Responses of Hybrid Rice (Oryza sativa L.) Plants to Different Application Modes of Nanosized Selenium
Abstract
:1. Introduction
2. Results
2.1. Effects of Nano-Se on the Yield and Yield-Related Traits of Hybrid Rice
2.2. Effects of Nano-Se on the Grain Quality Parameters of Hybrid Rice
2.3. Effects of Nano-Se on the Grain Se Content of Hybrid Rice
2.4. Effects of Nano-Se on the Chlorophyll Content of Hybrid Rice
2.5. Effects of Nano-Se on the Net Photosynthetic Rate of Hybrid Rice
2.6. Effects of Nano-Se on the Dry Matter Accumulation of Hybrid Rice
2.7. Effects of Nano-Se on the Antioxidant Enzymatic Activity of Hybrid Rice
2.8. Correlation Among the Grain Yield, Yield-Related Traits, Chlorophyll Content, Net Photosynthetic Rate, Dry Matter Accumulation, and Antioxidants
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Crop Management
4.2. Experimental Design
4.3. Determination of Grain Yield, Yield-Related Traits, and Economic Profitability
4.4. Measurement of Grain Quality Parameters
4.5. Determination of the Grain Se Content
4.6. Determination of the Chlorophyll Content, Net Photosynthetic Rate, and Dry Matter Accumulation
4.7. Determination of Superoxide Dismutase (SOD) and Catalase (CAT) Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popkin, B.M. Relationship between shifts in food system dynamics and acceleration of the global nutrition transition. Nutr. Rev. 2017, 73, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiang, W.L.; Niu, S.W.; Growe, A.; Yan, S.M.; Tian, N. Multi-Scenario Simulation Analysis of Grain Production and Demand in China during the Peak Population Period. Foods 2022, 11, 1566. [Google Scholar] [CrossRef]
- Ma, G.H.; Yuan, L.P. Hybrid rice achievements, development and prospect in China. J. Integr. Agric. 2015, 14, 197–205. [Google Scholar] [CrossRef]
- Yuan, L. Progress in super-hybrid rice breeding. Crop J. 2017, 5, 100–102. [Google Scholar] [CrossRef]
- Huang, M. The decreasing area of hybrid rice production in China: Causes and potential effects on Chinese rice self-sufficiency. Food Secur. 2022, 14, 267–272. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhong, X.; Lampayan, R.M.; Singleton, G.R.; Huang, N.; Liang, K.; Peng, B.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Luo, W.; Chen, M.; Kang, Y.; Li, W.; Li, D.; Cui, Y.; Khan, S.; Luo, Y. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agric. Water Manag. 2022, 260, 107285. [Google Scholar] [CrossRef]
- Gao, F.; Wang, L.; Zhao, R.; Wang, Y.; Ma, Y.; Yang, R.; Zhang, Q.; Wang, C. Rational Combination of Selenium Application Rate and Planting Density to Improve Selenium Uptake, Agronomic Traits, and Yield of Dryland Maize. Plants 2024, 13, 1327. [Google Scholar] [CrossRef]
- Yuan, Z.; Long, W.; Liang, T.; Zhu, M.; Zhu, A.; Luo, X.; Fu, L.; Hu, Z.; Zhu, R.; Wu, X. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice. Plant Soil 2023, 486, 87–101. [Google Scholar] [CrossRef]
- Liu, J.; Mo, A.L.; Ni, J.; Fan, X.T.; Jiang, Y.Y. Selenium Reduces Rice Plant Tissues Cadmium and Increases the Yield, Quality, and Edible Safety of Rice Grain, and May Affect the Taste of Cooked Rice. J. Soil Sci. Plant Nutr. 2023, 23, 3461–3469. [Google Scholar] [CrossRef]
- Gu, Q.; Luo, H.; Lin, L.; Zhang, Q.; Yi, W.; Liu, Z.; Yu, X.; Zuo, J.; Qi, J.; Tang, X. Effects of Biological Nano-Selenium on Yield, Grain Quality, Aroma, and Selenium Content of Aromatic Rice. Agronomy 2024, 14, 1778. [Google Scholar] [CrossRef]
- Yan, G.; Wu, L.; Hou, M.; Jia, S.; Jiang, L.; Zhang, D. Effects of selenium application on wheat yield and grain selenium content: A global meta-analysis. Field Crops Res. 2024, 307, 109266. [Google Scholar] [CrossRef]
- Ei, H.H.; Zheng, T.D.; Farooq, M.U.; Zeng, R.; Su, Y.; Zhang, Y.J.; Liang, Y.K.; Tang, Z.C.; Ye, X.Y.; Jia, X.M.; et al. Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified rice. Environ. Sci. Pollut. Res. 2020, 27, 16940–16949. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Zhou, L.; Liao, X.H.; Zhang, X.Y.; Aer, L.; Yang, E.L.; Deng, J.; Zhang, R.P. Effects of Low Light after Heading on the Yield of Direct Seeding Rice and Its Physiological Response Mechanism. Plants 2023, 24, 4077. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yan, J.; Qin, Y.; Xu, J.; Shohag, M.J.I.; Wei, Y.; Gu, M. Effect of different forms of selenium on the physiological response and the cadmium uptake by rice under cadmium stress. Int. J. Environ. Res. Public Health 2020, 17, 6991. [Google Scholar] [CrossRef] [PubMed]
- Kemppinen, J.; Lembrechts, J.J.; Van Meerbeek, K.; Carnicer, J.; Chardon, N.I.; Kardol, P.; Lenoir, J.; Liu, D.J.; Maclean, I.; Pergl, J.; et al. Microclimate, an important part of ecology and biogeography. Glob. Ecol. Biogeogr. 2024, 33, e13834. [Google Scholar] [CrossRef]
- Wang, K.X.; Fang, Q.T.; He, P.M.; Tu, Y.Y.; Liu, Z.H.; Li, B. Unveiling the potential of selenium-enriched tea: Compositional profiles, physiological activities, and health benefits. Trends Food Sci. Technol. 2024, 145, 104356. [Google Scholar] [CrossRef]
- Yan, J.; Chen, X.; Zhu, T.; Zhang, Z.; Fan, J. Effects of Selenium Fertilizer Application on Yield and Selenium Accumulation Characteristics of Different Japonica Rice Varieties. Sustainability 2021, 13, 10284. [Google Scholar] [CrossRef]
- Huang, S.Y.; Qin, H.S.; Jiang, D.H.; Lu, J.J.; Zhu, Z.J.; Huang, X.J. Bio-nano selenium fertilizer improves the yield, quality, and organic selenium content in rice. J. Food Compos. Anal. 2024, 132, 106348. [Google Scholar] [CrossRef]
- Pan, S.G.; Wen, X.C.; Wang, Z.M.; Ashraf, U.; Tian, H.; Duan, M.Y.; Mo, Z.W.; Fan, P.S.; Tang, X.R. Benefits of mechanized deep placement of nitrogen fertilizer indirect-seeded rice in South China. Field Crop Res. 2017, 203, 139–149. [Google Scholar] [CrossRef]
- Chen, J.L.; Xie, W.J.; Huang, Z.L.; Ashraf, U.; Pan, S.G.; Tian, H.; Duan, M.Y.; Wang, S.L.; Tang, X.R.; Mo, Z.W. Light quality during booting stage modulates fragrance, grain yield and quality in fragrant rice. J. Plant Interact. 2021, 16, 42–52. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Guo, Y.B.; Liang, K.H.; Hu, Z.Q.; Sun, X.D.; Fang, Y.; Mei, X.H.; Yin, H.Q.; Liu, X.J.; Lu, B.Y. Determination of Selenium in Common and Selenium-Rich Rice from Different Areas in China and Assessment of their Dietary Intake. Int. J. Environ. Res. Public Health 2020, 17, 4596. [Google Scholar] [CrossRef] [PubMed]
- Mostofa, M.G.; Rahman, M.M.; Siddiqui, M.N.; Fujita, M.; Tran, L.S.P. Salicylic acid antagonizes selenium phytotoxicity in rice: Selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. J. Hazard. Mater. 2020, 394, 122572. [Google Scholar] [CrossRef]
- Saha, S.; Begum, H.H.; Nasrin, S.; Samad, R. Effects of Drought Stress on Pigment and Protein Contents and Antioxidant Enzyme Activities in Five Varieties of Rice (Oryza sativa L.). Bangladesh J. Bot. 2020, 49, 997–1002. [Google Scholar] [CrossRef]
Cropping Season | Cultivar | Treatment | Yield (t ha−1) | Effective Panicle Number per Plant | Grain Number per Panicle | Seed-Setting Rate (%) | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|---|
Early season | |||||||
Jingnongsimiao | |||||||
CK | 4.43 ± 0.36 b | 7.97 ± 0.24 b | 134.91 ± 9.60 b | 65.23 ± 3.20 b | 19.44 ± 0.18 ab | ||
S1 | 6.16 ± 0.24 a | 8.56 ± 0.06 a | 172.07 ± 11.35 a | 69.99 ± 1.68 b | 18.63 ± 0.36 b | ||
S2 | 5.58 ± 0.28 a | 8.33 ± 0.19 ab | 146.5 ± 2.39 b | 74.64 ± 3.67 ab | 19.49 ± 1.19 ab | ||
S3 | 6.24 ± 0.14 a | 8.19 ± 0.21 ab | 147.59 ± 8.31 b | 72.27 ± 3.69 ab | 19.34 ± 0.34 ab | ||
S4 | 6.37 ± 0.55 a | 8.40 ± 0.14 ab | 144.5 ± 7.62 b | 80.72 ± 4.54 a | 19.19 ± 0.39 ab | ||
S5 | 5.49 ± 0.03 a | 8.40 ± 0.06 ab | 144.28 ± 2.31 b | 68.03 ± 2.48 b | 20.47 ± 0.47 a | ||
Wufengyou615 | |||||||
CK | 5.86 ± 0.27 c | 10.64 ± 0.32 b | 108.04 ± 6.30 ab | 75.64 ± 2.89 ab | 20.43 ± 0.79 b | ||
S1 | 7.43 ± 0.51 ab | 11.66 ± 0.34 a | 119.19 ± 12.41 ab | 73.84 ± 1.77 b | 22.23 ± 0.47 a | ||
S2 | 7.07 ± 0.20 bc | 11.17 ± 0.29 ab | 102.19 ± 1.07 b | 80.41 ± 1.63 ab | 21.75 ± 0.37 ab | ||
S3 | 8.60 ± 0.69 a | 11.23 ± 0.34 ab | 161.79 ± 38.00 a | 76.83 ± 5.01 ab | 21.2 ± 0.64 ab | ||
S4 | 7.78 ± 0.29 ab | 11.37 ± 0.35 ab | 142.42 ± 11.51 ab | 81.43 ± 1.50 ab | 22.40 ± 0.51 a | ||
S5 | 8.41 ± 0.20 a | 11.33 ± 0.27 ab | 127.59 ± 10.49 ab | 84.67 ± 5.31 a | 22.75 ± 0.28 a | ||
Late season | |||||||
Jingnongsimiao | |||||||
CK | 4.06 ± 0.11 b | 8.27 ± 0.07 b | 135.03 ± 16.23 a | 63.72 ± 1.01 c | 20.97 ± 0.45 ab | ||
S1 | 5.19 ± 0.23 a | 9.40 ± 0.12 a | 138.01 ± 11.55 a | 78.38 ± 2.07 a | 21.64 ± 0.20 ab | ||
S2 | 4.78 ± 0.24 a | 9.27 ± 0.07 a | 140.19 ± 8.91 a | 69.73 ± 3.13 bc | 22.14 ± 0.56 a | ||
S3 | 4.66 ± 0.09 a | 9.13 ± 0.18 a | 121.66 ± 11.82 a | 64.55 ± 1.84 c | 21.55 ± 0.34 ab | ||
S4 | 4.91 ± 0.20 a | 9.53 ± 0.18 a | 121.6 ± 8.13 a | 76.44 ± 3.67 ab | 20.50 ± 0.28 b | ||
S5 | 4.97 ± 0.21 a | 9.33 ± 0.13 a | 131.03 ± 0.83 a | 71.89 ± 0.59 ab | 21.72 ± 0.54 ab | ||
Wufengyou615 | |||||||
CK | 4.36 ± 0.26 c | 10.2 ± 0.12 c | 148.11 ± 7.62 ab | 81.41 ± 0.92 b | 22.79 ± 0.59 b | ||
S1 | 6.13 ± 0.37 a | 11.33 ± 0.27 a | 127.22 ± 6.44 b | 88.40 ± 1.93 a | 22.83 ± 0.37 b | ||
S2 | 5.06 ± 0.05 bc | 10.93 ± 0.24 ab | 130.69 ± 10.70 ab | 78.38 ± 2.01 b | 22.52 ± 0.11 b | ||
S3 | 6.10 ± 0.44 a | 10.20 ± 0.12 c | 130.16 ± 5.44 ab | 88.17 ± 0.36 a | 22.97 ± 0.12 b | ||
S4 | 5.92 ± 0.24 ab | 10.47 ± 0.18 bc | 140.59 ± 4.08 ab | 88.51 ± 0.20 a | 24.28 ± 0.57 a | ||
S5 | 6.10 ± 0.19 a | 10.67 ± 0.18 bc | 161.77 ± 20.29 a | 89.76 ± 3.98 a | 23.52 ± 0.30 ab | ||
Analysis of variance | |||||||
Season | ** | ns | ns | ns | ** | ||
Cultivar | ** | ** | ns | ** | ** | ||
Season × Cultivar | ** | ** | ns | ** | ns | ||
Nano-Se | ** | ** | ns | ** | * | ||
Season × Nano-Se | ns | ns | ns | ns | ns | ||
Cultivar × Nano-Se | ns | ns | ns | ns | ** | ||
Season × Cultivar × Nano-Se | ns | * | ns | ns | ns |
Cropping Season | Cultivar | Treatment | Brown Rice Rate (%) | Milled Rice Rate (%) | Head Rice Rate (%) | Chalky Rice Rate (%) | Chalkiness Degree (%) |
---|---|---|---|---|---|---|---|
Early season | |||||||
Jingnongsimiao | |||||||
CK | 95.92 ± 0.65 a | 86.22 ± 0.31 ab | 78.35 ± 0.33 a | 9.07 ± 0.24 a | 7.03 ± 0.55 a | ||
S1 | 96.53 ± 0.54 a | 85.18 ± 0.75 ab | 78.69 ± 0.36 a | 6.97 ± 2.23 a | 5.12 ± 2.25 a | ||
S2 | 97.82 ± 0.60 a | 84.86 ± 0.81 b | 78.77 ± 0.52 a | 9.40 ± 0.40 a | 7.58 ± 0.06 a | ||
S3 | 97.80 ± 0.51 a | 86.19 ± 0.07 ab | 78.73 ± 0.33 a | 9.20 ± 0.32 a | 7.41 ± 0.32 a | ||
S4 | 96.65 ± 1.32 a | 86.30 ± 0.23 ab | 77.75 ± 0.17 a | 9.20 ± 0.40 a | 7.73 ± 0.17 a | ||
S5 | 98.03 ± 0.08 a | 86.40 ± 0.34 a | 78.39 ± 0.12 a | 7.43 ± 19.80 a | 4.48 ± 1.79 a | ||
Wufengyou615 | |||||||
CK | 96.29 ± 0.51 a | 84.23 ± 0.09 ab | 78.31 ± 0.55 b | 5.43 ± 0.90 ab | 1.97 ± 0.45 a | ||
S1 | 96.39 ± 0.42 a | 83.68 ± 0.43 b | 80.42 ± 0.17 a | 6.77 ± 0.95 a | 2.48 ± 0.63 a | ||
S2 | 96.17 ± 0.06 a | 83.59 ± 0.45 b | 78.14 ± 1.15 b | 5.87 ± 1.12 ab | 2.01 ± 0.44 a | ||
S3 | 94.81 ± 0.89 a | 84.02 ± 0.06 ab | 78.78 ± 0.12 ab | 6.10 ± 0.50 ab | 2.19 ± 0.27 a | ||
S4 | 95.25 ± 1.60 a | 84.72 ± 0.39 a | 78.45 ± 0.32 b | 4.40 ± 0.31 b | 1.43 ± 0.05 a | ||
S5 | 94.39 ± 1.83 a | 84.29 ± 0.22 ab | 79.04 ± 0.16 ab | 5.93 ± 0.45 ab | 2.14 ± 0.22 a | ||
Late season | |||||||
Jingnongsimiao | |||||||
CK | 98.67 ± 0.13 a | 94.1 ± 0.05 ab | 70.90 ± 0.16 b | 1.00 ± 0.00 c | 0.28 ± 0.10 a | ||
S1 | 97.94 ± 0.24 b | 94.15 ± 0.05 a | 71.69 ± 0.61 ab | 2.33 ± 0.67 abc | 0.54 ± 0.35 a | ||
S2 | 98.30 ± 0.28 ab | 93.78 ± 0.05 b | 72.39 ± 0.53 ab | 3.33 ± 0.67 a | 0.79 ± 0.48 a | ||
S3 | 98.60 ± 0.32 ab | 94.17 ± 0.24 a | 70.68 ± 1.14 b | 1.33 ± 0.33 bc | 0.32 ± 0.21 a | ||
S4 | 98.44 ± 0.25 ab | 93.9 ± 0.05 ab | 73.10 ± 0.46 a | 3.00 ± 0.58 ab | 0.68 ± 0.06 a | ||
S5 | 98.54 ± 0.03 ab | 93.91 ± 0.03 ab | 72.52 ± 0.43 ab | 3.33 ± 0.88 a | 0.45 ± 0.08 a | ||
Wufengyou615 | |||||||
CK | 98.97 ± 0.13 ab | 92.15 ± 0.21 ab | 74.59 ± 0.29 c | 3.00 ± 0.58 a | 0.58 ± 0.10 a | ||
S1 | 99.37 ± 0.14 a | 92.30 ± 0.07 ab | 75.99 ± 0.48 bc | 2.00 ± 0.58 a | 0.39 ± 0.25 a | ||
S2 | 99.19 ± 0.11 a | 92.34 ± 0.08 ab | 76.47 ± 0.27 ab | 2.67 ± 0.33 a | 0.34 ± 0.05 a | ||
S3 | 99.26 ± 0.16 a | 92.27 ± 0.10 ab | 76.58 ± 0.85 ab | 3.00 ± 1.15 a | 0.46 ± 0.22 a | ||
S4 | 98.68 ± 0.18 b | 92.44 ± 0.02 a | 77.79 ± 0.54 a | 3.33 ± 0.67 a | 0.95 ± 0.4 a | ||
S5 | 99.34 ± 0.11 a | 92.07 ± 0.10 b | 76.73 ± 0.30 ab | 3.00 ± 0.00 a | 0.52 ± 0.13 a | ||
Analysis of variance | |||||||
Season | ** | ** | * | ** | ** | ||
Cultivar | ** | ** | ns | * | ** | ||
Season × Cultivar | ** | ns | * | ** | ** | ||
Nano-Se | ** | * | ns | ns | ns | ||
Season × Nano-Se | ** | * | ns | ns | ns | ||
Cultivar × Nano-Se | ns | ns | ns | ns | ns | ||
Season × Cultivar × Nano-Se | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Luo, H.; Xing, P.; Gu, Q.; Yi, W.; Yu, X.; Zuo, C.; Tang, X. Responses of Hybrid Rice (Oryza sativa L.) Plants to Different Application Modes of Nanosized Selenium. Plants 2024, 13, 3179. https://doi.org/10.3390/plants13223179
Zhang Q, Luo H, Xing P, Gu Q, Yi W, Yu X, Zuo C, Tang X. Responses of Hybrid Rice (Oryza sativa L.) Plants to Different Application Modes of Nanosized Selenium. Plants. 2024; 13(22):3179. https://doi.org/10.3390/plants13223179
Chicago/Turabian StyleZhang, Qianqian, Haowen Luo, Pipeng Xing, Qichang Gu, Wentao Yi, Xianghai Yu, Changjian Zuo, and Xiangru Tang. 2024. "Responses of Hybrid Rice (Oryza sativa L.) Plants to Different Application Modes of Nanosized Selenium" Plants 13, no. 22: 3179. https://doi.org/10.3390/plants13223179
APA StyleZhang, Q., Luo, H., Xing, P., Gu, Q., Yi, W., Yu, X., Zuo, C., & Tang, X. (2024). Responses of Hybrid Rice (Oryza sativa L.) Plants to Different Application Modes of Nanosized Selenium. Plants, 13(22), 3179. https://doi.org/10.3390/plants13223179