The Role of Polyploidy in the Genetic Structure and Expansion of Lepisorus clathratus in the Qinghai–Tibetan Plateau and Hengduan Mountains
Abstract
:1. Introduction
2. Results
2.1. Geographical Distribution of Different Ploidy Levels
2.2. Chloroplast DNA Sequence Data and Phylogenetic Structure
2.3. Genetic Diversity and Population Structure
2.4. Demographic History and Gene Flow Between Populations
2.5. Ecological Niche Modeling
3. Discussion
3.1. Polyploidy and the Origins, Establishment, and Expansion of Lepisorus clathratus Tetraploid Populations
3.2. Role of Polyploidy in Genetic Structure
3.3. Impact of Quaternary Climatic Changes
4. Materials and Methods
4.1. Samples
4.2. Determination of Ploidy Levels
4.3. DNA Extraction, Polymerase Chain Reaction Amplification, and DNA Sequencing
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karbstein, K.; Tomasello, S.; Hodač, L.; Lorberg, E.; Daubert, M.; Hörandl, E. Moving beyond assumptions: Polyploidy and environmental effects explain a geographical parthenogenesis scenario in European plants. Mol. Ecol. 2021, 30, 2659–2675. [Google Scholar] [CrossRef] [PubMed]
- Alix, K.; Gérard, P.R.; Schwarzacher, T.; Heslop-Harrison, J. Polyploidy and interspecific hybridization: Partners for adaptation, speciation and evolution in plants. Ann. Bot. 2017, 120, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Levin, D.A. The Role of Chromosomal Change in Plant Evolution; Oxford University Press: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Barker, M.S.; Arrigo, N.; Baniaga, A.E.; Li, Z.; Levin, D.A. On the relative abundance of autopolyploids and allopolyploids. New Phytol. 2016, 210, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Madlung, A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity 2013, 110, 99–104. [Google Scholar] [CrossRef]
- Otto, S.P.; Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 2000, 34, 401–437. [Google Scholar] [CrossRef]
- Te Beest, M.; Le Roux, J.J.; Richardson, D.M.; Brysting, A.K.; Suda, J.; Kubešová, M.; Pyšek, P. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012, 109, 19–45. [Google Scholar] [CrossRef]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Shafer, A.B.; Cullingham, C.I.; Côté, S.D.; Coltman, D.W. Of glaciers and refugia: A decade of study sheds new light on the phylogeography of northwestern North America. Mol. Ecol. 2010, 19, 4589–4621. [Google Scholar] [CrossRef]
- Comes, H.P.; Kadereit, J.W. The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci. 1998, 3, 432–438. [Google Scholar] [CrossRef]
- Stewart, J.R.; Lister, A.M.; Barnes, I.; Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B 2010, 277, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Wendel, J.F.; Jackson, S.A.; Meyers, B.C.; Wing, R.A. Evolution of plant genome architecture. Genome Biol. 2016, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Baduel, P.; Bray, S.; Vallejo-Marin, M.; Kolář, F.; Yant, L. The “Polyploid Hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018, 6, 117. [Google Scholar] [CrossRef]
- Mao, K.S.; Wang, Y.; Liu, J.Q. Evolutionary origin of species diversity on the Qinghai–Tibet Plateau. J. Syst. Evol. 2021, 59, 1142–1158. [Google Scholar] [CrossRef]
- Liang, Q.; Xu, X.; Mao, K.; Wang, M.; Wang, K.; Xi, Z.; Liu, J. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 2018, 45, 1334–1344. [Google Scholar] [CrossRef]
- Liu, J.; Möller, M.; Provan, J.; Gao, L.M.; Poudel, R.C.; Li, D.Z. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 2013, 199, 1093–1108. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Deng, T.; Boufford, D.E. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 2017, 39, 161–166. [Google Scholar] [CrossRef]
- Qiu, Y.-X.; Fu, C.-X.; Comes, H.P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogenet. Evol. 2011, 59, 225–244. [Google Scholar] [CrossRef]
- Opgenoorth, L.; Vendramin, G.G.; Mao, K.; Miehe, G.; Miehe, S.; Liepelt, S.; Liu, J.; Ziegenhagen, B. Tree endurance on the Tibetan Plateau marks the world’s highest known tree line of the Last Glacial Maximum. New Phytol. 2010, 185, 332–342. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.-Q.; Bystriakova, N.; Ansell, S.W.; Xiang, Q.-P.; Heinrichs, J.; Schneider, H.; Zhang, X.-C. Phylogeography of the Sino-Himalayan fern Lepisorus clathratus on “the roof of the world”. PLoS ONE 2011, 6, e25896. [Google Scholar] [CrossRef]
- Soltis, D.E.; Soltis, P.S. Polyploidy: Recurrent formation and genome evolution. Trends Ecol. Evol. 1999, 14, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Levin, D.A. Minority cytotype exclusion in local plant populations. TAXON 1975, 24, 35–43. [Google Scholar] [CrossRef]
- Lavania, U.C. Plant speciation and polyploidy: In habitat divergence and environmental perspective. Nucleus 2020, 63, 1–5. [Google Scholar] [CrossRef]
- Meirmans, P.G.; Van Tienderen, P.H. The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 2013, 110, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Van de Peer, Y.; Ashman, T.-L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef]
- De Groot, G.A.; During, H.J.; Ansell, S.W.; Schneider, H.; Bremer, P.; Wubs, E.R.J.; Maas, J.W.; Korpelainen, H.; Erkens, R.H.J. Diverse spore rains and limited local exchange shape fern genetic diversity in a recently created habitat colonized by long-distance dispersal. Ann. Bot. 2012, 109, 965–978. [Google Scholar] [CrossRef]
- Han, T.-S.; Hu, Z.-Y.; Du, Z.-Q.; Zheng, Q.-J.; Liu, J.; Mitchell-Olds, T.; Xing, Y.-W. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot. Plant Divers. 2022, 44, 455–467. [Google Scholar] [CrossRef]
- Kron, P.; Suda, J.; Husband, B.C. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 847–876. [Google Scholar] [CrossRef]
- Zhao, C.F.; Wei, R.; Xiang, Q.P.; Zhang, X.C. The origin of allotetraploid Lepisorus inaequibasis (Polypodiaceae) and paternal bias in its morphology and abiotic niche. TAXON 2020, 69, 43–55. [Google Scholar] [CrossRef]
- Díez, C.M.; Gaut, B.S.; Meca, E.; Scheinvar, E.; Montes-Hernandez, S.; Eguiarte, L.E.; Tenaillon, M.I. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol. 2013, 199, 264–276. [Google Scholar] [CrossRef]
- Zhao, C.F.; Wei, R.; Zhang, X.C.; Xiang, Q.P. Backbone phylogeny of Lepisorus (Polypodiaceae) and a novel infrageneric classification based on the total evidence from plastid and morphological data. Cladistics 2019, 36, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T. BioEdit: Biological Sequence Alignment Editor for Win95/98/NT/2K/XP. 1999. Available online: https://thalljiscience.github.io (accessed on 13 September 2024).
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver. 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A. FigTree, Version 1.4. 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 13 September 2024).
- Rambaut, A.; Drummond, A. Tracer, Version 1.5. 2009. Available online: http://tree.bio.ed.ac.uk/software/tracer (accessed on 13 September 2024).
- Bandelt, H.-J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef] [PubMed]
- Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 2006, 22, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Marshall, S.J.; Overpeck, J.T.; Miller, G.H.; Hu, A.; CAPE Last Interglacial Project Members. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 2006, 311, 1751–1753. [Google Scholar] [CrossRef]
Region | h | Hd | π |
---|---|---|---|
Himalaya | 15 | 0.8418 | 0.00524 |
QTPss | 19 | 0.7143 | 0.00053 |
WHDM | 19 | 0.6927 | 0.00224 |
EHDM | 20 | 0.7819 | 0.00249 |
HDM | 34 | 0.7489 | 0.00265 |
Non-focal regions | 13 | 0.7305 | 0.00052 |
All | 70 | 0.8991 | 0.00332 |
Data Grouping | Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation | Fixation Indices |
---|---|---|---|---|---|---|
The three focal regions # | Among regions | 3 | 996.539 | 2.17516 | 30.65 | FSC: 0.51608 ** |
Among populations within regions | 41 | 1136.605 | 2.53977 | 35.79 | FST: 0.66441 ** | |
Within populations | 466 | 1109.773 | 2.38149 | 33.56 | FCT: 0.30652 ** | |
Total | 510 | 3242.918 | 7.09642 | |||
The three ploidy levels | Among ploidies | 2 | 390.265 | 0.71395 | 6.38 | FSC: 0.81403 ** |
Among populations Within ploidies | 54 | 3536.334 | 8.5237 | 76.21 | FST: 0.82590 ** | |
Within populations | 391 | 761.407 | 1.94733 | 17.41 | FCT: 0.06383 | |
Total | 447 | 6598.527 | 13.9605 |
Group | Number of Sequences | Tajima’s D # | p-Value | Fu’s Fs # | p-Value |
---|---|---|---|---|---|
Group I | 70 | 0.15261 | 0.598 | 6.34018 | 0.987 |
Group II | 315 | −1.60835 | 0.016 | −4.23654 | 0.155 |
Group III | 148 | −1.863 | 0.008 | −13.16619 | 0 |
Group IV | 53 | −1.72918 | 0.022 | −7.80749 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhang, X. The Role of Polyploidy in the Genetic Structure and Expansion of Lepisorus clathratus in the Qinghai–Tibetan Plateau and Hengduan Mountains. Plants 2024, 13, 3181. https://doi.org/10.3390/plants13223181
Zhao C, Zhang X. The Role of Polyploidy in the Genetic Structure and Expansion of Lepisorus clathratus in the Qinghai–Tibetan Plateau and Hengduan Mountains. Plants. 2024; 13(22):3181. https://doi.org/10.3390/plants13223181
Chicago/Turabian StyleZhao, Cunfeng, and Xianchun Zhang. 2024. "The Role of Polyploidy in the Genetic Structure and Expansion of Lepisorus clathratus in the Qinghai–Tibetan Plateau and Hengduan Mountains" Plants 13, no. 22: 3181. https://doi.org/10.3390/plants13223181
APA StyleZhao, C., & Zhang, X. (2024). The Role of Polyploidy in the Genetic Structure and Expansion of Lepisorus clathratus in the Qinghai–Tibetan Plateau and Hengduan Mountains. Plants, 13(22), 3181. https://doi.org/10.3390/plants13223181