Water Deprivation and Sowing Times Alter Plant–Pollination Interactions and Seed Yield in Sunflower, Helianthus annuus L. (Asteraceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Layout
2.3. Pollinator Abundance and Behavior Evaluation
2.4. Pollination Treatments
2.5. Harvesting
2.6. Yield Parameters
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKechnie, A.E.; Wolf, B.O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 2010, 6, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2021, 2, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Krstić, M.; Mladenov, V.; Banjac, B.; Babec, B.; Dunđerski, D.; Ćuk, N.; Gvozdenac, S.; Cvejić, S.; Jocić, S.; Miklič, V.; et al. Can modification of sowing date and genotype selection reduce the impact of climate change on sunflower seed production? Agriculture 2023, 13, 2149. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st-century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef]
- Deng, L.; Peng, C.; Kim, D.G.; Li, J.; Liu, Y.; Hai, X.; Liu, Q.; Huang, C.; Shangguan, Z.; Kuzyakov, Y. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth Sci. Rev. 2021, 214, 103501. [Google Scholar] [CrossRef]
- Cornic, G. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends Plant Sci. 2000, 5, 187–188. [Google Scholar] [CrossRef]
- He, J.; Ng, K.; Qin, L.; Shen, Y.; Rahardjo, H.; Wang, C.L.; Kew, H.; Chua, Y.C.; Poh, C.H.; Ghosh, S. Photosynthetic gas exchange, plant water relations and osmotic adjustment of three tropical perennials during drought stress and re-watering. PLoS ONE 2024, 19, e0298908. [Google Scholar] [CrossRef]
- Gérard, M.; Vanderplanck, M.; Wood, T.; Michez, D. Global warming and plant–pollinator mismatches. Emerg. Top. Life Sci. 2020, 4, 77–86. [Google Scholar]
- Descamps, C.; Quinet, M.; Jacquemart, A.L. The effects of drought on plant–pollinator interactions: What to expect? Environ. Exp. Bot. 2021, 182, 104297. [Google Scholar] [CrossRef]
- Khan, F.Z.A.; Joseph, S.V. Influence of short-term, water-deprived bermudagrass on Orius insidiosus predation and Spodoptera frugiperda larval survival and development. Biocontrol Sci. Technol. 2024, 34, 189–202. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Requier, F.; Pérez-Méndez, N.; Andersson, G.K.; Blareau, E.; Merle, I.; Garibaldi, L.A. Bee and non-bee pollinator importance for local food security. Trends Ecol. Evol. 2023, 38, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Ali, M.; Khan, F.Z.A.; Sajjad, A.; Qayyum, M.A.; Ahmad, N. Solitary bees are more efficient pollinators of sponge gourd than giant honeybees and syrphid flies. Sociobiology 2024, 71, e10279. [Google Scholar] [CrossRef]
- Dietz, K.J.; Zörb, C.; Geilfus, C.M. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef]
- Höfer, R.J.; Lindner, T.; Ayasse, M.; Kuppler, J. Reduced seed set under water deficit is driven mainly by reduced flower numbers and not by changes in flower visitations and pollination. Funct. Ecol. 2023, 37, 461–471. [Google Scholar] [CrossRef]
- Filazzola, A.; Matter, S.F.; MacIvor, J.S. The direct and indirect effects of extreme climate events on insects. Sci. Total Environ. 2021, 769, 145161. [Google Scholar] [CrossRef]
- Quinanzoni, M.; Marcolet, D.; Michelot-Antalik, A. Drought response and urban-pollinator attractiveness of ornamental plant species. Basic Appl. Ecol. 2024, 78, 1–13. [Google Scholar] [CrossRef]
- Brunet, J.; Van Etten, M.L. The response of floral traits associated with pollinator attraction to environmental changes expected under anthropogenic climate change in high-altitude habitats. Int. J. Plant Sci. 2019, 180, 954–964. [Google Scholar] [CrossRef]
- Rering, C.C.; Franco, J.G.; Yeater, K.M.; Mallinger, R.E. Drought stress alters floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant. Ecosphere 2020, 11, 3254. [Google Scholar] [CrossRef]
- Descamps, C.; Quinet, M.; Baijot, A.; Jacquemart, A.L. Temperature and water stress affect plant–pollinator interactions in Borago officinalis (Boraginaceae). Evol. Ecol. 2018, 8, 3443–3456. [Google Scholar] [CrossRef] [PubMed]
- Walter, J. Dryness, wetness, and temporary flooding reduce floral resources of plant communities with adverse consequences for pollinator attraction. J. Ecol. 2020, 108, 1453–1464. [Google Scholar] [CrossRef]
- Gambel, J.; Holway, D.A. Divergent responses of generalist and specialist pollinators to experimental drought: Outcomes for plant reproduction. Ecology 2023, 104, 4111. [Google Scholar] [CrossRef] [PubMed]
- Terzić, S.; Miklič, V.; Čanak, P. Review of 40 years of research carried out in Serbia on sunflower pollination. OCL Oilseeds Fats Crops Lipids 2017, 24, D608. [Google Scholar] [CrossRef]
- Mallinger, R.; Prasifka, J. Benefits of Insect Pollination to Confection Sunflowers Differ across Plant Genotypes. Crop Sci. 2017, 57, 3264–3272. [Google Scholar] [CrossRef]
- Nderitu, J.; Nyamasyo, G.; Kasina, M.; Oronje, M.L. Diversity of sunflower pollinators and their effect on seed yield in Makueni District, Eastern Kenya. Span J. Agric. Res. 2008, 6, 271–278. [Google Scholar] [CrossRef]
- Chamer, A.M.; Medan, D.; Mantese, A.I.; Bartoloni, N.J. Impact of pollination on sunflower yield: Is pollen amount or pollen quality what matters? Field Crops Res. 2015, 176, 61–70. [Google Scholar] [CrossRef]
- Greenleaf, S.S.; Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 2006, 103, 13890–13895. [Google Scholar] [CrossRef]
- Thapa-Magar, K.B.; Davis, T.S. Bumblebee (Hymenoptera: Apidae) visitation frequency drives seed yields and interacts with site-level species richness to drive pollination services in sunflower. Environ. Entomol. 2021, 50, 1194–1202. [Google Scholar] [CrossRef]
- Ne’eman, G.; Jürgens, A.; Newstrom-Lloyd, L.; Potts, S.G.; Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 2010, 85, 435–451. [Google Scholar] [CrossRef]
- Khan, S. Climate classification of Pakistan. Int. J. Econ. Environ. Geol. 2019, 10, 60–71. [Google Scholar]
- Smaeili, M.; Madani, H.; Nassiri, B.M.; Sajedi, N.A.; Chavoshi, S. Study of water deficiency levels on ecophysiological characteristics of sunflower cultivars in Isfahan, Iran. Appl. Water Sci. 2022, 12, 108. [Google Scholar] [CrossRef]
- Gallagher, M.K.; Campbell, D.R. Shifts in water availability mediate plant–pollinator interactions. New Phytol. 2017, 215, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Phillips, B.B.; Shaw, R.F.; Holland, M.J.; Fry, E.L.; Bardgett, R.D.; Bullock, J.M.; Osborne, J.L. Drought reduces floral resources for pollinators. Glob. Change Biol. 2018, 24, 3226–3235. [Google Scholar] [CrossRef] [PubMed]
- Wilson Rankin, E.E.; Barney, S.K.; Lozano, G.E. Reduced water negatively impacts social bee survival and productivity via shifts in floral nutrition. J. Insect Sci. 2020, 20, 15. [Google Scholar] [CrossRef]
- Hung, K.L.J.; Kingston, J.M.; Albrecht, M.; Holway, D.A.; Kohn, J.R. The Worldwide Importance of Honey Bees as Pollinators in Natural Habitats. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172140. [Google Scholar] [CrossRef]
- Prendergast, K.S.; Dixon, K.W.; Bateman, P.W. The evidence for and against honey bee competition with Australian native bees. Pac. Conserv. Biol. 2022. [Google Scholar] [CrossRef]
- Thomson, D.M. Novel data support model linking floral resources and honey bee competition with bumble bee abundances in coastal scrub. J. Poll. Ecol. 2021, 27, 47–56. [Google Scholar] [CrossRef]
- Sadeh, A.; Shmida, A.; Keasar, T. The carpenter bee Xylocopa pubescens as an agricultural pollinator in greenhouses. Apidologie 2007, 38, 508–517. [Google Scholar] [CrossRef]
- Scaven, V.L.; Rafferty, N.E. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr. Zool. 2013, 59, 418–426. [Google Scholar] [CrossRef]
- Kuppler, J.; Wieland, J.; Junker, R.R.; Ayasse, M. Drought-induced reduction in flower size and abundance correlates with reduced flower visits by bumble bees. AoB Plants 2021, 13, plab001. [Google Scholar] [CrossRef] [PubMed]
- Younas, M.; Ali, M.; Matloob, A.; Sajjad, A.; Gul, H.T.; Saeed, S. Effect of drought stress on the foraging behavior of insect pollinators and the reproductive success of canola (Brassica napus L.). Emir. J. Food Agric. 2022, 34, 170–175. [Google Scholar] [CrossRef]
- Bishop, J.; Potts, S.G.; Jones, H.E. Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J. Agron. Crop Sci. 2016, 202, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Höfer, R.J.; Ayasse, M.; Kuppler, J. Bumblebee behavior on flowers, but not initial attraction, is altered by short-term drought stress. Front. Plant Sci. 2021, 11, 564802. [Google Scholar] [CrossRef]
- Cohen, I.; Zandalinas, S.I.; Fritschi, F.B.; Sengupta, S.; Fichman, Y.; Azad, R.K.; Mittler, R. The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. Physiol. Plant. 2021, 172, 41–52. [Google Scholar] [CrossRef]
- Pernal, S.F.; Currie, R.W. Discrimination and preferences for pollen-based cues by foraging honeybees, Apis mellifera L. Anim Behav. 2002, 63, 369–390. [Google Scholar] [CrossRef]
- Eberle, C.A.; Forcella, F.; Gesch, R.; Weyers, S.; Peterson, D.; Eklund, J. Flowering dynamics and pollinator visitation of oilseed Echium (Echium plantagineum). PLoS ONE 2014, 9, e113556. [Google Scholar] [CrossRef]
- Hrubá, K.; Biella, P.; Klečka, J. Pollen viability of a widespread plant in response to climate warming: Possible local adaptation of populations from different elevations. bioRxiv 2023, 2023-06. [Google Scholar]
- Killi, D.; Bussotti, F.; Raschi, A.; Haworth, M.J.P. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol. Planta. 2017, 159, 130–147. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine responses to heat stress and global warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Staggenborg, S.A.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes, 1st ed.; Ahuja, L.R., Reddy, V.R., Saseendran, S.A., Yu, Q., Eds.; American Society of Agronomy: Madison, WI, USA, 2008; Volume 1, pp. 154–196. [Google Scholar]
- Qi, Y.; Zhang, Q.; Hu, S.; Wang, R.; Wang, H.; Zhang, K.; Zhao, H.; Ren, S.; Yang, Y.; Zhao, F.; et al. Effects of high temperature and drought stresses on growth and yield of summer maize during grain filling in North China. Agriculture 2022, 12, 1948. [Google Scholar] [CrossRef]
- Dreisig, H. How long to stay on a plant: The response of bumblebees to encountered nectar levels. Arthropod Plant Interact. 2012, 6, 315–325. [Google Scholar] [CrossRef]
- Holland, J.M.; Sutter, L.; Albrecht, M.; Jeanneret, P.; Pfister, S.C.; Schirmel, J.; Entling, M.H.; Kaasik, R.; Kovacs, G.; Veromann, E.; et al. Moderate pollination limitation in some entomophilous crops of Europe. Agric. Ecosyst. Environ. 2020, 302, 107002. [Google Scholar] [CrossRef]
- Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant. Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 2018, 6, 26. [Google Scholar] [CrossRef]
- Ma, X.; Sukiran, N.L.; Ma, H.; Su, Z. Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis. BMC Plant Biol. 2014, 14, 164. [Google Scholar] [CrossRef]
- Borghi, M.; Perez de Souza, L.; Yoshida, T.; Fernie, A.R. Flowers and climate change: A metabolic perspective. New Phytol. 2019, 224, 1425–1441. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Samarah, N.H.; Mullen, R.E. Drought stress effect on crop pollination, seed set, yield, and quality. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation, 2nd ed.; Lichtfouse, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 3, pp. 193–213. [Google Scholar]
- Smith, A.R.; Zhao, D. Sterility caused by floral organ degeneration and abiotic stresses in Arabidopsis and cereal grains. Front. Plant Sci. 2016, 7, 1503. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Bhandari, K.; Kumar, S.; Kumar, J.; Vara Prasad, P.V.; Siddique, K.H.; Nayyar, H. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Environ. 2019, 42, 198–211. [Google Scholar] [CrossRef]
- Aizen, M.A.; Aguiar, S.; Biesmeijer, J.C.; Garibaldi, L.A.; Inouye, D.W.; Jung, C.; Martins, D.J.; Medel, R.; Morales, C.L.; Ngo, H.; et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 2019, 25, 3516–3527. [Google Scholar] [CrossRef]
- Ali, M.; Sajjad, A.; Farooqi, M.A.; Bashir, M.A.; Aslam, M.N.; Nafees, M.; Aslam, M.N.; Adnan, M.; Khan, K.A. Assessing indigenous and local knowledge of farmers about pollination services in cucurbit agro-ecosystem of Punjab, Pakistan. Saudi J. Biol. Sci. 2020, 27, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Latif, A.; Malik, S.A.; Saeed, S.; Zaka, S.M.; Sarwar, Z.M.; Ali, M.; Azhar, M.F.; Javaid, M.; Ishtiaq, M.; Naeem-Ullah, U.; et al. Pollination biology of Albizia lebbeck (L.) Benth. (Fabaceae: Mimosoideae) with reference to insect floral visitors. Saudi J. Biol. Sci. 2019, 26, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, A.; Ali, M.; Saeed, S.; Bashir, M.A.; Ali, I.; Khan, K.A.; Ghramh, H.A.; Ansari, M.J. Yearlong association of insect pollinator, Pseudapis oxybeloides with flowering plants: Planted forest vs. agricultural landscape. Saudi J. Biol. Sci. 2019, 26, 1799–1803. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; p. 556. [Google Scholar]
- Haider, S.; Khan, F.Z.A.; Gul, H.T.; Ali, M.; Iqbal, S. Assessing the role of conservation strips in enhancing beneficial fauna in the wheat-cotton agricultural system in Punjab, Pakistan. Pak. J. Zool. 2024, 56, 1–9. [Google Scholar] [CrossRef]
Sowing | Water Regime | Abundance | Visit Duration | Visitation Rate (Floret) | Visitation Rate (Flower) |
---|---|---|---|---|---|
January | Water-deprived | 4.85 ± 0.37 bc | 0.64 ± 0.14 | 11.44 ± 0.63 a | 1.69 ± 0.09 a |
Well-watered | 2.34 ± 0.18 b | 0.85 ± 0.14 | 10.19 ± 0.58 ab | 1.57 ± 0.09 a | |
February | Water-deprived | 1.01 ± 0.15 cd | 11.30 ± 3.07 | 7.53 ± 0.60 c | 1.43 ± 0.08 a |
Well-watered | 2.22 ± 0.25 b | 14.47± 3.72 | 10.00 ± 0.53 ab | 1.67 ± 0.08 a | |
March | Water-deprived | 1.50 ± 0.20 bc | 12.67 ± 2.88 | 9.00 ± 0.70 bc | 1.20 ± 0.05 b |
Well-watered | 2.07 ± 0.28 a | 9.04 ± 1.95 | 10.91 ± 0.65 a | 1.47 ± 0.09 ab | |
April | Water-deprived | 0.12 ± 0.05 d | 12.58 ± 3.26 | 3.41 ± 0.49 d | 0.64 ± 0.07 c |
Well-watered | 0.43 ± 0.08 d | 19.00 ± 7.59 | 4.24 ± 0.55 d | 1.09 ± 0.14 c | |
F, df | 5.45, 3 | 1.06, 3 | 12.4, 3 | 2.64, 3 | |
p | 0.0010 | 0.3644 | <0.001 | 0.0490 |
Sowing Month | Pollinator Species | Abundance | Visit Duration | Visitation Rate (Floret) | Visitation Rate (Flower) |
---|---|---|---|---|---|
January | A. dorsata | 1.84 ± 0.25 b | 6.20 ± 1.22 bc | 11.25 ± 0.56 bcde | 2.25 ± 0.18 ab |
A. florea | 1.98 ± 0.49 b | 4.95 ± 1.13 bc | 10.40 ± 0.51 cdef | 1.35 ± 0.11 def | |
A. mellifera | 8.08 ± 0.55 a | 3.10 ± 0.48 bc | 11.55 ± 0.81 bcde | 1.25 ± 0.12 def | |
E. aeneus | 0.56 ± 0.23 b | 49.10 ± 8.78 a | 2.05 ± 0.20 lm | 1.15 ± 0.08 def | |
Halictus sp. | 0.24 ± 0.07 b | 3.54 ± 0.49 bc | 10.55 ± 0.53 bcde | 1.65 ± 0.17 bcdef | |
Lasioglossum sp. | 0.66 ± 0.15 b | 3.37 ± 0.51 bc | 14.15 ± 0.89 abc | 1.55 ± 0.15 cdef | |
Xylocopa sp. | 0.18 ± 0.05 b | 5.73 ± 0.77 bc | 15.75 ± 1.13 a | 2.20 ± 0.14 ab | |
February | A. dorsata | 0.77 ± 0.18 b | 3.71 ± 0.53 bc | 9.80 ± 0.62 defg | 1.60 ± 0.15 bcdef |
A. florea | 0.82 ± 0.16 b | 2.84 ± 0.52 bc | 8.10 ± 0.55 efgh | 1.30 ± 0.13 def | |
A. mellifera | 7.55 ± 0.49 a | 3.66 ± 0.66 bc | 9.50 ± 0.96 efgh | 1.50 ± 0.17 cdef | |
E. aeneus | 0.92 ± 0.21 b | 71.93 ± 10.09 a | 2.30 ± 0.24 klm | 1.25 ± 0.12 def | |
Halictus sp. | 0.52 ± 0.11 b | 3.03 ± 0.38 bc | 7.90 ± 0.79 fgh | 1.45 ± 0.14 cdef | |
Lasioglossum sp. | 0.55 ± 0.13 b | 2.35 ± 0.40 bc | 8.60 ± 0.86 efgh | 1.70 ± 0.18 bcde | |
Xylocopa | 0.20 ± 0.06 b | 2.69 ± 0.45 bc | 15.15 ± 1.09 ab | 2.05 ± 0.11 abc | |
March | A. dorsata | 0.95 ± 0.23 b | 2.93 ± 0.31 bc | 16.90 ± 1.04 a | 1.30 ± 0.13 def |
A. florea | 7.63 ± 1.05 a | 3.91 ± 0.51 bc | 13.00 ± 0.68 | 1.20 ± 0.09 def | |
A. mellifera | 9.18 ± 0.60 a | 3.11 ± 0.34 bc | 13.35 ± 0.81 abcd | 1.15 ± 0.08 def | |
E. aeneus | 0.02 ± 0.02 b | 59.66 ± 8.65 a | 1.80 ± 0.16 mn | 1.10 ± 0.07 ef | |
Halictus sp. | 0.08 ± 0.04 b | 2.18 ± 0.37 b | 6.90 ± 0.81 ghij | 1.30 ± 0.13 def | |
Lasioglossum | 0.40 ± 0.11 b | 1.53 ± 0.35 c | 7.55 ± 0.73 fghi | 1.55 ± 0.17 cdef | |
Xylocopa sp. | 0.23 ± 0.08 b | 2.09 ± 0.46 c | 10.20 ± 0.83 def | 1.75 ± 0.19 bcd | |
April | A. dorsata | 0.33 ± 0.10 b | 0.86 ± 0.24 c | 6.35 ± 0.61 hij | 1.20 ± 0.09 def |
A. florea | 0.17 ± 0.08 b | 1.06 ± 0.22 c | 4.50 ± 0.46 jkl | 1.05 ± 0.05 f | |
A. mellifera | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 n | 0.00 ± 0.00 g | |
E. aeneus | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 n | 0.00 ± 0.00 g | |
Halictus sp. | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 n | 0.00 ± 0.00 g | |
Lasioglossum sp. | 0.10 ± 0.06 b | 0.47 ± 0.12 c | 4.65 ± 0.49 ijk | 1.15 ± 0.08 def | |
Xylocopa sp. | 1.20 ± 0.21 b | 2.84 ± 0.30 c | 11.30 ± 0.71 bcde | 2.65 ± 0.11 a | |
F, df | 30.85, 18 | 12.19, 18 | 20.99, 18 | 12.57, 18 | |
p | <0.001 | <0.001 | <0.001 | <0.001 |
Bee Species | Water Regime | Abundance | Visit Duration | Visitation Rate (Floret) | Visitation Rate (Flower) |
---|---|---|---|---|---|
A. dorsata | Water-deprived | 0.70 ± 0.12 c | 2.61 ± 0.38 b | 10.15 ± 0.80 bc | 1.63 ± 0.12 |
Well-watered | 1.35 ± 0.19 c | 4.24 ± 0.62 b | 12.00 ± 0.76 ab | 1.55 ± 0.11 | |
A. florea | Water-deprived | 1.94 ± 0.32 c | 3.52 ± 0.62 b | 9.13 ± 0.74 cde | 1.13 ± 0.05 |
Well-watered | 4.17 ± 0.73 b | 2.86 ± 0.29 b | 8.88 ± 0.50 cde | 1.33 ± 0.08 | |
A. mellifera | Water-deprived | 5.17 ± 0.38 b | 2.43 ± 0.34 b | 7.78 ± 0.93 e | 1.03 ± 0.13 |
Well-watered | 8.95 ± 0.51 a | 2.50 ± 0.38 b | 9.43 ± 1.00 cde | 0.93 ± 0.11 | |
E. aeneus | Water-deprived | 0.19 ± 0.05 c | 49.88 ± 6.49 a | 1.60 ± 0.19 g | 0.88 ± 0.10 |
Well-watered | 0.65 ± 0.17 c | 40.47 ± 6.67 a | 1.48 ± 0.19 g | 0.88 ± 0.10 | |
Halictus sp. | Water-deprived | 0.10 ± 0.03 c | 1.76 ± 0.24 b | 5.15 ± 0.67 f | 1.03 ± 0.13 |
Well-watered | 0.38 ± 0.07 c | 2.61 ± 0.36 b | 7.53 ± 0.80 e | 1.18 ± 0.14 | |
Lasioglossum sp. | Water-deprived | 0.30 ± 0.06 c | 1.60 ± 0.25 b | 8.18 ± 0.90 de | 1.53 ± 0.11 |
Well-watered | 0.63 ± 0.11 c | 2.26 ± 0.32 b | 9.30 ± 0.58 cd | 1.45 ± 0.11 | |
Xylocopa sp. | Water-deprived | 0.17 ± 0.04 c | 3.28 ± 0.44 b | 12.95 ± 0.89 a | 2.00 ± 0.08 |
Well-watered | 0.54 ± 0.09 c | 3.40 ± 0.35 b | 13.25 ± 0.63 a | 2.33 ± 0.13 | |
F, df | 16.68, 6 | 2.89, 6 | 2.72, 6 | 1.69, 6 | |
p | <0.001 | 0.0089 | 0.0129 | 0.1216 |
Sowing Month | Water Level | Head Diameter | Head Weight (g) | Seed No. | Seed Weight (g) |
---|---|---|---|---|---|
January | Water-deprived | 12.15 ± 0.64 | 47.53 ± 2.18 | 705.13 ± 41.35 | 25.23 ± 0.96 |
Well-watered | 12.94 ± 0.97 | 53.90 ± 5.52 | 825.37 ± 106.45 | 28.20 ± 3.33 | |
February | Water-deprived | 10.71 ± 0.22 | 45.49 ± 2.38 | 637.78 ± 25.73 | 23.98 ± 1.57 |
Well-watered | 10.94 ± 0.33 | 48.77 ± 3.48 | 733.13 ± 67.16 | 26.33 ± 2.24 | |
March | Water-deprived | 9.79 ± 0.28 | 39.26 ± 2.70 | 553.48 ± 44.22 | 19.95 ± 1.78 |
Well-watered | 10.56 ± 0.35 | 48.68 ± 4.85 | 725.33 ± 83.49 | 27.75 ± 3.43 | |
April | Water-deprived | 8.81 ± 0.21 | 32.62 ± 1.94 | 493.50 ± 29.82 | 17.65 ± 1.25 |
Well-watered | 8.78 ± 0.42 | 31.22 ± 3.62 | 498.72 ± 52.50 | 17.20 ± 2.10 | |
F, df | 1.42, 3 | 0.87, 3 | 1.04, 3 | 1.02, 3 | |
p | 0.2524 | 0.4652 | 0.3866 | 0.3944 |
Water Regime | Pollination treatment | Head Diameter | Head Weight (g) | No. Seeds | Seed Weight (g) |
---|---|---|---|---|---|
Water-deprived | Caged | 10.06 ± 0.28 | 40.54 ± 2.31 | 557.01 ± 30.53 | 20.57 ± 1.99 |
Open | 10.67 ± 0.56 | 41.91 ± 2.37 | 637.94 ± 33.70 | 29.17 ± 1.92 | |
Well-watered | Caged | 10.02 ± 0.45 | 39.04 ± 3.54 | 567.83 ± 44.94 | 21.36 ± 1.45 |
Open | 11.59 ± 0.63 | 52.25 ± 3.31 | 823.44 ± 58.76 | 22.04 ± 1.18 | |
F, df | 0.13, 1 | 1.55, 1 | 2.71, 1 | 2.14, 1 | |
p | 0.7176 | 0.2216 | 0.1088 | 0.1526 |
Sowing | Pollination Treatment | Head Diameter (inches) | Head Weight (g) | No. Seeds | Seed Weight (g) |
---|---|---|---|---|---|
January | Caged | 10.91 ± 0.46 b | 44.10 ± 3.10 | 618.65 ± 45.04 bc | 23.15 ± 1.88 |
Open | 14.19 ± 0.36 a | 57.33 ± 3.48 | 911.85 ± 62.14 a | 30.28 ± 2.06 | |
February | Caged | 10.64 ± 0.36 b | 45.93 ± 3.74 | 630.30 ± 46.52 bc | 24.17 ± 2.45 |
Open | 11.02 ± 0.15 b | 48.33 ± 2.07 | 740.62 ± 51.96 ab | 26.15 ± 1.29 | |
March | Caged | 10.00 ± 0.38 bc | 39.29 ± 3.69 | 530.05 ± 50.90 c | 20.20 ± 2.47 |
Open | 10.36 ± 0.32 b | 48.65 ± 4.16 | 748.77 ± 67.11 ab | 27.50 ± 3.10 | |
April | Caged | 8.62 ± 0.35 d | 29.83 ± 3.26 | 470.68 ± 52.74 c | 16.35 ± 1.93 |
Open | 8.97 ± 0.30 cd | 34.00 ± 2.16 | 521.53 ± 24.62 c | 18.50 ± 1.35 | |
F, df | 12.48, 3 | 1.56, 3 | 3.53, 3 | 1.40, 3 | |
p | <0.001 | 0.2170 | 0.0248 | 0.2596 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, Q.; Ali, M.; Khan, F.Z.A.; Noureldeen, A.; Alghamdi, A.; Darwish, H.; Fatima, A.; Jalali, A.I.; Prendergast, K.; Saeed, S. Water Deprivation and Sowing Times Alter Plant–Pollination Interactions and Seed Yield in Sunflower, Helianthus annuus L. (Asteraceae). Plants 2024, 13, 3194. https://doi.org/10.3390/plants13223194
Ali Q, Ali M, Khan FZA, Noureldeen A, Alghamdi A, Darwish H, Fatima A, Jalali AI, Prendergast K, Saeed S. Water Deprivation and Sowing Times Alter Plant–Pollination Interactions and Seed Yield in Sunflower, Helianthus annuus L. (Asteraceae). Plants. 2024; 13(22):3194. https://doi.org/10.3390/plants13223194
Chicago/Turabian StyleAli, Qasim, Mudssar Ali, Fawad Zafar Ahmad Khan, Ahmed Noureldeen, Akram Alghamdi, Hadeer Darwish, Akash Fatima, Ahmad Ibrahim Jalali, Kit Prendergast, and Shafqat Saeed. 2024. "Water Deprivation and Sowing Times Alter Plant–Pollination Interactions and Seed Yield in Sunflower, Helianthus annuus L. (Asteraceae)" Plants 13, no. 22: 3194. https://doi.org/10.3390/plants13223194
APA StyleAli, Q., Ali, M., Khan, F. Z. A., Noureldeen, A., Alghamdi, A., Darwish, H., Fatima, A., Jalali, A. I., Prendergast, K., & Saeed, S. (2024). Water Deprivation and Sowing Times Alter Plant–Pollination Interactions and Seed Yield in Sunflower, Helianthus annuus L. (Asteraceae). Plants, 13(22), 3194. https://doi.org/10.3390/plants13223194