | 200 | 200 | 200 |
CvBz | 1000 | 1000 | >1400 | 1000 |
Colletotrichum nymphaeae | |||||||||
---|---|---|---|---|---|---|---|---|---|
Experiment 1 *** | Experiment 2 *** | ||||||||
Treatment * | Lesion Diameter (mm) | Incidence (%) | Treatment * | Lesion Diameter (mm) | Incidence (%) | ||||
10DAI | 10DAI | 10DAI | 10DAI | ||||||
Control | 110.33 | a ** | 100.00 | a | Control | 66.83 | b | 100.00 | a |
CvAc | 71.36 | bc | 75.00 | b | CvAc | 83.25 | a | 33.33 | c |
EgAc | 55.63 | c | 50.00 | b | EgAc | 93.83 | a | 75.00 | b |
TmAc | 76.79 | abc | 83.33 | a | TmAc | 83.50 | a | 75.00 | b |
CvBt | 86.58 | abc | 83.33 | a | CvBt | 88.50 | a | 75.00 | b |
Cv | 66.08 | bc | 91.66 | a | Cv | 92.42 | a | 50.00 | c |
DMSO | 79.75 | abc | 100.00 | a | DMSO | 86.08 | a | 83.33 | a |
Eug | 61.63 | bc | 83.33 | a | Eug | 37.33 | c | 75.00 | b |
Ieg | 95.64 | ab | 91.60 | a | Ieg | 82.00 | a | 75.00 | b |
Mzeb 100 | 73.04 | bc | 100.00 | a | Mzeb 100 | 83.25 | a | 66.66 | b |
Mzeb 200 | 71.00 | bc | 83.33 | a | Mzeb 200 | 82.92 | a | 66.66 | b |
TmBt | 58.18 | c | 83.33 | a | TmBt | 70.58 | b | 75.00 | b |
Tm | 89.18 | abc | 91.66 | a | Tm | 70.00 | b | 75.00 | b |
Colletotrichum chrysophillum | |||||||||
Experiment 1 *** | Experiment 2 *** | ||||||||
Treatment * | Lesion Diameter (mm) | Incidence (%) | Treatment * | Lesion Diameter (mm) | Incidence (%) | ||||
10DAI | 10DAI | 10DAI | 10DAI | ||||||
Control | 97.70 | ab | 100.00 | a | Control | 71.04 | b | 100.00 | a |
CvAc | 51.77 | c | 66.66 | c | CvAc | 71.54 | b | 50.00 | c |
EgAc | 80.63 | abc | 83.33 | b | EgAc | 107.29 | a | 91.66 | a |
TmAc | 78.96 | abc | 91.66 | a | TmAc | 89.50 | ab | 75.00 | a |
CvBt | 78.54 | abc | 91.66 | a | CvBt | 78.46 | ab | 91.66 | a |
Cv | 73.00 | abc | 83.33 | b | Cv | 85.33 | ab | 50.00 | c |
DMSO | 64.00 | bc | 83.33 | b | DMSO | 66.42 | b | 66.66 | b |
Eug | 101.64 | a | 91.66 | a | Eg | 56.00 | c | 58.33 | c |
Ieg | 60.38 | c | 75.00 | c | Ieg | 70.79 | b | 83.33 | a |
Mzeb 100 | 80.75 | abc | 91.66 | a | Mzeb 100 | 85.75 | ab | 41.66 | c |
Mzeb 200 | 81.29 | abc | 91.66 | a | Mzeb 200 | 79.33 | ab | 50.00 | c |
TmBt | 57.55 | c | 75.00 | c | TmBt | 69.75 | b | 66.66 | b |
Tm | 69.50 | abc | 83.33 | b | Tm | 89.29 | ab | 66.66 | b |
Experiment 1 *** | Experiment 2 *** | ||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment * | Severity (%) | Incidence (%) | Treatment * | Severity (%) | Incidence (%) | ||||
14DAI | 14DAI | 14DAI | 14DAI | ||||||
Control | 34.17 | a ** | 91.66 | a | Control | 70.00 | a | 91.66 | a |
CvAc | 6.00 | c | 8.33 | d | CvAc | 0.05 | b | 8.33 | c |
EgAc | 7.47 | c | 33.33 | b | EgAc | 0.00 | b | 0.00 | d |
TmAc | 8.39 | c | 41.66 | b | TmAc | 2.00 | b | 25.00 | b |
CvBt | 0.00 | d | 0.00 | e | CvBt | 0.34 | b | 16.66 | b |
Cv | 0.12 | d | 8.33 | d | Cv | 0.08 | b | 8.33 | d |
Eug | 0.12 | d | 8.33 | d | Eug | 1.02 | b | 66.66 | a |
Ieg | 5.19 | c | 33.33 | b | Ieg | 0.51 | b | 41.66 | a |
Mzeb 100 | 0.00 | d | 0.00 | e | Mzeb 100 | 0.05 | b | 16.66 | b |
Mzeb 200 | 13.08 | b | 16.66 | c | Mzeb 200 | 0.00 | b | 0.00 | d |
TmBt | 1.67 | c | 16.66 | c | TmBt | 0.05 | b | 16.66 | b |
Tm | 15.32 | b | 41.66 | b | Tm | 0.00 | b | 0.00 | d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schorr, R.R.; Ballesteros Garcia, M.J.; Petermann, D.; Moreira, R.R.; Sales Maia, B.H.L.N.; Marques, F.A.; May-De Mio, L.L. Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple. Plants 2024, 13, 3196. https://doi.org/10.3390/plants13223196
Schorr RR, Ballesteros Garcia MJ, Petermann D, Moreira RR, Sales Maia BHLN, Marques FA, May-De Mio LL. Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple. Plants. 2024; 13(22):3196. https://doi.org/10.3390/plants13223196
Chicago/Turabian StyleSchorr, Renan R., Meira J. Ballesteros Garcia, Debora Petermann, Rafaele R. Moreira, Beatriz H. L. N. Sales Maia, Francisco A. Marques, and Louise L. May-De Mio. 2024. "Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple" Plants 13, no. 22: 3196. https://doi.org/10.3390/plants13223196
APA StyleSchorr, R. R., Ballesteros Garcia, M. J., Petermann, D., Moreira, R. R., Sales Maia, B. H. L. N., Marques, F. A., & May-De Mio, L. L. (2024). Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple. Plants, 13(22), 3196. https://doi.org/10.3390/plants13223196